

(m9.b9)

TURER, SERAFINI AND MEURER, INC.

CONSULTING ENGINEERS . SURVEYORS . PLANNERS

2601 WYOMING BLVD., N.E., SUITE F. ALBUQUERQUE, NEW MEXICO 87112 . (505) 292-1936

Decamber 24, 1980

RECEIVED

DEC 2 9 1980

Dick Heller City Engineer City of Albuquerque P. O. Box 1293 Albuquerque, New Mexico 87103

CITY ELIGINEER

Re: Ladrones Road Drainage, Westgate Heights, Unit 4.

Dear Dick,

Transmitted herewith are the calculations and a proposed swale section for the above mentioned location.

We have sized the section to carry the developed flows from Unit 4 plus the expected contribution of the undeveloped area South of that unit. The foot of free board has been provided.

If there are any questions, please feel free to contact me.

Sincerely,

MEURER, SERAFINI AND MEUREP, INC.

Jim Leymon

JL:de

Enclosures

RSH ADM HRO SUR COUN COS COUN COS SEC COUNTY OF THE COS COUNTY OF THE CONTY ON THE CONTY OF THE

Systems Planning Corp • Albuquerque • Casper • Denver • New Orleans • Tucson

City of Albuquerque

P.O. BOX 1293 ALBUQUE ROUE, NEW MEXICO 87103

September 11, 1980

m9-09

Reading file

Mr. Vunce Emory
Maint. & Operations Supt.
Albuq. Public Schools
915 Locust St. S.E.
Albuquerque, New Mexico 8/106

RE: FLOODING AT LOTS 2 and 3 BLOCK 77, WESTGATE ADDITION UNIT 2

Dear Mr. Emory:

Please find attached a copy of page M-9-Z of the Zone Atlas, showing the location of the lots referenced above, a sketch prepared by my inspector, Bernie Montoya, and some photographs taken by the owner of the residence at 1305 Sonya St. S.W. I cannot find in our records any site grading or drainage plans for the Iruman Middle School, built some time in 1974 or 1975.

The conditions illustrated by the photographs are obviously unacceptable and I am asking the cooperation of A.P.S. in solving this problem. A grading plan should be prepared, showing how the water will be intercepted and diverted from these residences onto a public street. Further, in order to avoid that the runoff from the school site discharge onto the street unwanted and dangerous silt, a properly designed detention basin should be constructed.

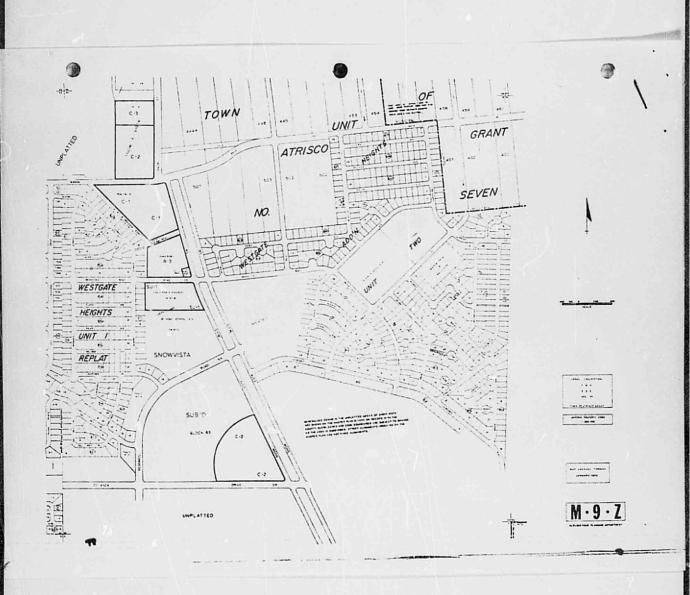
Please advise me of your decision on this matter so that I can inform the residents of the remedies that will be provided.

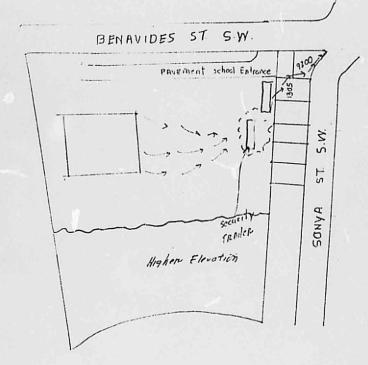
Very truly yours,

Bruno Conegliano

Asst. City Engineer-Hydrology

BC/tsl


Attachments


MUNICIPAL DEVELOPMENT DEPARTMENT

Richard S. Heller, P.E., City Engineer

ENGINEERING DIVISION

Telephone (505) 766-7467

City of • Ilbuquerque P.O. BOX 1293 ALBUQUERQUE, NEW MEXICO 87103

September 7, 1978

Mr. J. D. Fullmer Mortgage Investment Co. P. O. Box 3189, Station D Albuquerque, New Mexico 87110

> SUBJECT: TEST TURNKEY PROJECT WORK AUTHORIZATION #T-14 WESTGATE HEIGHTS, UNIT 4

Dear Mr. Fullmer:

Under the provisions of the Test Turnkey Project procedures, this letter is the Work Authorization to begin field work on the project.

Acting City Engineer

CDS/fs

cc - H. R. Orr Kent Nowlin Construction Inc. Ray Dawson Water Resources Dwayne Sheppard Bob Kielich LaMonte Urban Fruno Conegliano Bill Mueller

City of • Ilbuquerque P.O. BOX 1293 ALBUQUERQUE, NEW MEXICO 87103

July 27, 1978

Mr. J. D. Fullmer Mortgage Investment Co. P. O. Box 3189, Station D Albuquerque, N.M. 87110

> SUBJECT: TEST TURNKEY PROJECT WORK AUTHORIZATION #T-10 WESTGATE HEIGHTS, UNIT 4

Dear Mr. Fullmer:

Under the provisions of the Test Turnkey Project procedures, this letter is the Work Authorization to begin field work on the project.

Sincerely,

City Engineer

VMK/fs

cc - H. R. Orr Contractor Ray Dawson Water Resources Dwayne Sheppard Bob Kielich LaMonte Urban Brono Conegliano Bill Mueller

Genge/Nurray-McCormick

2601 Wyoming Blvd. N.E. Suite F Albuquerque, N.M. 87110 505 292-1936 Engineering Surveying Planning

May 9, 1977

City of Albuquerque P. O. Box 1293 Albuquerque, New Mexico 87103

Attention: Mr. V. M. Kimmick City Engineer

Westgate Heights Subdivision, Unit 4

Gentlemen:

Mortgage Investment Company, 2727 San Pedro Drive N.E., has retained us to prepare the improvement plans for the above subdivision.

In accordance with the ordinances of the City of Albuquerque ordinances and procedural requirements, we hereby request the City's design for the master planned lines and approval to proceed in the preparation of the remaining improvement documents.

Very truly yours,

GENGE/MURRAY-McCORMICK, INC.

Thomas J Haack

TJH:dw

APPROVED:

City Engineer

Date: 8-23.7)

City of . Ilbuquerque

P.O. BOX 1293 ALBUQUERQUE, NEW MEXICO 87103

June 18, 1980

Mr. Joe Fulmer Mortgage Investment Co. of El Paso P.O. Box 3189, Station D Albuquerque, New Mexico 87110

Dear Mr. Fulmer:

Mr. John R. Suydam with the firm of Castillo Preston Ltd. has contacted my office to obtain signature on a site development plan. In the process, I have found that a summary plat for a parcel of land East of the Southeast end of Westgate Heights Unit 4 has been approved without legal access. Even though the Master Plan for Westgate Heights was approved (Zoning Action S-1082) substantial changes have occurred and a study indicating both current planning thinking, and the method of handling the runoff must be supplied. The biggest item of concern pertains to the fact that, as noted in the AMAFCA comments pertaining to Zoning Action 79-137; the parcel sold to the Archdiocese is subject to flooding. Without a method to collect the surface waters from Camino de San Martin Dr. and their safe disposition to an adequate facility, the City will not be able to grant access to this parcel. I am, therefore, requesting that a meeting be called with Mr. R. S. Heller and Richard Leonard to review this matter and hopefully provide an adequate resolution.

Sincerely,

Bruno Conegliano

Asst. City Engineer-Hydrology

BC/tsl

cc: Coading File Co: Rick Leonard, AMAFCA

R. S. Heller, City Engineer

Mr. John R. Suydam, Castillo Preston Ltd.

CITY OF ALBUQUERQUE MUNICIPAL DEVELOPMENT DEPARTMENT PLAINING DIVISION

AGENDA ITEM NO.

ENVIRONMENTAL PLANNING COMMISSION November 15, 1979

,2-79-137

Archdiocese of Santa Fe requests a change of zone from R-1 to SU-1 (Special Use for a Church and Related Facilities) for an unplatted parcel of land located on the east side of Ladrones Poad S.W., approximately 1600 feet east of the intersection of Snow Vista Boulevard and De Anza Drive S.W., containing approximately 4.5 acres. (M-9/10)

COMMENTS FROM OTHER DEPARTMENTS, 11-15-79:

Traffic Engineer:

Transportation:

Water Resources:

Fire Dept.:

Environmental Health: City Engineer:

"Because of the curvature on De Anza, the proposed landscaped berm could "mecause of the curvature on De Anza, the proposed landscaped berm could create visibility restrictions for traffic exiting from the driveways. See Transportation Deot, comments regarding right-of-way dedications." "Dedication of right-of-way for all three adjacent streets (including 43 ft. to the centerline of De Anza Drive which is designated as a minor arterial street on the approved Long Range Major Street Plan) should be a condition of approval."

condition of approval."
Mater - "In order that adequate water service and/or fire protection can
be provided, waterline extensions at the developer's expense will be required.
Design must be coordinated with the Engineering Division of the Water Resources
Department. Service to this tract can be made possible by waterline extensions;
however, the developer is advised that static water pressure may exceed 100
psig. The Water Assources Department recommends that the developer provide
in its design precautions for protection of the integrity of the private
mlumbing usterm acainst high water pressure and extreme pressures due to

In its design precautions for protection of the integrity of the private plumbing system against high water pressure and extreme pressures due to occasional surges. Such precautions are the entire responsibility and expense of the developer."

Sanitary Sewer - "Our records indicate the existence of a major sanitary sewer interceptor which crosses this tract. An unobstructed fifty foot easement centered about this severline will be required. Developer must field werify the location of this sever line. Design must be coordinated with the Engineering Division of the Water Resources Department."

"Comply with Fire Code - Ordinance No. 50-1975. Provide required flow and hydrant distribution."

"No adverse comments. Too Soil Disturbance Permit required."

"Require z drainage study prior to approval of development plan and building plans."

No adverse comments."

"No adverse comments.

Tho adverse comments."
This property is located within the Gibson West Corridor delineated on the Long Range Major Street Plan. Of significance, however, is a proposed east-west minor arterial connecting Snow Vista Boulevard with Unser Boulevard and which is an extension of De Anza Orive. The location of this proposed courth is in the vicinity of that De Anza alignment, although such an alignment is not fixed at this time.

AMAFCA:

Parks & Recreation: Zoning Enforcement: City Real Estate Officer: Refuse Removal Division:

"The tract is in the Flood Hazard Area as shown on the Flood Hazard Boundary Map 27 dated 2-14-78. A drainage report will be required prior to development."
"No adverse comment."

no reply received

PLANNING DIVISION COMMENTS TO THE ENVIRONMENTAL PLANNING COMMISSION, 11-15-79:

The applicant is requesting a zone change from R-1 to SU-1 for a church and approval of the church's site development plan. The property is located .3 mile south of Sage Road and .5 mile east of 98th Street/Snow Yista Boulevard. This 4.5 acre tract and all surrounding property is undeveloped. The Westgate Heights Master Plan encompasses this and all surrounding parcels.

Zone Change Request

The proposed zoning is consistent with the health, safety, and general welfare of the City in that it is a reasonable use, located in accordance with an approved private master plan for this area.

The applicant is requesting the change from the R-1 zone so that the uses established in the Westgate Heights Master Plan may develop.

The property is located in the Developing Urban Area of the Comprenensive Plan and the Vestgate Meights Master Plan. The request conforms with both plans. The master plan indicates that the adjacent property should be developed as single-family residential.

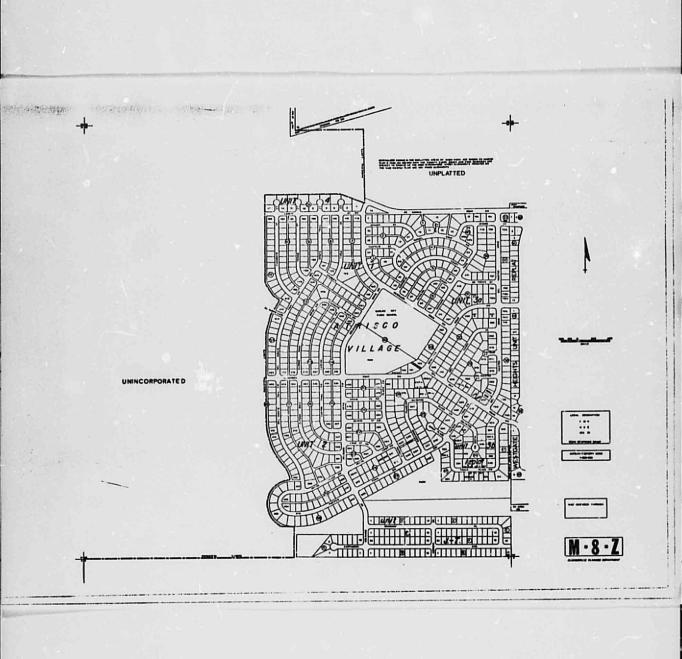
City of . Ilbuquerque P.O. BOX 1293 ALBUOUEROUE, NEW MEXICO 87103

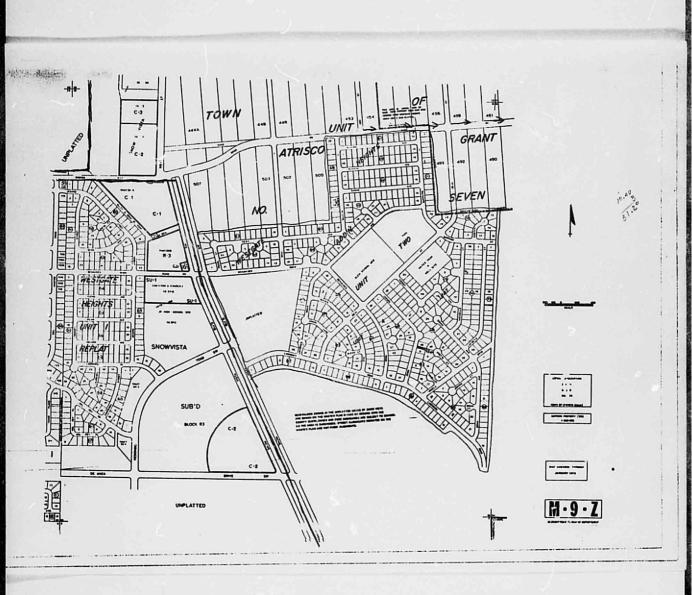
June 9, 1981

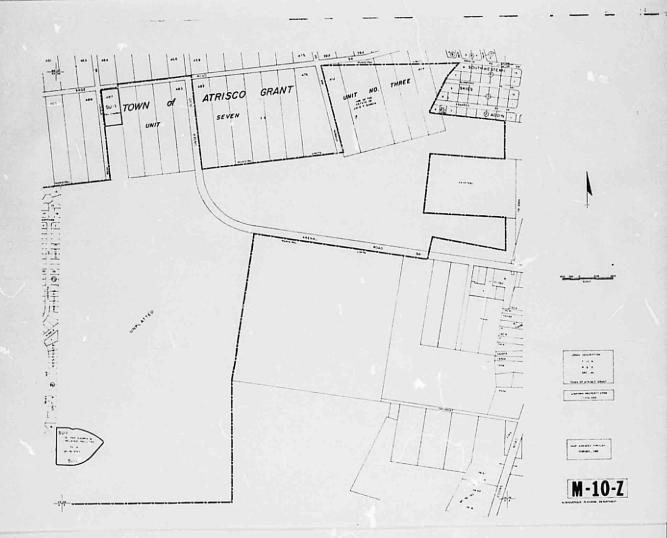
Mrs. Peggy Reed 8608 Lynette Ct. S.W. Albuquerque, New Mexico 87105

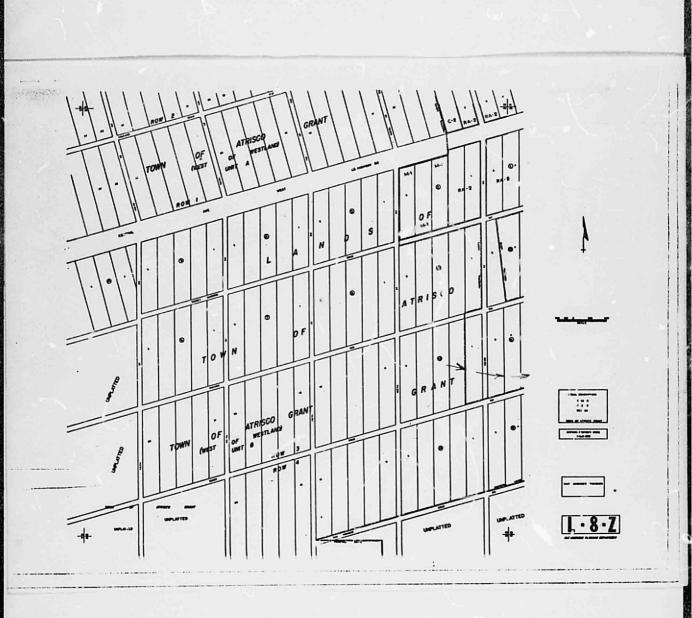
Reference: 8608 Lynette Ct. S.W.; Westgate Heights U-4; Block 83; Lot 11

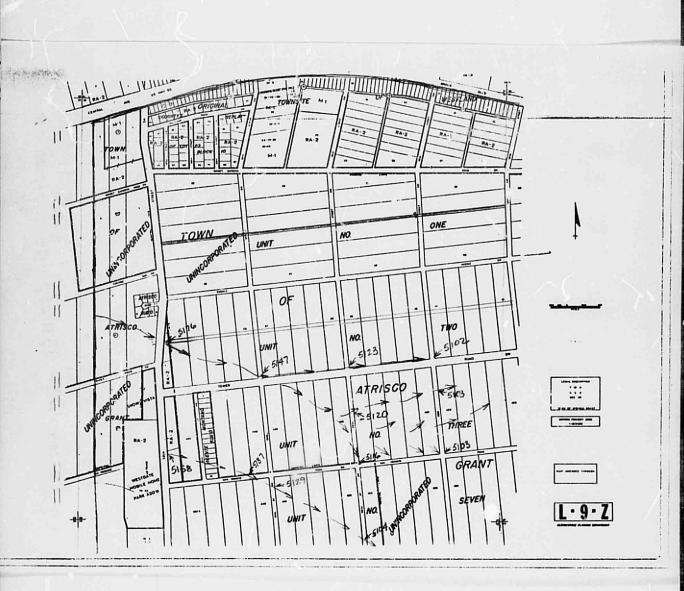
Gentlemen:


At the request of Mrs. Peggy Reed, I am submitting the following information regarding the above address.


Our maps indicate the property in question is no longer in a flood hazard zone, according to the Flood Hazard Boundary Map (F.H.B.M.) dated 12-4-79.


If you have any questions, please don't hesitate to contact my office.


Civil Engineer/Hydrology


BGB/fs

ALBUQUERQUE, N.M. MEURER - SERAFINI - MEURER, INC. By J. L. Date 12-23 PROJECT CHURCH SITE sheet No. / of Z Checked By Date NESTGATE CHIT 4 Job No. 0640214 CONTEIBUTING AREAS 1. FLOW FROM UNIT 4 (FROM DRAINAGE REPORT BY MEM PREPARED DEC. 1976) 77.9015 2. OFFGITE CONTENBUTION (GOUTH OF LIHITH) AREA = 57.8 A. L : BOOD FT. H = 72 FT. TE : ILe. 7 MIM. I = 4.9 IM. /HZ. C = O.H (UNITELOPED) Q= ACI = 57.8 (0.4) 49: TOTAL 191.2 of5 TRADE = IDAL CHANNEL Q= 1.49/n A Zh3/3 51/2 USE MANNINGS 5-)0,5% BOTTOM WITH = 32 FT. (FLTOR EXIST. SIDE SLOPE = 3:1 Q. DEPTH = 1.21' Q= 192.2 cfs PROVIDE 1-0" FREE BOARD, USE D. 2.21

@ DEPTH = 2.21' 9 = 544.7 cfs

MEURER - SERAFINI - MEURER, INC. ALBUQUERQUE, N.M. By J. C. Date 12-23 PROJECT CHURCH SITE Sheet No. 2 of Z

Checked By Date WESTGATE CHIT H Joh No. 0040214 CHANNEL SECTION EXIST. GRADE BEEM-2.2! 50 ESMT.

FOR TEMPORARY DRAINAGE RIGHT-OF-WAY

THIS INDENTURE made and executed this 17th day of July , 1980, by and between PROPERTY MANAGEMENT COMPANY OF NEW MEXICO, hereinafter called the Grantor and THE CITY OF ALBUQUERQUE NEW MEXICO, a municipal corporation, hereinafter called the Grantee.

Witnesseth, that for good and valuable consideration the receipt of which is hereby acknowledged the Grantors have this day bargained and sold by these presents do sell, convey and deliver unto the City of Albuquerque a temporary easement as right-of-way including the temporary easement as right-of-way including the temporary right to enter upon the real estate hereinafter described at any time it may see fit and construct, maintain and repair, drainage ditches across, through, and under the lands hereinafter described and the further right to remove trees, bushes, undergrowth and obstructions interfering with the location, construction and maintenance of said drainage ditches.

The land affected by the grant of this easement and rightof-way is situate in Section 34, Township 10 North, Range 9 East,
New Mexico Principal Meridian, within the Town of Atrisco Grant,
Bernalillo County New Mexico, and being tied to the northeast
corner of WESTGATE HEIGHTS, Unit 3, a subdivision of the City of
Albuquerque, County of Bernalillo, State of New Mexico, as the same
is shown and designated on the said plat filed in the office of the
County Clerk of Bernalillo County, New Mexico, on April 22, 1977
(D7-167).

Right-of-way $\sharp 1$ - a 75 foot wide easement, the centerline of which being herein more particularly described as follows:

Beginning at the intersection of Sapphire Street S.W. and the west line of said Section 34 from whence the northeast corner of said WESTGATE HEIGHTS, Unit 3, bears North 00°28'10" East a distance of 400.64 feet, being also the westerly end and point of beginning of the drainage right-of-way centerline herein de cribed; thence South 89°31'50" East a distance of 495.00 feet along said centerline to a point; thence South 73°00'00" East a distance of 375.00 feet along said centerline; thence South 83°20'00" East a distance of 59°C.00 feet along said centerline to a point; thence South 52°00'00" East a distance of 931.14 feet along said centerline to the easterly end of the drainage right-of-way herein set forth.

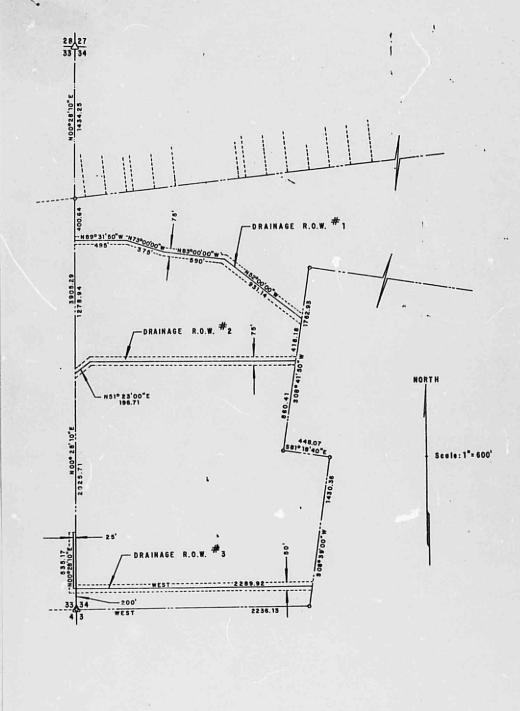
Right-of-way #2 - a 75 foot wide easement, the centerline of which being herein more particularly described as follows.

Beginning at the intersection of Kimela Drive S.W., and the west line of said Section 34 from whence the northeast corner of said WESTGATE HEIGHTS, Unit 3, bears North 00°28'10" East a distance of 1,679.58 feet, being also the westerly end and point of beginning of the drainage right-of-way centerline herein described; thence North 51°23'00" East a distance of 196.71 feet along said centerline to a point; thence South 89°31'50" East a distance of 1966.56 feet along said centerline to the easterly end of the drainage right-of-way centerline herein set forth.

Right-of-way #3 - A 50 foot wide easement, the centerline of which being herein more particularly described as follows:

Beginning at a point on the west line of said Section 34 from whence the northeast corner of said WESTGATE HEIGHTS, Unit 3, bears North 00°28'10" East a distance of 3,170.32 feet; thence North 89°31'50" West a distance of 25.00 feet to the centerline of the proposed Ladrones Road S.W., being also the westerly end and point of beginning of the drainage right-of-way centerline herein described; thence South 00°28'10" West a distance of 535.17 feet along said drainage centerline to a point; thence East a distance of 2289.92 feet along said centerline to the easterly end of the drainage right-of-way centerline nerein set forth.

TO HAVE AND TO HOLD the said right and easement for the uses and purposes aforesaid, unto Grantee its successors and assigns for so long as said easement shall not be abandoned for use as a right-of-way for aforesaid drainage.


The Grantors do hereby covenant with the Grantee that they are lawfully seized and possessed of the real estate above described and that they have a good and lawful right to convey it or any part thereof, that it is free from all encumbrances except those of record and taxes due and owing the Treasurer of Bernalillo County and that they will warrant and defend the title thereto against the lawful claims of all persons whomsoever.

As part of the consideration for this grant, the Grantors do hereby release any and all claims for damages for whatsoever cause incidental to the exercise of the rights herein granted provided, however, that the Grantee agrees to save the Grantors harmless from any and all liability that may arise as a result of the construction and use of the easement for the purposes set forth.

Said easement is subject to, and in conjunction with, other grants of easements heretofore granted over the above described real estate.

IN WITNESS WHEREOF, the parties have set their hands and
seals this 17 th day of July ,1980
PROPERTY MANAGEMENT COMPANY OF NEW MEXICO
By: Julmer, Vice President Attest: Jac Wikon Jew Wilson Asst. Vice President
J.D. Fulmer, Vice President Joe Wilson Asst. Vice President
STATE OF NEW MEXICO) ss. COUNTY OF BERNALILLO)
The foregoing instrument was acknowledged before me this
17th day of July , 1980, by J. D. Fulmer
and Joe Wilson, Vice President and Assistant Vice President
respectively.
My Commission Expires: OFFICAL SEAL Signature MOTAN FUBLIC - NEW MEXICO Nota y Bond Filed with Secretary of State My Commission Expires 3-13-89

Ċ

DRAINAGE REPORT WESTGATE HEIGHTS UNIT 4 ALBUQUERQUE, NEW MEXICO

MEURER, SER FINI AND MEURER, INC. CONSULTING ENGINEERS

2601 WYOMING BOULEVARD N.L. • SUITE F. ALBUQUERQUE, NEW MEXICO 87110 • 505/292-1936

DRAINAGE REPORT
WESTGATE HEIGHTS UNIT 4
ALBUQUERQUE, NEW MEXICO

Prepared For

Mortgage Investment Company 2727 San Pedro, N.E. Albuquerque, New Mexico

Prepar d By

Meurer, Serafini and Meurer, Inc. 2601 Wyoming Blvd., N.E. Albuquerque, New Mexico 505 292-1936

December 1976

WESTGATE HEIGHTS, UNIT 4 COMPREHENSIVE DRAINAGE STUDY

TABLE OF CONTENTS Page No.
PURPOSE AND INTRODUCTION 1
THE SITE
GENERAL SITE CHARACTERISTICS 2
DESIGN CRITERIA
ESTIMATED RUNOFF UNDEVELOPED STATE
ESTIMATED RUNOFF DEVELOPED STATE
SUMMARY OF RUSULTS
RECOMMENDATIONS 6
SUMMARY
APPENDIX
EXHIBITS
FIG. 1 Vicinity and Location Map
FIG. 2 Primary Drainage Basin
FIG. 3 Developed Drainage Characteristics
FIG. 4 Proposed Amendment to Westgate Heights Subdivision
FIG. 5 Typical Lot Drainage
FIG. 6 Time of Concentration for Small Drainage Basins
FIG. 7 Intensity Duration Curves - Albuquerque & Environs
FIG. 8 100 Year - 6 Hour Precipitation
FIG. 9 Street Flow Capacity Characteristics
FIG. 10 Velocities for Upland Method of Estimating Tc

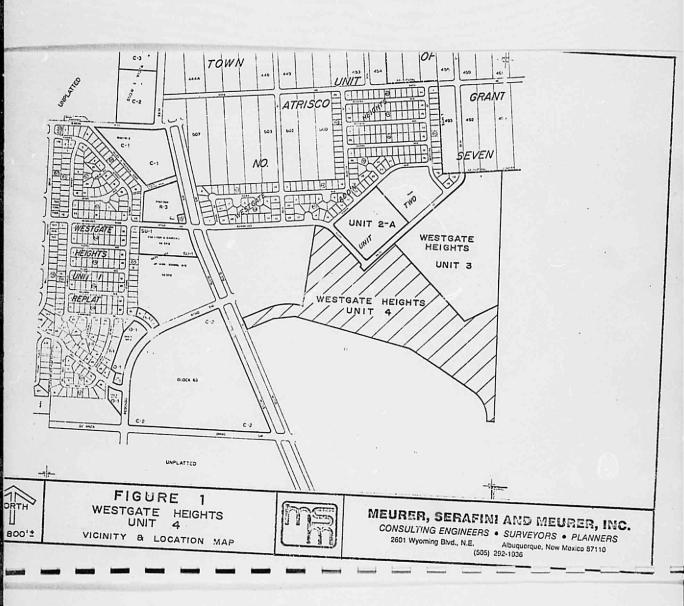
APPENDIX (Cont'd

Composite "C" Factor Calculations
Lot Ponding Requirement Calculations
Rational Method Calculations
Street Flow Quantity Tables
Bibliography

DRAINAGE REPORT

WESTGATE HEIGHTS SUBDIVISION UNIT 4

PURPOSE AND INTRODUCTION


The following report with the supporting calculations and exhibits describes the drainage characteristics affecting the development of Westgate Heights, Unit 4. A number of recommendations regarding the design and implementation of drainage improvements are included within the text to assist the City of Albuquerque, the Albuquerque Metropolitan Flood Control Authority and the developer in the engineering design and implementation of drainage facilities such that urban planning and development can be accomplished with a minimum risk to life and property.

THE SITE

Westgate Heights, Unit 4, a proposed R-1 development, is located within the southwest quadrant of the City of Albuquerque, east of Snow Vista Boulevard and south of Sage Road. It is bounded on the west by Truman Middle School and on the north by Westgate Heights Units 2 and 3, on the south and the east by unplatted lands.

GENERAL SITE CHARACTERISTICS

The site encompasses 65.06 acres, more or less, slopes from west to east with an average slope of 2%. The surface soils are predominantly sandy with little clay and can be considered open and highly absorbent with a high degree of porosity.

DESIGN CRITERIA

In analyzing the storm runoff, the Rational Formula, $Q = C \cdot C_f \cdot I \cdot A$, was used. See <u>Urban Storm Drainage</u>, Criteria Manual, Vol. 1, Runoff, Section 3 "Rational Method".

Where:

Q = Runoff quantity in cubic feet/second.

A = Contributing area in acres.

Cf = Frequency Factor for Rational Formula.

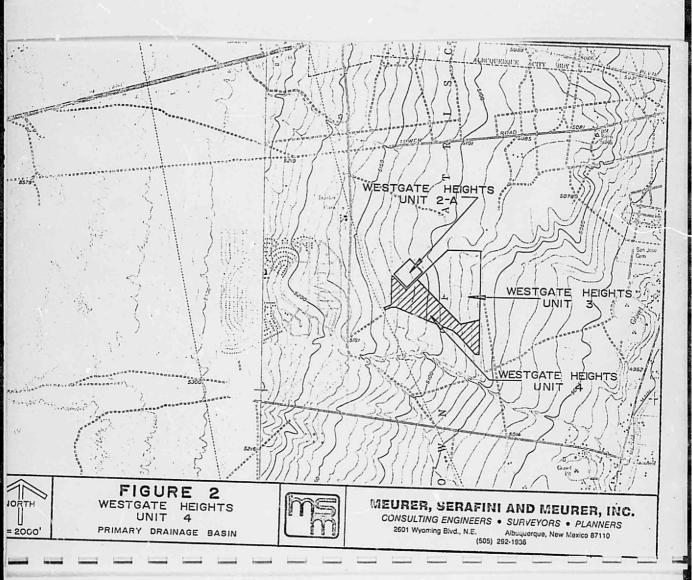
- C = Runoff Coefficient (No Unit). This coefficient represents the integrated effects of infiltration, detention storage, evaporation, retention, flow routing, and interception which all affect the time distribution and peak rate of runoff.

ESTIMATED RUNOFF UNDEVELOPED STATE

Drainage within the boundary of the primary drainage basin is in the form of sheet flow with general accumulation into several small arroyos. Offsite drainage from the west passes through the subdivision. The total runoff in the undeveloped site forms the basis for comparison with the flow in the developed state.

TABLE 1
RUNOFF IN UNDEVFLOPED STATE

Elev. Diff.	Length of Flow	Tc1.	Il00 Yr. In./Hr.	c2.	Area Ac.	Q100 C.F.S.
80'	3500'	18	4.4	. 4	97.62	172


ESTIMATED RUNOFF DEVELOPED STATE

As development occurs, the area of impervious surfaces increases and thereby the amount of runoff also increases. To offset this increase, onsite restrictions of flows must be incorporated into the development. While this may take different forms, the most practical solution for this type of development is to utilize on-lot ponding. The contributing area to the backyard ponding includes the backyard, sideyard, and in a majority of cases, one-half the roof area due to the popularity of the pitched roof concept. The area drained to the street includes the front yard, driveway, sidewalk-parkway areas, and one-half the roof area. This approach is to satisfy AMAFCA's requirement that the runoff rate from the developed tract not exceed the runoff rate from the tract in its natural state.

SUMMARY OF RESULTS

Total Undeveloped Runoff	(Sie Page 3)	172 c.f.s.
Developed Runoff		
0-S-1	12.26 c.f.s.	
O-S-2	14.94 c.f.s.	
0-S-3	41.06 c.f.s.	
O-S-4	4.34	

See Appendix; Rational Method Calculations.
 See Appendix: Composite "C" Computations.

Developed Runoff (cont'd.) Single Family Area 35.95 Total Developed Runoff 77.89 c.f.s. See Composite Flows (Table 2)

-4-

TABLE 2
RUNOFF IN DEVELOPED STATE

Area Designation	Acreage (Ac.)	I ₁₀₀ In./Hr.	"C"3.	Qmax. (cfs)	Q100 (cfs)	
Offsite						
0-s-1	3.29	5.4	.69	12.26	12.2	
O-S-2	4.79	4.5	.69	14.94	14.9	
O-S-3	19.01	5.4	.40	41.06	41.0	
O-S-4	2.01	5.4	.40	4.34	4.34	
A-1	9.68	4.47	.53	22.93		
B-1	2.81	5.17	.54	7.84		
B-2	. 38	5.4	.48	2.28		
В-3	1.58	5.4	.43	3.67		
B-4	0.37	5.4	.80	1.61		
B-5	1.37	5.4	.47	3.48		
B-6	.75	5.4	.46	1.86		
в-7	3.50	5.4	.43	8.13		
C-1	2.88	5.09	.47	6.89		
C-2	0.67	5.4	.19	0.69		
C-3	0.97	5.4	.66	3.46		
C-4	0.91	5.4	.45	2.21		
C-5	1.96	5.4	.51	5.4		
C-6	1.29	5.4	.51	3.55		
2-7	1.32	5.4	.44	1.32		

TABLE 2 (Cont'd.)

RUNOFF IN DEVELOPED STATE

Area Designation	Acreage (Ac.)	I100 In./Hr.	"C"3.	Qmax. (cfs)	Q100 (cfs)
D-1	1.82	5.4	.47	4.62	
D-2	0.52	5.4	.35	0.98	
D-3	0.53	5.4	.38	1.09	
E-1	0.96	5.4	.50	2.59	

TABLE 3

	COMPOSITE F	LOWS - DEVELOPE			
Area Designation	Acreage (Ac.)	I ₁₀₀ In./Hr.	"C" ³ .	Qmax. (cfs)	Q100 (cfs)
W6 #4 Total	34.77	2.11	.49	35.95	
A + O-S-4	11.69	4.04	.51	24.09	
B-1 thru B-7 + O-S-1	14.55	2.71	.53	20.9	
C-1 thru C-7 + O-S-3 & 4	31.02	2,11	.43	27.87	
$I + I\overline{I}$	26.24	2.71	.52	36.98	
\underline{v}_{+}	57.26	2.71	.47	73.13	
$v + D^{\underline{v}\underline{I}}$	60.13	2.71	.47	76.28	
$VI + \frac{E}{VII}$	61.09	2.71	.47	77.89	77.89 cfs

SUMMARY OF RESULTS

Total Undeveloped Runoff (see Page 3) 172 cfs
Developed Runoff:

				To	b ta	11	De	eve	210	ope	ed	Ri	ıno	ofi	E					72.6	cfs
O-S-4	٠				٠	•		٠	٠	٠	٠	•	٠	•	•	•	٠			4.34	cfs
0-s-3				٠							٠	•	٠	٠	٠	٠	٠	•	٠	41.06	cfs
O-S-2			٠	٠	٠	٠			٠		•	٠		٠	٠	٠	٠	•	٠	14.94	cfs
0-S-1	•	•	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	•	٠	٠	•	٠	•		12.26	cfs

As shown above, the development of this project including the lot ponding will not increase the storm runoff over that occurring in the natural undeveloped state. Further, offsite flows entering the site on the west perimeter are to be intercepted by and conveyed in Benavidez Road and Locura Road to Ladrones Road.

RECOMMENDATIONS

The following recommendations regarding the design and implementation of drainage improvements are included to assist the City of Albuquerque, the Albuquerque Metropolitan Flood Control Authority and the developer in the engineering design and implementation of drainage facilities:

- Flows within the streets of the development are distributed so that only Benavidez Road and Ladrones Road assume the major role in conveying offsite flows. These streets should be graded at not less than .5% slope in order to insure adequate capacity.
- Paving and other surface improvements as shown on Figure 3 should be constructed in accordance with the typical sections

- shown on Figure 4, therein providing permanent definition of flow patterns for offsite runoff.
- 3. The ponding areas in each backyard should be situated toward the rear of the yard. There should be a minimum of a five foot buffer zone between the rear property lines and the edge of the pond to protect any walls which might be constructed. In no case should ponded waters be allowed to stand against a wall or house foundation.
- 4. Ponds should average 6" deep and the minimum surface area should not be less than 15% of the total area drained into the pond. See Appendix, Lot Ponding Calculation.

SUMMARY

Prepared by:

The subject property, by utilizing backyard ponding on single family lots and outlet control in the multi-family and commercial areas, will contribute no more surface runoff co surrounding areas than that which existed before development.

In conclusion, the development of this site should have a beneficial effect on the drainage characteristics of this area, and can be developed safely with no harm to life or property.

Approved:		
Carl A. Tebbens	-	
N.M.P.E. No.6309		

"RATIONAL METHOD"

COMPOSITE RUNOFF COEFFICIENTS

For purposes of this report the runoff coefficient (C) and frequency factor (C_f) are combined in one factor designated (C). Each of the following determinations of composite runoff coefficients is first computed upon the basis of relative percentages of surface characteristics for the individual areas, and coefficients for 2 to 10 year frequency storms. Each is then multiplied by the frequency factor (C_f) of 1.25 for 100 year storms.

UNDEVELOPED LAND

 $c = 0.30^{1} \cdot \times 1.25^{2} \cdot = 0.38$

DEVELOPED LAND

Typical Lot Area - Westga	te Heights, Unit 4		
Gross Area		65.09	Ac.
Less: Area in Streets	14.81 Ac.		
Area in Lots		50.25	Ac.
Average Lot Area (253 Lots)		86.18	Sq.Ft.
Typical Lot Width		65	Ft.

See Bibliography; Item (1) Table XII
 See Bibliography; Item (2) Article 3.7

Ponded Lots - Westgate Heights, Unit 4 C = 0.80Streets & Walk Area 20 x 65 1,300 S.F. 20 x 55 1,100 S.F. Roof Area 450 S.F. 30 x 15 Driveway 2,850 S.F. Total Impervious Area C = 0.12Front and Side Yards 3,250 S.F. -1,100 S.F. Less Roof Area -450 S.F. Less Driveway 1,700 S.F. Total Pervious Area 0.504 Impervious Area 2850 Sq.Ft. 63% @ 0.80

0.044

Pervious Area 1700 Sq.Et. 37% @ 0.12

Total Area

4550 Sq.Ft. 100%

Composite Runoff Coefficient = C x C_{f} = 0.55 x 1.25 = 0.69

PONDING REQUIREMENTS

Typical Lot Area

Average Lot Area	a			8,618	S.F.
Less: Front & S	Side Yards			-3,250	s.F.
Area Draining to	o Pond			5,368	S.F.
Roof Area	20 x 55			1,100	S.F.
Patio Area				100	s.F.
Lawn Area				4,168	S.F.
ff Coefficient					
		220 0 0	0.0	0.10	

Runo

Impervious Area 1200 S.F. 22% @ 0.80 0.18 0.09 Pervious Area 4168 S.F. 78% @ 0.12 0.27

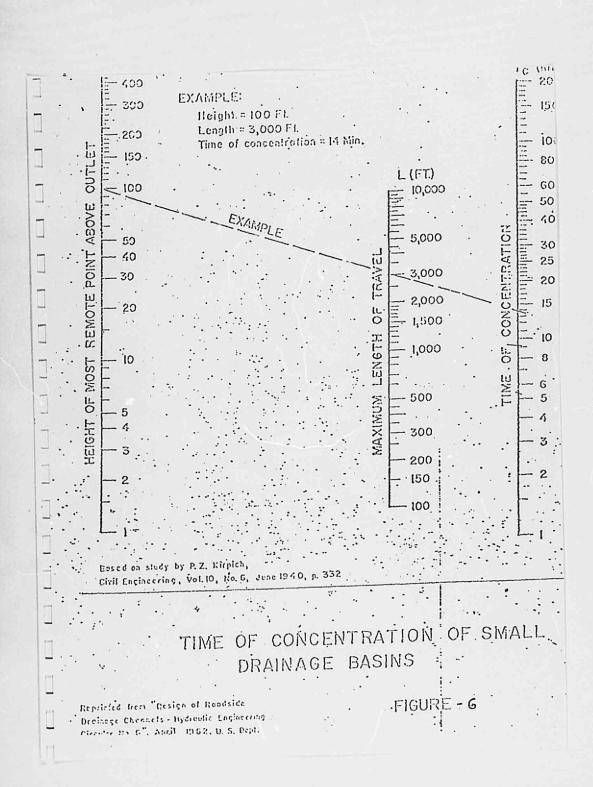
 $C \times C_1 = 0.27 \times 1.25 = 0.34$

Pond Volume Requirement

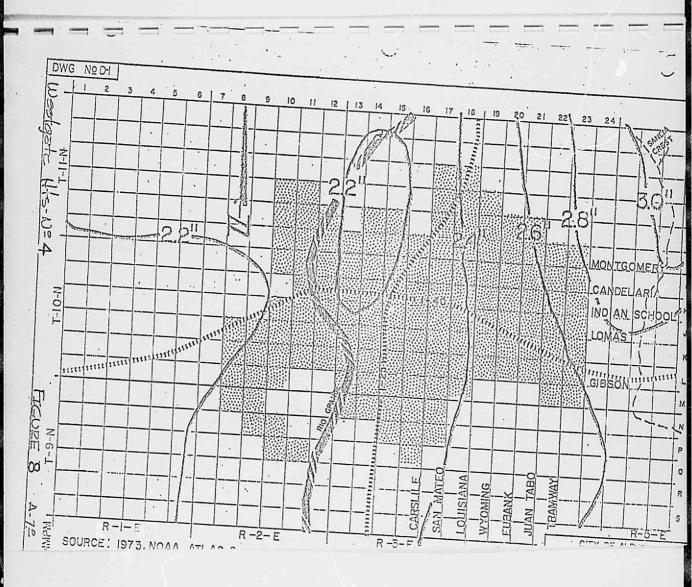
2.2 in. 100-year 6-hour precipitation

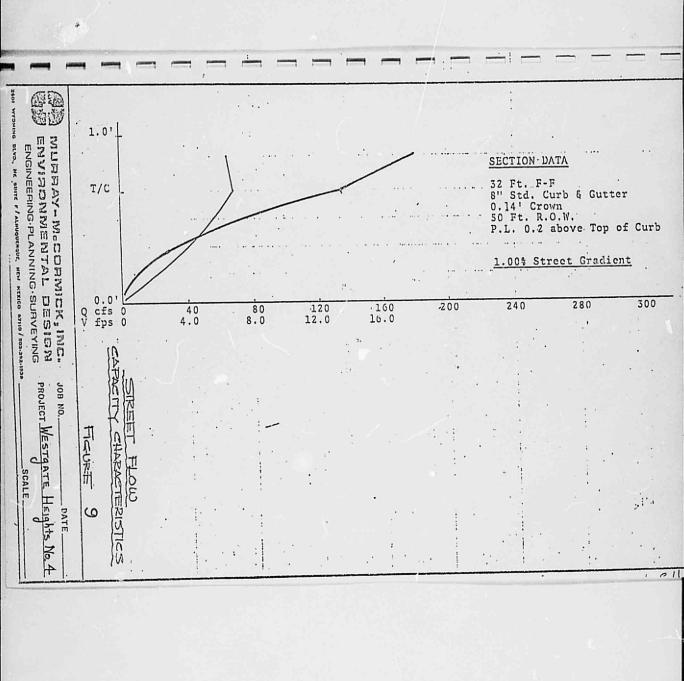
Volume = Runoff coefficient x area x precipitation

 $V = 0.34 \times 5368 \times 0.18 = 329 \text{ cu.ft.}$


Depth of pond 0.50 ft. (6")

Minimum area of pond 657 sq.ft.


Pond area as a percentage of area drained = 12% - use 15% $V = 15% \times 5368$ sq.ft. x 0.5 ft. = 403 cu.ft.


1	BOUNDARY	65	12		
		-	/	~	
				47	
			4	5	
		PEAR YARD F	ONE	45	
١.					
		10 A	01		
1 .		TYPICAL	/		
1	3 -	40-140-	/	X.I	* 1
١.	9 -	HOUSE		T.	
	0 77777	=======================================	000000	-0-1	
		///////////////////////////////////////	///////////////////////////////////////		
	· \ \\/\/////		////XX/X/	1,0	
	· · · · · · · · · · · · · · · · · · ·	///////////////////////////////////////	///////		
			7/////Χ//λ		+ .
	. \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	///////////////////////////////////////	VIDEWY.	in	
1	· \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	///////////////////////////////////////	XXXXXX	20	
		<i>\}}}}}</i>	X////X/X	:10	
	1/1////	EWALK ///	/////X//	4	
1		///////////////////////////////////////	///////////////////////////////////////	`.	
	· ///////	STREET!		10	
1 :		///////////////////////////////////////		10	1.7
1	E NOTE: REF	ER APPENDI	ж		
	NOTE: PEF	CALCULATION	V	•	
1					* *
	: (////) :4.	REA DRAINE			÷
		FIGURE	-5		
		IPICAL LO	T. DRAINA	GE	<i>y</i> *
	1				 -
@	MURRAY-MECDI	EMICK, INC	. JOB NO	1 1	DATE
5.555	ENVIRONMENTA	of Department	" UDO IECT WE	estgate.	Hts-Nº

.....

1.1				Ľ									M
		-			· -								HOUR
1 -		- †											0
		100 Y	EAR -										· 土· · ·
1.1													
5 -						-						1	i .
1 :						-			· ·		-		Par
1 =	- 17	++											
		7				169				-		<u> </u>	Λ)
1 -		1]=-	t+25				·			1
1: 13	OYEAR .	7	·	-	1							—	1 7
4		1	1			100				ļ	-	-	- > .
1.1		-	-			146 1+20				•			HNCHES.
1.1		-			1	1					-	-	11
1:1	-+		/ :- /	X		I t	23						. 5
1. =	:		7	1	-	L'i	+ 27	<u> </u>	-	-		1	
	- 17			1/2	/						-		-(:
31-		-		<	1	-I:	91 -						F.
1 2	SYEAR!	7		1	P-		1+24 -		-			<u> </u>	1 17
1-1-		1			IX							-	S NI
				1/	/	1			-	-		1	. 3
11	O YEAR	7	7	1	-		4					<u> </u>	· H
1 !-	O ILAN	-		1	1:3		>-						1
2	7.		-	1	-	1		5					1.
-			7	17	-		~	_	5			+	1. H
			>	W-	-			_	-				N 1
-				1		~			_			1	. 1
1.		-		-	1			-	_	15		1	1.7
1.					 	1			-	-		1-	AINIA
1.1-									<u> </u>	1	-	-	2
1.1				-								<u> </u>	
1.1				I	-		•				-		1. 2
1 -									-				1 14
1.					-				-				1 .
1 -					-					-	-	+	
1-								·	1	1	00 .	12	. · o
05	. 10	· 20	0 .	. 4	0	e	0		30.				
1 "	0							HITES		•			
		100			DURA	TION	11/1 - 1/1/1	10163	1		. :.		
1					7.1								, .
1 .		1.					14.	J					
		1.									-U=	_ '	7
1						•				The	507	=	•
1 .				L 1					1				
1		-	- 1 1		V-T	DUR	ITA	ON					••
1 .	1	11=	: 1/1	24-1	تتل			~~	っ ・.			• • • • •	<u></u>
				-15	DI VE		***			M	ASTER	PLAN O	F DRAINA
1					ZV.		<u>.</u> .			CITY C	F ALEL	QUERQUE	- NEW M
						*					. AI	VD. ENVI	RONS
1												SITY DU	
											EDEU	JENCY C	PAVES
							1. **				ALBUOU	ERQUE AR	EA-1950
1										connois	REDVEN	HOFF A A	SSCC C
										COHOON	HERNER	EHONGESS	
						·					. 50.11(1)1		
							•			NO			DATE.
٠	Lines .												
	·····································	AUF	RA	X 165	CCO	EWIL	- te p 61				1	1 1	11
	LECTION -		RA	ME FLET	= 135 1	- L		CM P CI			ente	ete.	
	LECTION -	WW	INC	NE EVI	T WIL	ING S	UHVE	AING	PRO	JECT LL	ente	scale.	H1

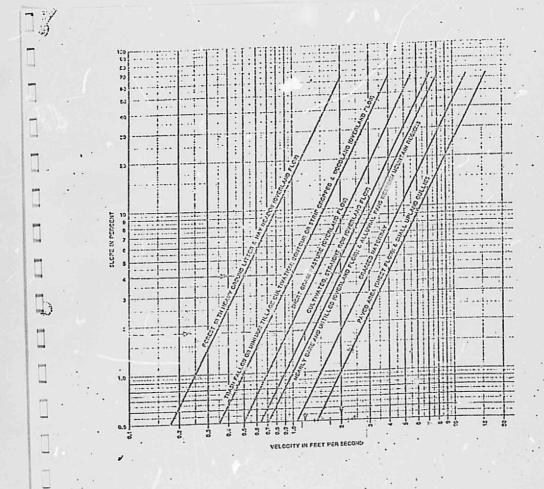


Figure 10 -Velocities for upland method of estimating T2

			Sheet No	
Project:	WESTGATE HEIGHTS	4 -		
	Area No. O.S. I			
	7 - · £ a = 1	3.29 acres		
Marimum (Overland Flow:	r =	s=	1.83/2
	Channel Flow:			
PIENTINGII (Channel No. 1	L =	S =	
	Channel No. 2		S =	
	Channel No. 3		S =	
Accumula	tion Time	a a mimor	7.74	min.
	Overland Flow or			
	Channel No. 1 Fl	ow:		· min.
	Velocity =	ft/sec;	Time =	,
	Channel No. 2 Fl			
	Chamier No. 2 :-	ft/sec;	Time = = =	min
	AGIOGICA -	100	Х 60	
	Channel No. 3 Fl			
	Velocity =	ft/sec;	Time = = = X 60	min
			r = 7.74	
	Total Accumulati	OU TIME.		
1 = 159/	7.44+25) =189/32.74	= 5.77 415 3.4	17.24 C.f.s.	
Q = CIA	$\frac{7.44+25}{5} = \frac{189}{32.74} = \frac{32.74}{5}$ $= \frac{189}{59} = \frac{32.74}{32.74}$	7.9	10	
	, , ,	Date:	10.11	
WEIGHTED	RUNOFF COEFFICTENT	Comp. py:_	1 Juceus	
Po	onded @	Checked by	/=_ 	
86 8 No	on-Ponded 037-6	10 11 . maris .		
المعاد	on-Ponded e	500 C 2-A		
100 %	TOTAL	69		
100 9	•			

	Sheet RO.
_	Project: WESTEATE HEIGHTS 4
Ц	Drainage Area No. 0.5.2
	area = 4.79 acres
-	Maximum Overland Flow: L =
Ц	
	Channel No. 1 $L = 2320$ $S = 270$
	Channel No. 2 L = S =
U,	Channel No. 3
	Accumulation Time
-	Overland Flow or Inlet Time:
Ш	Channel No. 1 Flow:
ġ	Velocity = ft/sec; Time = 232 = 15.97 min.
	Channel No. 2 Flow:
	Channel No. 2 116 Velocity =ft/sec; Time = min X 60
H	
-	Channel No. 3 Flow:
J	Velocity =ft/sec; Time = min.
13.	Total Accumulation Time: T = 16.8 min.
П	7 = 189/11/4+25 = 189/4/4 = 4.52
1-	
10	Date:
1-1	WEIGHTED RUNOFF COEFFICIENT Comp. by: There
14	30 & Ponded e 12 3 4 Checked by:
1	70 % Non-Ponded C .7 St. 0
	€ e <u>59.</u> ∨
	100 % TOTAL .69
FUE.	

	RUNOF	e COMPUTA	TIONS		
			Sheet No	·	
Project: Wa	ESTERSE HEILLYS L				
Drainage Ar	ea No. 0.5.3				
Ar	ea = 19.01	ac	res		
Maximum Ove	rland Flow:	r =	74001	s = <u>1.9</u>	<i>J</i>
Maximum Cha	nnel Flow:	/v _ r.'		2	
	Charlel No. 1	r =		s =	
	Channel No. 2	T =	•	S =	
	Channel No. 3			S =	
Accumulatio	on Time				
	Overland Flow or In	let Time	:	94	min.
	-1 We liklow			•	
	Velocity =	ft/s	ec; Time = X	60	in.
	Channel No. 2 Flow:	-			
	Velocity =	ft/s	ec; Time = X	60	min-
	Channel No. 3 Flow:		oo. Wime =	=	min.
	Velocity =			60	
	Total Accumulation	Time:	T =	9,4	min.
	with the second	111	cu		
O = CIA = ($\frac{125}{(.4)} = \frac{189/34.6}{(8.4)} = 5$	'=	41.56	c.f.s. ·	
		Date:	13 - []		
WEIGHTED RU	NOFF COEFFICIENT	Comp. b	A: K gra	ero	
101 \s Pondo	ed 0 <u>.4</u>	Checked	by:		
	onded @				4
	6 ·				

]00 %

TOTAL

	Sheet No
	Project: WESTGATE HEIGHTS L
	Drainage Area No
	area = 'Z.ol acres
	Maximum Overland Flow: L = 100 S = 2.5 %
٠.	Maximum Channel Flow:
	Channel No. 1 L = S =
7	Channel No. 2 L = S =
_	Channel No. 3 L = S =
	Accumulation Time
	Overland Flow or Inlet Time:
	Channel No. 1 Flow:
j .	Velocity =ft/sec; Time = min.
	Channel No. 2 Flow:
3	Velocity =ft/sec; Time = =min.
П	Channel No. 3 Flow:
U	Velocity = ft/sec; Time = min.
	Total Accumulation Time: $\underline{\underline{\tau}} = \underline{\underline{\zeta}}$ min.
] .	$1 = \frac{184 4.5 + 25}{184 24.5} = \frac{184 24.5}{184 24.5} = \frac{184 4.34}{184 2.5} = \frac{184 24.5}{184 2.5} = 184 2$
	, Date.
	WEIGHTED RUNOFF COEFFICIENT Comp. by:
Les .	Ponded 0 Checked by:
<u>'</u>	. & Non-Ponded @
11	100 \$ 0 /
-	100 % TOTAL 14

-	RUNOFF COMPUTATIONS
4	Sheet No
	Project: WESTGATE HEIGHTS UNIT 4
-	Drainage Arca No. A.I
-	Area = 917 acres
	Maximum Overland Flow: L = 50' S = 1.0°/5
	Maximum Channel Flow:
-	Channel No. 1 L = S =
	Channel No. 2 L = S =
in .	Channel No. 3 L = S =
1	Accumulation Time
	Overland Flow or Inlet Time: min.
-	Channel No. 1 Flow:
(-	Velocity = ft/sec; Time = = min. X 60
13	Channel No. 2 Flow:
-	Velocity =ft/sec; Time = min.
-	그 가는 100 - 100 - 시 1.5 (1)(1) [100 - 100 100 100 100 100 100 100 100 10
11	Channel No. 3 Flow:
	Velocity = ft/sec; Time = min. X 60
w/.	Total Accumulation Time: $T = 17.24$ min.
1]	I_{I} I_{I} I_{I}
	$1 = \frac{189}{1724} + 25 = \frac{189}{1224} = \frac{147}{1224} = \frac{147}{122$
-	Date: 11-21
13	WEIGHTED RUNOFF COEFFICIENT Comp. by Locaco
kin	Holy Ponded 0 12 dy Checked by:
(-	Us. & Non-Ponded 0 .8 475
	0 52.5
119	100 % TOTAL <u>53</u>

	nunoF	COMPUTATIONS
<u>, </u>		sheet No
	Project: WESTLATE HEIBURS WINT 4	
-	Drainage Area No. Bil	
	7 41 · · · 1 81	acres
	Maximum Overland Flow:	L = 56 S = 1.0%
	nless.	
L.	3 No. 3	$I_{1} = \frac{q_{00}}{1} S = \frac{0.56^{\circ}/3}{1}$
	Channel No. 2	L = S =
	Channel No. 3	L = S =
-	accumulation Time	
	Overland Flow or Ir	elet Time:
	1 . Plent	
	velocity = 1	$\sqrt{\text{ft/sec; Time}} = \frac{900}{\text{X 60}} = \frac{10.71}{\text{min.}}$
-	Channel No. 2 Flow	mine = min-
	Velocity "	ft/sec; Time = ${\times 60}$ min.
1-	a Pleu	
1	velocity =	ft/sec; Time = X 60
	n 1-1 Accumulation	Time: $\underline{T} = \frac{11.54}{11.54}$ min.
7	1 = 139 11,54 +25 = 189 36.54	1.84 c.f.s.
	$i = \frac{139}{11.54 + 25} = \frac{189}{30.54} = \frac{1}{30.54}$ $Q = CIA = (.54)(5.11)(2.51)$	Date: 11-77
l m		Comp. by: Places
-	WEIGHTED RUNOFF COEFFICIENT	
11	38 8 Ponded 0 112 1154	Checked by.
	62. \$ Non-Ponded 0 . 19.16	
	\$ 8 0 5H.w	
111	100 % TOTAL	

-	RUNOFF COMPUTATIONS
4	Sheet No
	Project: WESTONE HENGER UNITY
П	Drainage Area No. 8-2
ч	Area =, & gares
	Maximum Overland Flow: L = 50 50 5 = 1.0%
П	Maximum Channel Flow:
T	Channel No. 1 $L = \frac{ z_t }{ z_t } S = \frac{ S^2 }{ z_t }$
	Channel No. 2 I. = . S =
	Channel No. 3 L = S =
	Accumulation Time
	Overland Flow or Inlet Time:
1	Channel No. 1 Flow:
1	Velocity = $\frac{.7.5}{.}$ ft/sec; Time = $\frac{10}{x}$ = $\frac{.8}{x}$ min.
	x 60
Ц	Channel No. 2 Flow:
П	Velocity =ft/sec; Time = min x 60
1	
	Channel No. 3 Flow:
197	Velocity =ft/sec; Time = min.
<u> </u>	Total Accumulation Time: T = 1.63 min.
П	1 : (4) 71.12 = 971.45 (5.4)
	$1 = \frac{184}{1.03 + 25} = \frac{181120.05}{181120.05} = \frac{181120.05}{1.03120.05} = \frac{2.28}{2.28} = c.f.s.$ $Q = CIA = (.4\%) (.8\%) = \frac{2.28}{2.28} = c.f.s.$
	Q = CIA = (41) (34) (34) Date: 11-71
	WEIGHTED RUNOFF COEFFICIENT Comp. by: Pluckeo
	WEIGHTED RONGIT COST. THE
1-1	53 & Non-Ponded @ 18 42.40
ш	e <u>48.04</u>
	JOO & TOTAL 48

RUNOFF	COMPUTATIONS	
		sheet

	Sheet No
-	
Ш	Project: Westwarte Historia UNITY
7	Drainage Area No. 8.3
tok :	Area = 1.58 acres
	Maximum Overland Flow: L = 50 S = /.5%
100	Maximum Channel Flow:
Dea.	Channel No. 1
	Channel No. 2 L = S =
	Channel No. 3 L = S =
-	Accumulation Time
	Overland Flow or Inlet Time:
tore.	Channel No. 1 Flow:
J	Velocity = $\frac{2}{x}$ ft/sec; Time = $\frac{600}{x}$ = $\frac{5}{00}$ min.
	Channel No. 2 Flow:
П	Velocity =ft/sec; Time = min.
Н	
	Channel No. 3 Flow:
-	Velocity =ft/sec; Time = min X 60
J	Total Accumulation Time: $\underline{\tau} = \underline{5.83}$ min.
	-26.12, 92 = 0.13 max(5.4)
-	Q = CIA = (.43) (5.4) (1.58) = 3.67 c.f.s.
	Q = CIA = (,43) (5.7) (5.7) Date: [1.7]
п	WEIGHTED RUNOFF COEFFICIENT Comp. by: R wife a
۲	WEIGHTED RUNOFF COEFFECTERS SH & Ponded 0 12 144 Checked by:
100	Hu. & Non-Ponded C & 36.80
Ų	e <u>42.4</u>
	100 s TOTAL 1/3

_	RUNOFF COMPUTATIONS
À	Sheet No.
1	Project: Westware Heders Unit 4
-	Drainac : Area No
Treat	Area =acres
1	Maximum Overland Flow: L = S =
ined	Maximum Channel Flow:
	Channel No. 1 $L = \frac{360'}{5} = \frac{1.7\%}{1.00'}$
П	Channel No. 2
À	Channel No. 3 L = S =
	Accumulation Time
П	Overland Flow or Inlet Time:min.
_	Channel No. 1 Flow:
	Velocity = $\frac{200}{x}$ ft/sec; Time = $\frac{200}{x}$ = $\frac{192}{x}$ min.
	Channel No. 2 Flow:
	Velocity = $\frac{2.3 \text{ ft/sec}}{\text{X 60}}$ Time = $\frac{263 = 191 \text{ min.}}{\text{X 60}}$
	Channel No. 3 Flow:
Ш	Velocity =ft/sec; Time = min.
7.	2 02
	Total Accumulation Time:
	$1 = \frac{189/3.83 + 25}{189/2835} = \frac{189/2835}{189/2835} = \frac{6.56 \text{ alse}(5.4)}{1.1}$ C.f.s.
П	Q = CIA = (.8) (5.4) (.37) =
7	
	WEIGHTED RUNOFF COEFFICIENT Comp. by: Rouged 9 Checked by:
(
υ.	* Non-Ponded 0
	£ e e
	100 % TOTAL .

	RUNOFF COMPUTATIONS	
	Sheet No-	
	Project: Westware Heistis UNITH	
	Drainage Area No	* **
	Drainage Atea No acres	
	S:=	1:/0
		and the source
	Maximum Channel Flow: Channel No. 1 L = 395 S =	1.20%
	Channel No. 2 L =	
	Channel No. 3 L =	
	Accumulation Time	.00
1	Overland Flow or Inlet Time:	;83 min.
	h mless	a o e : mán
]	Channel No. 1 Flow. Velocity = $\frac{7.7}{x}$ ft/sec; Time = $\frac{3.95}{x}$ 60	-7.44 RIII.
	Channel No. 2 Flow:	
	Velocity =ft/sec; Time =X 60	=
4		
	Channel No. 3 Flow:	min.
_	Velocity =ft/sec; Time = X 60	
]	Total Accumulation Time:	3.82 min.
	17-12 (514)	
_	1 1 1 (5.4) (1.7) -	
	, Date	
17	WEIGHTED RUNOFF COEFFICIENT Comp. by: R Lucere	
_	14 & Ponded 0 12 5.88 Checked by:	
Q.	51 & Non-Ponded @ & 40.8	
11	e 46.65	
_	100 % TOTAL 47	

300 %

-	RUMOFF COMPUTATIONS
194	Sheet No-
	Project: WESTENTE VEHLETSUNTY
_	
	Drainage Area No. B-6 Area = c.75 acres
1	Maximum Overland Flow: L = So S = 1%
1	Maximum Channel Flow: Channel No. 1 L = 40 S = 1.4%
П	S =
	Channel No. 3 L = S =
7	Overland Flow or Inlet Time:
-	
	Channel No. 1 F10/7: Velocity = $\frac{7.4}{x}$ ft/sec; Time = $\frac{140}{x}$ = $\frac{91}{x}$ min.
Ìп	
1-	Channel No. 2 Flow:
	Channel No. 2 Flow. Velocity =ft/sec; Time = min.
1 -	Channel No. 3 Flow: Velocity =ft/sec; Time =min.
17.	$T = \frac{1}{1}$ min.
1	motal Accumulation Time.
	$1 = \frac{189}{1.5 \cdot 25} = \frac{189}{24 \cdot 8} = \frac{7.65}{25} \frac{4815}{4815} = \frac{1.84}{25} = $
10	(1) (5) (1) -
1	
	WEIGHTED RUNOFF COEFFICIENT COMP. by: Plucero
In	50 & Ponded e 112 6.0 Checked by-
-	TE & Non-Ponded C & 40.3
13	8 <u>46.3</u>
-	100 % TOTAL

RUNOFF CO	MPUTATIONS		
	Sheet	No	
الم مداده ال			
Project: WESTLATE HEIGHTS UNIT 4			
Drainage Area No. 3-1			
hren = 0.7	acres	S:=	j =/.
Maximum Overland Flow: L =	50 1		
Maximum Channel Flow:		*21	10%
Channel No. 1 L =	550	_	-11
	* **700	_ S =	15/3
Channel No. 3 L:	136'	_ s = _	1.3./.
Accumulation Time Overland Flow or Inlet	Time:		min.
Channel No. 1 Flow:	s. /a. Time =	550 . =	3.67 min.
Velocity = 12.5	it/sec, i	X 60	
Channel No. 2 Flow:			
Velocity =	ft/sec; Time =	Zcc = -	Z.34 min.
Velocity =		X 60	
Channel No. 3 Flow:			
Velocity = 1.3	ft/sec; Time =	136 =_	0.99 min.
		1	87 min.
Total Accumulation Tim	le:	<u> </u>	
1 20 1 20 20	(5.4)		
$1 = \frac{184}{3.87 + 25} = \frac{184}{37.87} = \frac{515}{514}$ $Q = CIA = (.43) (5.4) (3.5) = \frac{184}{3.5}$	8.13	c.f.s.	•
Q = CIA = (147)	ite: 11-77		
	omp. by: Thus	ρò	
WEIGHTED KOKOTT GOD	necked by:		
55 % Ponded			•
45 & Non-Ponded @ . 8 30.3			
ee			
TOTAL ,43	- + = -		

	RUNOFF COMPUTATIONS
Į.	Sleet No
	Project: WESTGATE HEIGHTS WIT 4
	Drainage Area No
	7.88 acres
П	Maximum Overland Flow: L = So' S = 1%
-	et annol Flow:
	Channel No. 1 $L = \frac{950}{100} = \frac{5}{100} = \frac{5}{100$
-	Channel No. 2 L = S =
14	Channel No. 2 L = S = Channel No. 3 L = S =
	a time mina
-	Overland Flow or Inlet Time:
1	and legion:
1	Velocity = 11/ ft/sec; Time = 950 = 11.31 min.
15	Channel No. 2 Flow:
	Velocity =ft/sec; Time = min.
1	3 Flow:
	Velocity =ft/sec; Time = min.
13	Total Accumulation Time: T = 12.14 min.
m	
1-	$1 = \frac{ \S_1 _{12.1}U + z \le - \S_2 _{31.1}U}{ \S_1 _{12.1}U + z \le - \S_2 _{12.1}U} = \frac{ \S_1 _{12.1}U}{ \S_2 _{12.1}U} = \frac{ \S_1 _{12.1}U}{ \S_1 _{12.1}U} = \frac{ \S_1 _{12.1}U}{ \S_1 _{12.1}U} = \frac{ \S_2 _{12.1}U}{ \S_2 _{12.1}U} = \frac{ \S_1 _{12.1}U}{ \S_2 _{12.1}U} = \frac{ \S_2 _{12.1}U}{ \S_2 _{12.1}U} = \frac{ \S_1 _{12.1}U}{ \S_2 _{12.1}U} = \frac{ \S_1 _{12.1}U}{ \S_2 _{12.1}U} = \frac{ \S_2 _{12.1}U}{ \S_2 _{12.1}U} = \frac{ \S_1 _{12.1}U}{ \S_2 _{12.1}U} = \frac{ \S_2 _{12.1}U}{ \S_2 _{12.1}U} = \frac{ \S_1 _{12.1}U}{ \S_2 _{12.1}U} = \frac{ \S_2 _{12.1}U}{ \S_2 _{12$
	Q = CIA = (,47) (5.64) (Date:
	T Lucean
	WEIGHTED RUNOFF COEFFICIENT Comp. by:
	49 & Ponded 4 17 5130
-	51. % Non-Ponded @ 18 40.80
US	ee
	100 % TOTAL

-	Sheet No
1	Project: WESTBATE HEIGHIS UNIT4
	Drainage Area No
	acres
	Maximum Overland Flow: L = 50 S = 10/0
	Maximum Channel Flow:
	Maximum Channel Flow. Channel No. 1 $L = 130'$ $S = 0.4\%$
	Channel No. 2 L = S =
	Channel No. 3 L =
	Accumulation Time83 min.
17	Overland Flow or Inlet Time:
in.	a ve 1 Plow.
	Velocity = $\frac{1.4}{x}$ ft/sec; Time = $\frac{130}{x}$ = $\frac{155}{x}$ min.
П	Channel No. 2 Flow:
	Velocity =
	Channel No. 3 Flow:
J	Velocity =ft/sec; Time = min.
7.	and min
n,	rotal Accumulation Time:
1	$1 = \frac{ \xi 4 }{2.34 \times 25} = \frac{154}{21.34} = \frac{1.4}{1.4} = $
17	Q = CIA = (M)(SO)(GO) Date: 11-77
1	P1.003
3	89 Fonded 9 12 10.03 Checked by:
	11 & Non-Ponded C 8 3.8
1	e 19.43
J	100 % TOTAL 119
10	100 %

	병원 경험에 있는 기계 공기하다			
_	RUNOFF COMPUTATION	ıs		
4		Sheet No.		
1	Project: WESTGATE HEILUTS UNIT 4			
П	Drainage Area No			
led.	oga acres			i.l
	Maximum Overland Flow: L =	50	S =	17.
17 .	Maximum Channel Flow:		s =	
1	Channel No. 1 L =		s =	
	Channel No. 2 I. =	 ,	S =	
h	Channel No. 3 L =			
I U	Accumulation Time		83	min
13	Overland Flow or Inlet Time:		- 103	
-	Channel No. 1 Flow:			· min.
1	Velocity = ft/sec;	Time = X	60	 :
11	Channel No. 2 Flow:			
	Velocity =ft/sec;	Time = X	60	min.
-				
17	Channel No. 3 Flow:	mime =	• =	min-
	Velocity =ft/sec;	X	60	
1.	Total Accumulation Time:	<u> </u>	<u> </u>	min.
	1 · . (· . (· · ·)			
	1 1 (0.57) =	.46	c.f.s.	
	$1 = \frac{184/6.4+21}{6.4+21} = \frac{184/3.19}{3.19} = \frac{0.36}{0.97}$ $Q = CIA = (.66) (5.4) (0.97) = \frac{3}{0.97}$ Date:	11-17		
1	WEIGHTED RUNOFF COEFFICIENT Comp. by:	12 luc	RM	
1	WEIGHTED RUNOFF COEFFICIENT	/=		
In	WEIGHTED RUNOFF COLLET			
-	80 & Non-Ponded 0 . Y wis			
	e			
/ ,,	100 % TOTAL .bb			

 COMPUTATIONS

Į	Sheet No
	Project: Westbare Heiners Unit 4
-	Drainage Area No
4	Area = 0.41 acres
	Maximum Overland Flow: L = 50 S = 10/.
-	Maximum Channel Flow:
П	Channel No. 1 $L = \frac{75c^4}{5c^4}$ $S = \frac{7c^4}{5c^4}$
П	Channel No. 2 $L = \frac{700}{100}$ $S = \frac{1.3^{3}}{100}$
1	Channel No. 2 $L = \frac{456}{5}$ $S = \frac{18\%}{5}$
	Accumulation Time
7	Overland Flow or Inlet Time:
	Channel No. 1 Flow:
7	Velocity = $\frac{72.9}{x}$ ft/sec; Time = $\frac{250}{x}$ = $\frac{1.49}{x}$ min.
] .	Channel No. 2 Flow:
	Channel No. 2 Flow. Velocity = $\frac{7.3}{x}$ ft/sec; Time = $\frac{700}{x}$ = 1.45 min.
	Channel No. 3 Flow: Velocity = $\frac{7.15}{x}$ ft/sec; Time = $\frac{456}{x}$ = $\frac{7.76}{x}$ min.
]	Total Accumulation Time: $\underline{\tau} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
	$i = \frac{189}{6.53 + 75} = \frac{189}{31.53} = \frac{5.49}{0.55} = \frac{5.49}{0.55}$ $Q = CIA = (.45) (5.4) (6.4) '= \frac{7.21}{0.53} = \frac{11-77}{0.55}$
1	. Date.
	WEIGHTED RUNOFF COEFFICIENT Comp. by: Places St. Ponded e 12 6.24 Checked by:
	₩8 \$ Non-Ponded @ 18 38.40
4104	48 & Kon-Ponded & 10 25
10	JC
Tr.	100 % TOTAL 45

COMPUT	ATIONS		
	Sheet	No	
-	•		
	acres	. \	
r =			1
			1706
L =	100'	_ s = _	1.73
	e of the		
P =	1101	_ s = _	· 2.6°/
let Tim	e:	-	min.
6 ft/	sec: Time =	100. =	6.64 min.
			val. min-
ft/	sec; Time =	X 60	1.219 1.2.2.2
		110 =	0.5% min.
.25 It	sec, same	X 60	
		T = 3	.iu min.
	E4) .		
) '=	5,4	c.f.s.	
Date:	. 11-	77	
Comp	ed by:	•	
. Check	:		
			•
	L =	acres L =	acres L =

-	RUNOFF COMPUTATIONS
1	sheet No-
	Project: 1/ESTUATE HEIGHTS INT 4
	Drainage Area No
	Maximum Overland Flow: L = 50 S = 10/3
	Maximum Channel Flow: Channel No. 1 L = 320' S = 2.5%
-	Channel No. 1 $L = \frac{320}{130}$ $S = \frac{5.5^{-0}/2}{5}$
in.	Channel No. 2 $L = \frac{13}{5}$ $S = \frac{5}{5}$ $\frac{9}{5}$ Channel No. 3 $L = \frac{13}{5}$ $S = \frac{13}{5}$
1 [Accumulation Time,83 min.
J	Overland Flow or Inlet Time:
7	Channel No. 1 Flow: Velocity = $\frac{32}{x}$ ft/sec; Time = $\frac{320}{x}$ = 1.67 min.
	Channel No. 2 Flow: $Velocity = \frac{4.75}{100} \text{ ft/sec; Time} = \frac{135}{100} = \frac{146}{100} \text{ min.}$
	Channel No. 3 Flow: Velocity = ft/sec; Time = min. x 60
Q	rotal Accumulation Time: T = ZAL min.
	$f = f(S, \theta)$
d	$Q = CIA = (.51)(5.4)(1.21) - \frac{11-77}{11-77}$
	WEIGHTED RUNOFF COEFFICIENT Comp. by: There
П	43 & Ponded P 12 5,16 Checked by:
In	57. \$ Non-Ponded @ _8 45.6
]00 % TOTAL

	RUNOFF COMPUTATIONS
]	Sheet No-
	Project: Westbare Heights Unit 4 Drainage Area No
	acres
i e	Maximum Overland Flow: L =So S =
	Maximum Channel Flow: Channel No. 1
_	S = 16/4
-	
	Accumulation Time Overland Flow or Inlet Time:83 min.
1	Channel No. 1 Flow: Velocity = $\frac{1.75}{5}$ ft/sec; Time = $\frac{150}{x}$ = 1.45 min.
	Channel No. 2 Flow: Velocity = $\frac{z.5}{x}$ ft/sec; Time = $\frac{45v'}{x}$ = $\frac{3.0}{x}$ min.
	Channel No. 3 Flow: Velocity = 3: ft/sec; Time = 105 = 0.: min.
1.	Total Accumulation Time: T = 4.43 min.
	$1 = \frac{189/443 + 25}{189/2553} = \frac{189/2553}{189} = \frac{189}{189} = 189$
	WEIGHTED RUNOFF COEFFICIENT Comp. by: There
	47. \$ Non-Ponded @ .8 37.40
	100 % TOTAL 144

	4.4
DUMMER	COMPUTATIONS

	RUNOF	COMPUTATIO	NS		
			Sheet N	0	<u> </u>
	Project: WESTEATE LEIGHTS UNIT 4				
	Drainage Area No. D-1				
	Area = . · YV	acres			
	Maximum Overland Flow:	r =	501.	S =	11/2
	Maximum Channel Flow:			191 .	
	Channel No. 1	r =	100'	s =	1.1%
-	Channel No. 2	L =	3501	S =	0.59%
·	Channel No. 3	L =	230'	s =	c.71°15
	Accumulation Time				
	Overland Flow or In	let Time:		183.	min.
7	Channel No. 1 Flow:				
]	velocity = - z	ft/sec;	Time =	x 60	79_min.
]	Channel No. 2 Flow:				
	velocity =	ft/sec;	Time =	350 = 3 x 60	.65 min.
-	Channel No. 3 Flow:				
	Velocity = 17	ft/sec;	Time =	730 = 7	.19 min-
l	Velocity - 17				
	Total Accumulation	Time:	T :	= 75	L min.
1	1 = 189/7,56+25 = 189/32.56 = 5.	8 15 (5.4)		c f s.	
-	Q = CIA = (.47) (5.4) (1.82)	`= <u> </u>	. 6 6		
1		Date:			
	WEIGHTED RUNOFF COEFFICIENT	Comb. ph:	- K Lui	KAL	Hadii
19	44 & Ponded @ 112 5188	Checked by	·		
1	51 & Non-Ponded @ y Jaso				1.4
In	seuc.cs				
]00 % TOTAL .47				

-	RUNOFF COMPUTATIONS
In	Sheet No.
1	Project: WESTGATE HEIGHTS UNITY -
	Drainage Area No. 0-2
4	Area = 0.52 acres
	Maximum Overland Flow: L =50' S = 1°/2
_	Channel Flow
	Channel No. 1 L = Zoo' S = Zo'/
П	
ind	Channel No. 2 L = S = S = Channel No. 3 L = S = S = S = S = S = S = S = S = S =
n /	Overland Flow or Inlet Time: "3" min.
bed	channel No. 1 Flow:
] \	Velocity = $\frac{2.8}{100}$ ft/sec; Time = $\frac{200}{x}$ = $\frac{19}{x}$ min.
J	Channel No. 2 Flow:
	Velocity =ft/sec; Time = =min
111	Channel No. 3 Flow:
	Velocity =ft/sec; Time = min.
	and the second s
	Total Accumulation Times
IJ	$1 = \frac{ 89 \times 0.02 + 25}{ 89 \times 1.02} = \frac{ 89 \times 1.02}{ 89 \times 1.02} = \frac{ 89 \times 1.02}{ 89 \times 1.02}$ $Q = CIA = (.35) (514) (0.52) = 0.98 $
	Q = CIA = (.35)(5.4)(6.524 =
	71
	WEIGHTED RONG!
17	66 Ponded 9 12 7.47 Checked by:
-	34 & Non-Ponded 0 18 21.2
	_ \$ 0 <u>35112</u>
177	100 % TOTAL .35

RUNOFF	COMPUTATIONS
--------	--------------

	sheet No
7	Project: WESTGATE HEIDERS WALT 4
_	Drainage Area No
	Area = 0.53 acres
7	Maximum Overland Flow: L = S =
_	Maximum Channel Flow:
	Channel No. 1 $L = \frac{4vv'}{s} = \frac{1.5^{v/o}}{s}$
7	Channel No. 2 L = S =
7.	Channel No. 3 L = S =
	Accumulation Time
	Overland Flow or Inlet Time:
1	Channel No. 1 Flow:
J	Velocity = $\frac{7.5}{2.5}$ ft/sec; Time = $\frac{430}{2.5}$ = $\frac{7.60}{2.60}$ min.
	Channel No. 2 Flow:
П	Velocity = $\frac{\text{ft/sec; Time}}{\text{X 60}} = \frac{\text{min.}}{\text{X 60}}$
_	Channel No. 3 Flow:
1	Velocity = ft/sec; Time = min.
7	min .
	Total Accumulation Time:
	$1 = \frac{189/2.07 + 25}{189/2.07 + 25} = \frac{189/27.07}{189/27.07} = \frac{6.83}{189} = \frac{1.09}{1.09} = \frac{6.5}{1.09}$
П	0 = CIA = (37) (514) (0.53) = 1.09
	WEIGHTED RUNOFF COEFFICIENT Comp. by: There
	WEIGHTED RUNOFF COEFFICIENT Checked by:
4	
_	34. \$ Non-Ponded @ 3:4
-]00 % TOTAL

RUNO	FF COMPUTATIONS	
		No
Project: WESTLATE HEILHTS UNIT4		
Drainage Area No. E-1		
Area = 0.96	acres	
Maximum Overland Flow:	r =r.	
Maximum Channel Flow:	L = 190'	s = 16°/
Channel No. 1		s =
Channel No. 2		s =
Channel No. 3	L =	
Accumulation Time		
Overland Flow or 1	Inlet Time:	
Channel No. 1 Flow	1:	
velocity = :	7.5 ft/sec; Time =	$\frac{19c}{\times 60} = \frac{1.27}{\times 60}$ min.
Channel No. 2 Flow	<i>i</i> :	
velocity = _	ft/sec; Time =	x 60
Channel No. 3 Flow	<i>a</i> :	
Velocity =	ft/sec; Time =	x 60 min-
Total Accumulation		r = 7.10 min.
7 - 149/2 125 = 189/27.1 ==	697 USE(5.4)	c.f.s.
Q = CIA = (.50)(5.4)(0.96)	Date: 11-77	
	Comp. by: Plus	4. Ri
WEIGHTED RUNOFF COEFFICIENT	Comp. Dy: C. Co.	

Checked by:

44 8 Ponded 0 18 44.83

]00 % TOTAL