
CITY OF ALBUQUERQUE

Planning Department Alan Varela, Director

December 19, 2022

Daniel J. Madruga, P.E. Atwell, LLC 6200 S. Syracuse Way, Suite 470 Greenwood Village, CO 80111

RE: Allsup – Gibson & 98th Grading & Drainage Plans Engineer's Stamp Date: 11/10/22 Hydrology File: M09D034

Dear Mr. Madruga:

Based upon the information provided in your submittal received 10/27/2022, the Grading & Drainage Plans are approved for Building Permit, Grading Permit and SO-19 Permit. Please attach a copy of this approved plan in the construction sets for Building Permit processing along with a copy of this letter.

PO Box 1293

PRIOR TO CERTIFICATE OF OCCUPANCY:

Albuquerque

1. Engineer's Certification, per the DPM Part 6-14 (F): *Engineer's Certification Checklist For Non-Subdivision* is required.

NM 87103

2. Please provide the executed paper Drainage Covenant (latest revision) printed on one-side only with Exhibit A and a check for \$25.00 made out to "Bernalillo County" for the stormwater quality ponds per Article 6-15(C) of the DPM to Hydrology for review at Plaza de Sol. Once the review is done, Hydrology will send back an email stating our approval/comments.

www.cabq.gov

As a reminder, if the project total area of disturbance (including the staging area and any work within the adjacent Right-of-Way) is 1 acre or more, then an Erosion and Sediment Control (ESC) Plan and Owner's certified Notice of Intent (NOI) is required to be submitted to the Stormwater Quality Engineer (Doug Hughes, PE, jhughes@cabq.gov, 924-3420) 14 days prior to any earth disturbance.

If you have any questions, please contact me at 924-3995 or <u>rbrissette@cabq.gov</u>.

Sincerely,

Renée C. Brissette, P.E. CFM Senior Engineer, Hydrology Planning Department

Renée C. Brissette

City of Albuquerque

Planning Department

Development & Building Services Division

DRAINAGE AND TRANSPORTATION INFORMATION SHEET

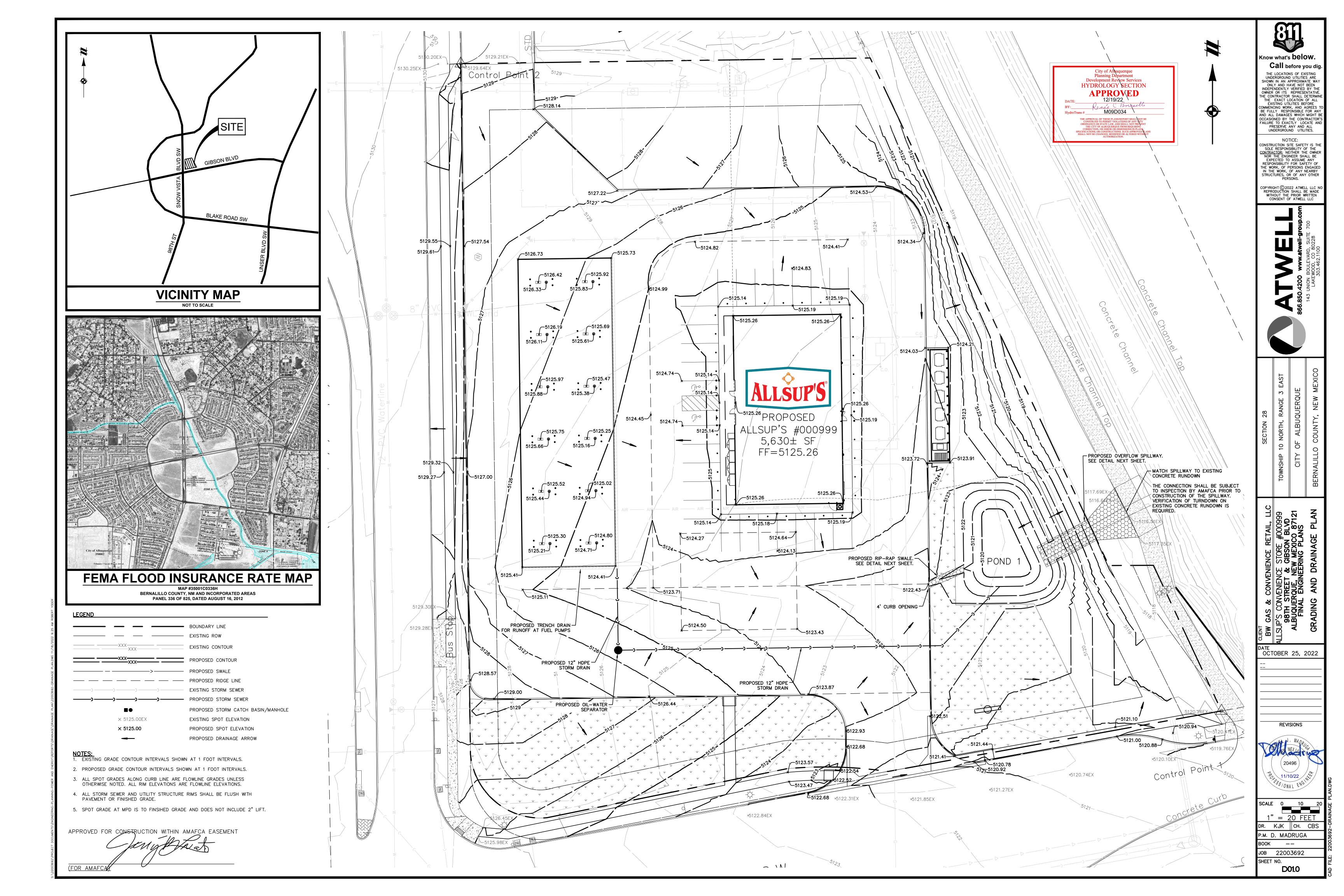
Project Title: ALLSUP's	Building Permit #	Hydrology File #
DRB#	EPC#_	
Legal Description: TR E-5-A-2 PLAT OF TRS E-5-A-1 ALBUQUERQUE SOUTHUNIT 3		
Applicant/Agent: Modulus Architects	Contact: Regir	1а Окоуе
Address: 100 Sun Ave. NE, suite 600, Albuquerque,	NM 87109 Phone: 505-	267-7686
Email: rokoye@modulusarchitects.com		
Applicant/Owner: ATWELL, LLC	Contact:C	hris Sveum
Address: 143 Union Boulevard	Phone:3	03-868-5658
Email: csveum@atwell-group.com		
DEPARTMENT:TRANSPORTATION Check all that apply:	ON X HYDROLOGY/D	PRAINAGE
TYPE OF SUBMITTAL:	TYPE OF APPROVAL	ACCEPTANCE SOUGHT:
ENGINEER/ARCHITECT CERTIFICATION	\underline{X} BUILDING PI	ERMIT APPROVAL
PAD CERTIFICATION	CERTIFICAT	E OF OCCUPANCY
CONCEPTUAL G&D PLAN		L TCL DRB APPROVAL
X GRADING PLAN		RY PLAT APPROVAL
X DRAINAGE REPORT		OR SUB'D APPROVAL
DRAINAGE MASTER PLAN		OR BLDG PERMIT APPROVAL
FLOOD PLAN DEVELOPMENT PERMIT AS ELEVATION CERTIFICATE		APPROVAL E OF FINANCIAL GUARANTEE
CLOMR/LOMR		N PERMIT APPROVAL
TRAFFIC CIRCULATION LAYOUT (TCL)		ERMIT APPROVAL
ADMINISTRATIVE	\overline{X} SO-19 APPRO	
TRAFFIC CIRCULATION LAYOUT FOR DI	RB PAVING PER	MIT APPROVAL
—— APPROVAL	GRADING PA	AD CERTIFICATION
TRAFFIC IMPACT STUDY (TIS)	$\overline{\mathbf{X}}$ WORK ORDE	ER APPROVAL
STREET LIGHT LAYOUT	CLOMR/LOM	TR .
OTHER (SPECIFY)	FLOOD PLAN	N DEVELOPMENT PERMIT
PRE-DESIGN MEETING?	OTHER (SPEC	CIFY)
DATE SUBMITTED: 10/26/2022		

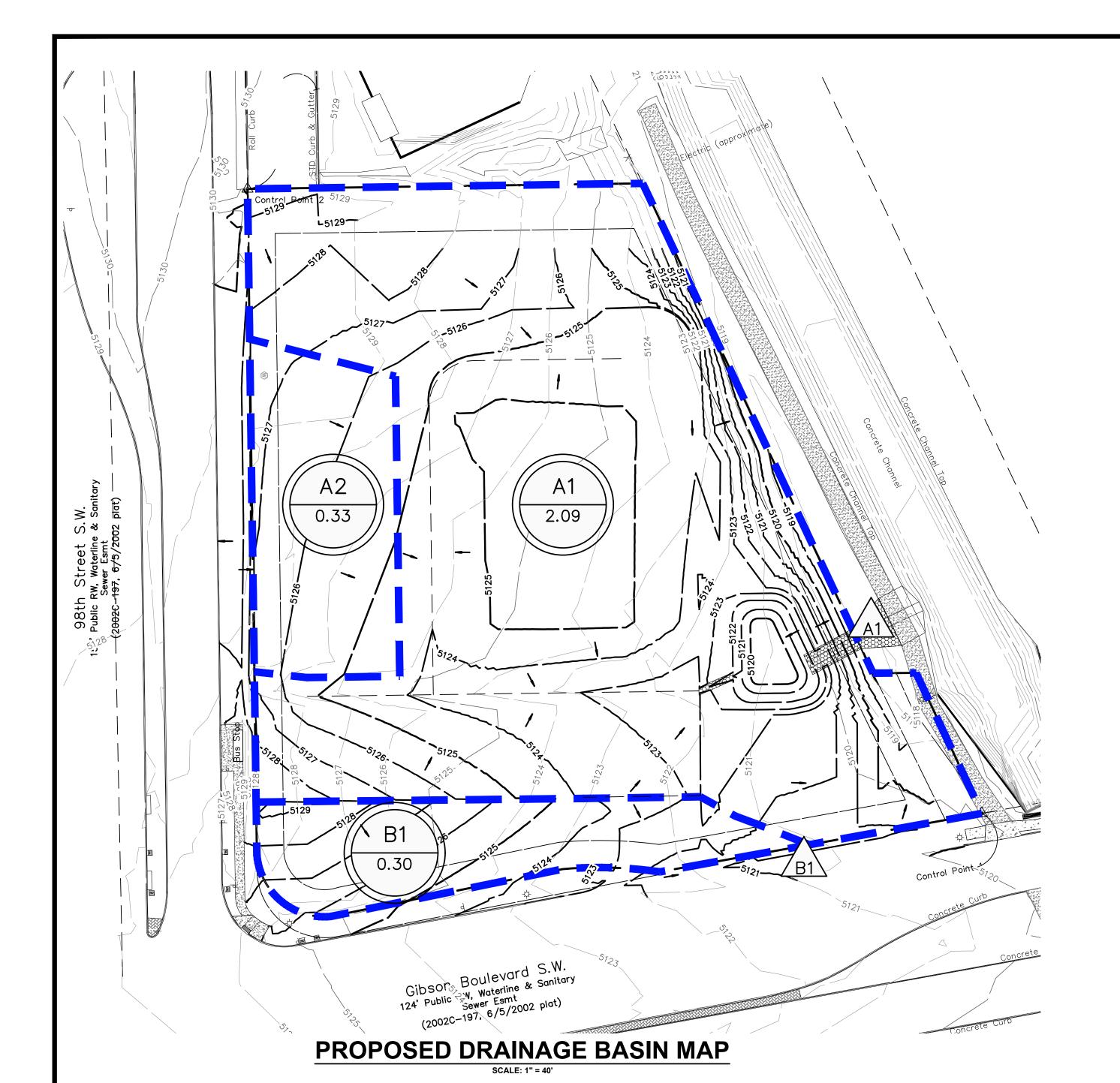
Worksheet for Overflow Spillway

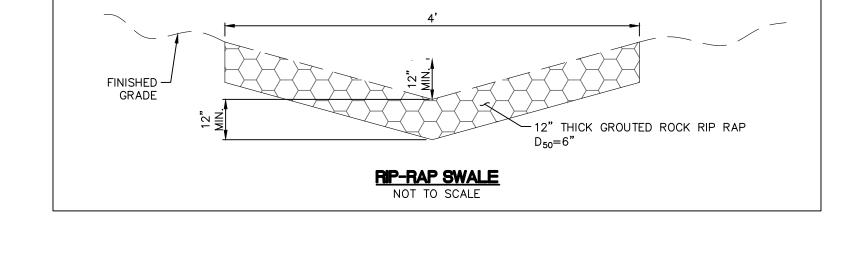
		<u> </u>
Project Description		
Solve For	Discharge	
Input Data		
Headwater Elevation	5,123.00 ft	
Crest Elevation	5,122.00 ft	
Tailwater Elevation	5,110.00 ft	
Crest Surface Type	Gravel	
Crest Breadth	3.00 ft	
Crest Length	4.0 ft	
Results		
Discharge	12.35 cfs	
Headwater Height Above Crest	1.00 ft	
Tailwater Height Above Crest	-12.00 ft	
Weir Coefficient	3.09 ft^(1/2)/s	
Submergence Factor	1.000	
Adjusted Weir Coefficient	3.09 ft^(1/2)/s	
Flow Area	4.0 ft ²	
Velocity	3.09 ft/s	
Wetted Perimeter	6.0 ft	
Top Width	4.00 ft	

Worksheet for Rip-Rap Swale

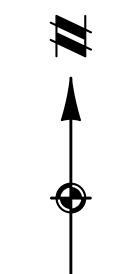
Project Description		-
1 Tojout Boodinption	Managian	
Friction Method	Manning Formula	
Solve For	Discharge	
Innut Data	_	
Input Data		
Roughness Coefficient	0.030	
Channel Slope	0.022 ft/ft	
Normal Depth	12.0 in	
Left Side Slope	2.000 H:V	
Right Side Slope	2.000 H:V	
Results		
Discharge	8.59 cfs	
Flow Area	2.0 ft ²	
Wetted Perimeter	4.5 ft	
Hydraulic Radius	5.4 in	
Top Width	4.00 ft	
Critical Depth	12.3 in	
Critical Slope	0.019 ft/ft	
Velocity	4.30 ft/s	
Velocity Head	0.29 ft	
Specific Energy	1.29 ft	
Froude Number	1.071	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	12.0 in	
Critical Depth	12.3 in	
Channel Slope	0.022 ft/ft	
Critical Slope	0.019 ft/ft	


Worksheet for Storm Drain


Project Description		
Fristian Mathad	Manning	
Friction Method	Formula	
Solve For	Full Flow	
50176 1 01	Capacity	
Input Data		
Roughness Coefficient	0.010	
Channel Slope	0.005 ft/ft	
Normal Depth	12.0 in	
Diameter	12.0 in	
Discharge	3.27 cfs	
Results		
Discharge	3.27 cfs	
Normal Depth	12.0 in	
Flow Area	0.8 ft ²	
Wetted Perimeter	3.1 ft	
Hydraulic Radius	3.0 in	
Top Width	0.00 ft	
Critical Depth	9.3 in	
Percent Full	100.0 %	
Critical Slope	0.006 ft/ft	
Velocity	4.17 ft/s	
Velocity Head	0.27 ft	
Specific Energy	1.27 ft	
Froude Number	(N/A)	
Maximum Discharge	3.52 cfs	
Discharge Full	3.27 cfs	
Slope Full	0.005 ft/ft	
Flow Type	Undefined	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	100.0 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	12.0 in	
Critical Depth	9.3 in	
Channel Slope Critical Slope	0.005 ft/ft 0.006 ft/ft	

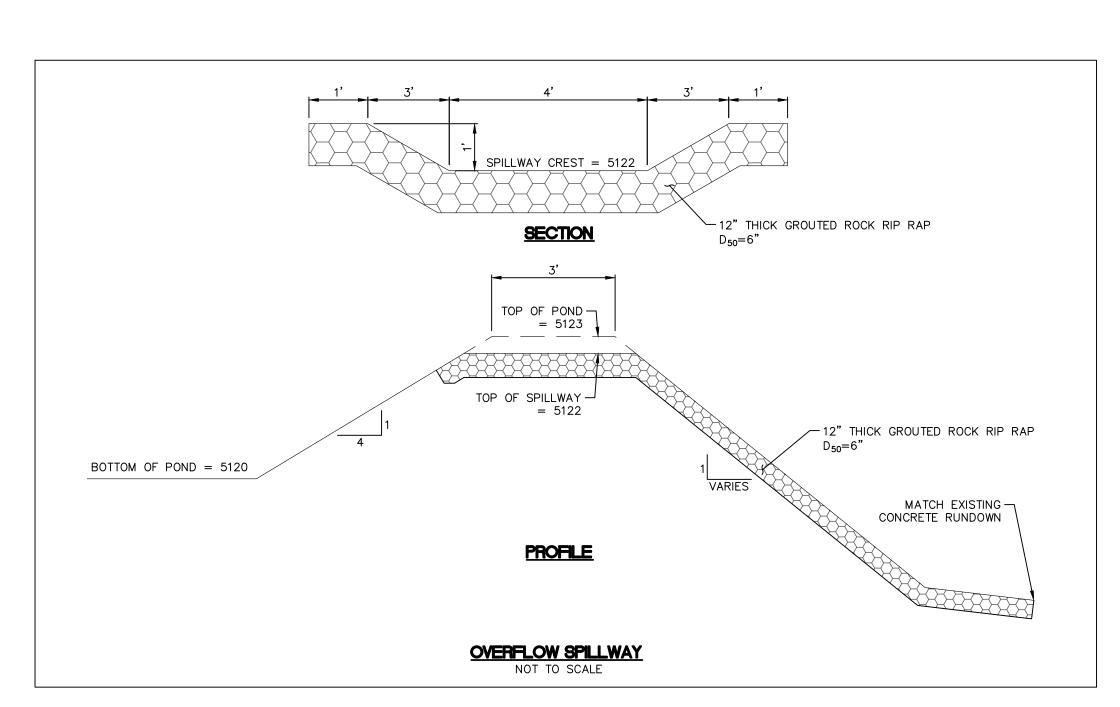

Culvert Calculator Report 98th & Gibson - Amole Channel Culver

Solve For: Headwater Elevation


Culvert Summary					
Allowable HW Elevation	10.50	ft	Headwater Depth/Height	1.68	
Computed Headwater Ele	νε 5,118.56	ft	Discharge	2,807.00	cfs
Inlet Control HW Elev.	5,118.56	ft	Tailwater Elevation	4.30	ft
Outlet Control HW Elev.	5,118.11	ft	Control Type	Inlet Control	
Grades					
Upstream Invert	5,106.77	ft	Downstream Invert	5,103.91	ft
Length	132.00	ft	Constructed Slope	0.021667	ft/ft
Hydraulic Profile					
Profile	S2		Depth, Downstream	4.38	ft
Slope Type	Steep		Normal Depth	3.45	ft
Flow Regime	Supercritical		Critical Depth	6.48	ft
Velocity Downstream	21.34	ft/s	Critical Slope	0.004001	ft/ft
Section					
Section Shape	Box		Mannings Coefficient	0.013	
Section Material	Concrete		Span	10.00	ft
Section Size	10 x 7 ft		Rise	7.00	ft
Number Sections	3				
Outlet Control Properties					
Outlet Control HW Elev.	5,118.11	ft	Upstream Velocity Head	3.24	ft
Ke	0.50		Entrance Loss	1.62	ft
Inlet Control Properties					
Inlet Control HW Elev.	5,118.56	ft	Flow Control	Submerged	
Inlet Typte8.4° non-offset v	vingwall flares		Area Full	210.0	ft²
K	0.49500		HDS 5 Chart	12	
M	0.66700		HDS 5 Scale	3	
С	0.03860		Equation Form	2	
Υ	0.71000				

Know what's **below**.

THE LOCATIONS OF EXISTING
UNDERGROUND UTILITIES ARE
SHOWN IN AN APPROXIMATE WAY
ONLY AND HAVE NOT BEEN
INDEPENDENTLY VERIFIED BY THE
OWNER OR ITS REPRESENTATIVE
THE CONTRACTOR SHALL DETERMIN
THE EXACT LOCATION OF ALL
EXISTING UTILITIES BEFORE
COMMENCING WORK, AND AGREES
BE FULLY RESPONSIBLE FOR AND AND ALL DAMAGES WHICH MIGHT IS


OCCASIONED BY THE CONTRACTOR'S FAILURE TO EXACTLY LOCATE ANI PRESERVE ANY AND ALL UNDERGROUND UTILITIES.

NOTICE:

CONSTRUCTION SITE SAFETY IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR; NEITHER THE OWNER NOR THE ENGINEER SHALL BE EXPECTED TO ASSUME ANY RESPONSIBILITY FOR SAFETY OF THE WORK, OF PERSONS ENGAGED IN THE WORK, OF ANY NEARBY STRUCTURES, OR OF ANY OTHER PERSONS.

COPYRIGHT © 2022 ATWELL LLC N REPRODUCTION SHALL BE MADE WITHOUT THE PRIOR WRITTEN CONSENT OF ATWELL LLC

Call before you dig. THE LOCATIONS OF EXISTING

STORMWATER CALCULATIONS

STORMWATER QUALITY POND						
ELEVATION STAGE AREA VOLUME						
(FT)	(FT)	(SF)	(CF)			
5120	0.00	716	0			
5121	1.00	1335	1026			
5122	2.00	2192	2789			

STORMWATER QUALITY POND SIZING:

 $\frac{\text{REQUIRED}}{\text{SWQV}} = A_{\text{IMP}} \times 0.42 \text{ IN}.$

= $(73,623 \text{ FT}^2) \times (0.42 \text{ IN.}) / (12 \text{ IN./FT})$ $= 2,577 \text{ FT}^3$

 $\frac{PROVIDED}{SWQV} = 2,789 \text{ FT}^3$

BASIN HYDROLOGY								
		LA	LAND TREATMENT FACTOR					
BASIN	AREA	Α	В	С	D	Q100		
	(AC)		(AC) (C					
EXISTING	EXISTING CONDITIONS							
EX1	2.72	2.72	0.00	0.00	0.00	4.19		
PROPOSEI	PROPOSED CONDITIONS							
A1	2.09	0.00	0.00	0.78	1.31	7.64		
A2	0.33	0.00	0.00	0.00	0.33	1.36		
B1	0.30	0.00	0.00	0.25	0.05	0.92		
TOTAL	2.72					9.92		

PROPERTY
THE SITE IS A 2.72 ACRE UNDEVELOPED PROPERTY BOUNDED TO THE WEST BY 98TH STREET, TO THE SOUTH BY GIBSON BLVD, AND TO THE EAST BY THE AMOLE ARROYO CHANNEL. THE SITE SLOPES TO THE EAST AND CURRENTLY DISCHARGES TO THE AMOLE ARROYO CHANNEL VIA A CONCRETE RUNDOWN TO THE SOUTHEAST.

PROPOSED IMPROVEMENTS
THE PROPOSED SITE IS A GAS STATION AND CONVENIENCE STORE WITH CONCRETE ACCESS, PARKING AND LANDSCAPING. THE SITE MATCHES THE EXISTING DRAINAGE PATTERN, WITH RUNOFF FLOWING SOUTHEAST. STORMWATER QUALITY VOLUME IS CAPTURED IN WATER QUALITY POND 1. A TRENCH DRAIN AROUND THE FUEL CANOPY DIRECTS RUNOFF FROM THE FUEL PUMPS TO AN OIL WATER SEPARATOR BEFORE DISCHARGING INTO POND 1. AN OVERFLOW SPILLWAY DIVERTS EXCESS RUNOFF VOLUME TO THE EXISTING CONCRETE RUNDOWN AND INTO THE AMOLE CHANNEL. THE SITE IS PERMITTED FREE DISCHARGE TO THE CHANNEL.

OFF-SITE FLOW OFF-SITE FLOWS DO NOT IMPACT THE PROPERTY.

FLOOD HAZARD

ACCORDING TO BERNALILLO COUNTY FIRM MAP #35001C0336H, THE SITE IS LOCATED WITHIN ZONE X AND IS

LEGAL DESCRIPTION
TRACT E-5-A-2, OF ALBUQUERQUE SOUTH, UNIT 3, WITHIN THE TOWN OF ATRISCO GRANT, PROJECTED SECTION 4, TOWNSHIP 9 NORTH, RANGE 2 EAST, NMPM, CITY OF ALBUQUERQUE, BERNALILLO COUNTY, NEW MEXICO, AS THE SAME IS SHOWN AND DESIGNATED ON THE PLAT THEREOF, FILED IN THE OFFICE OF THE COUNTY CLERK OF BERNALILLO COUNTY, NEW MEXICO ON AUGUST 3, 2010, IN PLAT BOOK 2010C, PAGE 090, AS DOCUMENT NO

CONTAINING 2.7189 ACRES (118,435 SF), MORE OR LESS.

BASIS OF BEARING

THE BASIS OF BEARINGS IS BETWEEN THE SE CORNER OF TRACT E-5-A-2 AND USC&GS BRASS CAP "TRANS 1969" AS MEASURED WITH THE "TRIMBLE VRS NOW" GNSS VIRTUAL REFERENCE SYSTEM. BEARINGS ARE NEW MEXICO STATE PLANE BEARINGS, CENTRAL ZONE, NAD 83. DISTANCE ARE GROUND DISTANCES. ELEVATION DATUM IS NAVD88

BENCHMARKS CSC CONTROL POINT 1

SW CORNER, TRACT E-5-A-2 5/8" REBAR W/CAP ILLEGIBLE N' = 1471548.485 US FTE = 1495079.073 US FT Z = 5119.71 US FT NAVD 1988

CSC CONTROL POINT 2 NW CORNER, TRACT E-5-A-2 REBAR W/CAP LS 16006 N = 1471895.209 US FT E = 1494671.543 US FT Z = 5129.368 US FT NAVD 1988

IMPACT STATEMENT
ANALYSIS OF THE 100-YEAR WATER SURFACE ELEVATION AT THE AMOLE CHANNEL CONFIRMED A HEADWATER ELEVATION OF 5118.6. THE OVERFLOW SPILLWAY FROM THE ON-SITE STORMWATER QUALITY POND RELEASES AT AN ELEVATION OF 5122.0. THEREFORE, THE SITE IS NOT IMPACTED BY THE 100-YEAR STORM EVENT AND WILL CONTINUE TO DRAIN FREELY TO THE AMOLE CHANNEL.

DATE OCTOBER 25, 2022

REVISIONS

SCALE

AS SHOWN DR. KJK CH. CBS

P.M. D. MADRUGA BOOK --JOB 22003692

SHEET NO. D01.1