

Coyote Gravel Inc., Secondary Site

(Albuquerque, New Mexico)

Traffic Impact Study

September 5, 2025

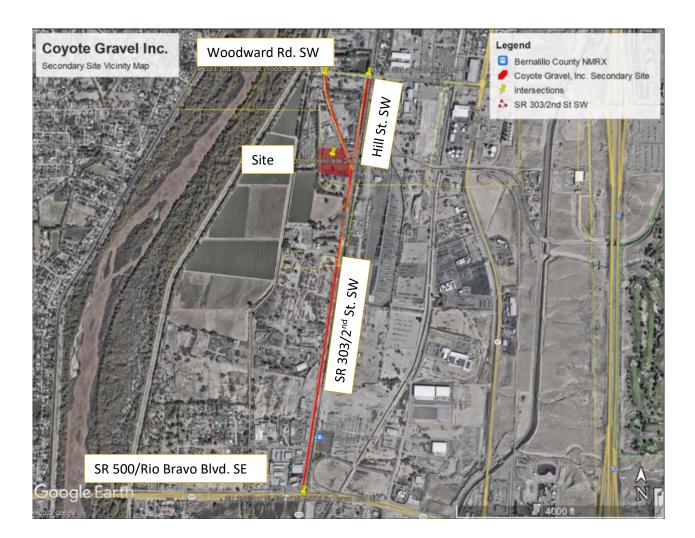
Presented to:

Curtis Cherne, P.E.
City of Albuquerque Transp. Dev.
Julie Luna, P.E.
Bernalillo County Planning Dept.

Prepared for: Scott Anderson Scott C. Anderson & Associates Architects 2818 4th St. NW Suite C Albuquerque NM 87107

Terry O. Brown, P.E. 5571 Midway Park Pl. NE Albuquerque, NM 87109 (505) 883-8807

Ronald R. Bohannan, P.E. 5571 Midway Park Pl. NE Albuquerque, NM 87109 (505) 883-8807


Coyote Gravel, Inc. Secondary Site SR 303/2nd St South of Woodward Rd. **Draft Traffic Impact Study**

Executive Summary

The purpose of this Traffic Impact Study (TIS) is to evaluate transportation conditions before and after the implementation of the proposed Coyote Gravel, Inc. Secondary Site; to determine the impact of the site development on the adjacent transportation system; and to recommend improvements to mitigate those impacts, where necessary. This TIS has been prepared in accordance with the requirements set forth by the City of Albuquerque and Bernalillo County.

Project Location

The proposed Coyote Gravel, Inc. Secondary Site will be located along the westside of SR 303/2nd St SW, approximately 1770 ft south of Woodward Rd., and approximately 6280 ft north of SR 500/Rio Bravo Blvd. SW in the City of Albuquerque, New Mexico. See Vicinity Map below.

Proposed Study Area

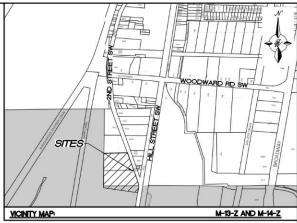
The study area includes two signalized intersections, one shared unsignalized intersection and access point, and one access point for the Coyote Gravel, Inc. Secondary Site, as listed below:

- 1. Woodward Rd. SW at SR 303/2nd St. SW (Signalized)
- 2. Hill St. SW/Driveway "B" at SR 303/2nd St. SW (Unsignalized Site Access)
- 3. SR 500/Rio Bravo Blvd. SW at SR 303/2nd St. SW (Signalized)
- 4. Driveway "A" at SR 303/2nd St. SW (Unsignalized Site Access)

Proposed Site Description

Coyote Gravel Inc. is proposing to expand its existing operations by developing an additional facility at the proposed location. The approximately 7.6-acre subject site lies within the jurisdiction of both

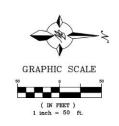
the City of Albuquerque and Bernalillo County. The project will consist of a single user operating across two separate areas—referred to as the North Lot and South Lot—each designated for distinct uses. The combined development will include a total of 85,000 sq-ft of enclosed building floor area. The proposed conceptual site plan is provided on the following page and on Appendix Page A-5.



SETBACKS:

FRONT 20' MINIMUM SIDE 10' MINIMUM BACK 10' MINIMUM

- 1) ACCESSIBLE PARKING PER ADA STANDARDS WITH SIGN (SEE DETAIL SHT. DET—1
- 2 CONCRETE SIDEWALK AT BUILDING (SEE DETAIL SHT. DET-1)
- 3 MONUMENT SIGN
- 4 DUMPSTER
- 5 RELOCATED SITE LIGHT
- 6 RELOCATED GAS METER
- 7 RELOCATED ELECTRICAL TRANSFORMER



LEGAL DESCRIPTION:

TRACT MRGCD MAP #44 TR 100-C AND 100-D TR 2 PLAT OF TRACT LANDS OF GOOD CENTS INC

LEGEND	
	CURB & GUTTER
	- BOUNDARY LINE
()	- BUILDING
	EXISTING CURB & GUTTE
	- EXISTING BOUNDARY LIN
380	EXISTING HYDRANT
	PROPOSED HYDRANT
• • • • • • • • • • • • • • • • • • • •	EXISTING FENCE
	EASEMENT
(Personal victorials)	SIDEWALK
\Rightarrow	SITE LIGHTS
11/5/28/04/22/2001	EXISTING SIDEWALK

NORTH SITE DATA		SOUTH SITE DATA	
PROPOSED USAGE: LOT AREA: ZONING:	WAREHOUSING 180,326 SF (4.14 ACRES) NR-GM	PROPOSED USAGE: LOT AREA: ZONING:	OFFICE, SHOP, & STORAGE 140,255 SF (3.22 ACRES) NR-GM
BUILDING AREA: PARKING REQUIRED: PARKING PROVIDED:	74,415 SF NO REQUIREMENT: 48 SPACES	BUILDING AREA: STORAGE OFFICE SHOP	74,415 SF 3,000 SF 4,000 SF 3,000 SF
HC PARKING REQUIRED: HC PARKING PROVIDED: MOTORCYCLE PARKING R	2 SPACES EQUIRED: NO REQUIREMENT	PARKING REQUIRED: STORAGE OFFICE SHOP PARKING PROVIDED:	NO REQUIREMENT 14 SPACES 6 SPACES 25 SPACES
BICYCLE PARKING REQUI	RED: NO REQUIREMENT	HC PARKING REQUIRED: HC PARKING PROVIDED:	
LANDSCAPE AREA REQUII LANDSCAPE AREA PROVID		MOTORCYCLE PARKING F MOTORCYCLE PARKING F BICYCLE PARKING REQUI	PROVIDED: 2 SPACES
		BICYCLE PARKING PROVI	DED: 6 SPACES

ENGINEER'S SEAL	COYOTE CONCRETE ALBUQUERQUE	DRAWN BY RMG
	CONCEPTUAL SITE	DATE 08/22/2024
	FLAN	SHEET #
	TIERRA WEST, LLC 5571 MIDWAY PARK PLACE NE	SP

LANDSCAPE AREA REQUIRED: 21,038 SF LANDSCAPE AREA PROVIDED: XX,XXX SF

Trip Generation

The ITE Codes used for the proposed Coyote Gravel, Inc. Secondary Site include the following: ITE Code 180 (Specialty Trade Contractor). Trip generation summary is below and attached on Appendix Pages A-20 and A-21.

Coyote Gravel Products, Inc. (3053 2nd Street NW)

Trip Generation Data (ITE Trip Generation Manual - 11th Edition)

	USE (ITE CODE)		24 HR VOL	A. M. P.	EAK HR.	P. M. PE	AK HR.
COMMENT	DESCRIPTION		GROSS	ENTER	EXIT	ENTER	EXIT
	Summary Sheet	Units					-
Specialty Trade Contractor		85.00	792	104	37	52	112
	Total Primary Trips			104	37	52	112

No adjustments were made to account for pass-by trips or internal capture trips.

Intersection Analysis Result Summary

The analysis was performed to comply with the requirements set forth by the City of Albuquerque and Bernalillo County. The results of the Implementation Year (2025) and Horizon Year (2035) AM Peak Hour (APH) and PM Peak Hour (PPH) NO BUILD and BUILD conditions are summarized in below. All intersections within the study area are performing at a level of service (LOS) E or above, although some intersection turning movements are performing at a LOS F.

Intersction LOS Analysis Summary Table

Coyote Gravel Inc. Secondary Site (Albuquerque, NM)

	Intersection	Intersection Intersection Coop System			on Year (2025) litions	Horizon Year (2035) Conditions	
	Description	Operation	Case Evaluation	AM Peak LOS Delays (s)	PM Peak LOS Delays (s)	AM Peak LOS Delays (s)	PM Peak LOS Delays (s)
1	Woodward Rd. / SR 303-	Signalized	No Build	C (32.7)	B (16.0)	D (39.2)	B (16.8)
1	2nd St.	Signatizeu	Build	C (23.1)	B (16.8)	D (41.2)	B (17.1)
2	Hill St-Driveway "B" / SR	Unoignolizad	No Build	A (0.0)	A (0.0)	A (0.0)	A (0.0)
2	303-2nd St.	Unsignalized	Build	A (0.4)	A (0.8)	A (0.4)	A (0.8)
3	SR 500-Rio Bravo Blvd. /	0:	No Build	C (30.9)	D (35.4)	D (38.5)	E (59.6)
3	SR 303-2nd St.	Signalized	Build	C (30.9)	D (42.2)	D (38.7)	E (59.4)
	Driveway "A" / SR 303-	l la sign alian d	No Build	-	-	-	-
4	2nd St.	Unsignalized	Build	A (0.4)	A (1.3)	A (0.4)	A (1.3)

Mitigation Analysis

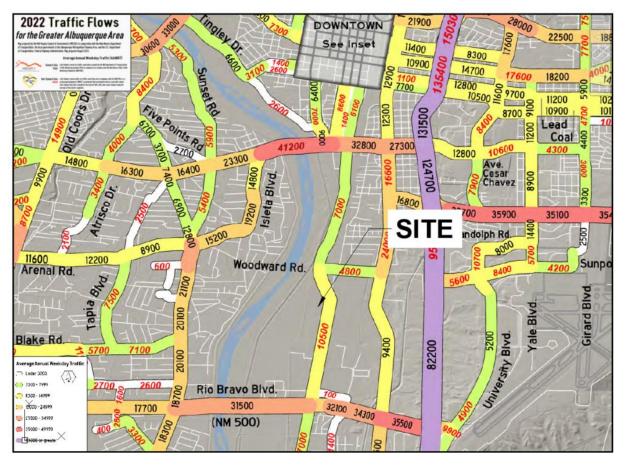
This mitigation analysis builds upon the findings of the Traffic Impact Study to evaluate potential impacts on adjacent roadways. The proposed secondary site is not expected to generate additional strain on traffic flow, density, or delays. The site is anticipated to have minimal impact on surrounding facilities and does not present any safety concerns related to SSD or ESD.

However, a northbound right-turn deceleration lane is warranted at Driveway "A" along SR 303/2nd St. See the figure below for reference.

Recommendations

Based on the analysis provided in this analysis, the following are the recommendations for improvements to the adjacent transportation system in the study area:

- Construct a new southbound right turn deceleration lane for Driveway "A" at SR 303/2nd St (240 ft of storage with 300/150 transition)
- Add "Trucks Entering Highway" signage located northbound and southbound SSR 303/2nd St.
- All construction on this project shall maintain adequate sight distances at the proposed driveways and existing intersections.


Table of Contents

Executive Summary	i
Project Location	i
Proposed Study Area	ii
Proposed Site Description	ii
Trip Generation	v
Intersection Analysis Result Summary	v
Mitigation Analysis	vi
Recommendations	vii
List of Figures	x
List of Tables	xii
Introduction	1
Purpose of the Analysis	1
Project Scope	1
Project Study Area Conditions	1
Proposed Development	3
Study Area Definition	5
Site Access	8
Unsignalized Intersection of Driveway "A" at SR 303/2 nd St. SW	8
Unsignalized Intersection of Hill St./Driveway "B" at SR 303/2 nd St. SW	8
Access Spacing Analysis	8
Study Area Characteristics	14
Existing Land Use	14
Existing and Planned Zoning	14
Long Range Bike Network	17

Long Range Transit Network	18
Pedestrian Composite Index	19
Analysis of Existing Conditions	20
Existing Traffic Volumes	20
Existing Signal Timing	22
Average Annual Weekday Traffic	22
Crash Analysis	24
Analysis of Future Conditions	26
Traffic Volume Projections	26
Trip Generation	27
Trip Distribution	27
Trip Assignments	31
Intersection Capacity Analysis	35
Level of Service (LOS)	36
#1 – Signalized Intersection of Woodward Rd. SW at SR 303/2 nd St. SW	37
#2 – Unsignalized Intersection of Hill St. SW/Driveway "B" at SR 303/2 nd St. S	SW40
#3 – Signalized Intersection of SR 500/Rio Bravo Blvd. SW at SR 303/2 nd St. S	SW43
#4 – Unsignalized Intersection of Driveway "A" at SR 303/2 nd St. SW	46
Intersection Capacity Analysis Summary	47
Deceleration Lane Warrant Analysis	48
Mitigation Analysis	49
Recommendations	49
Bibliography	50
Annandicas	51

List of Figures

Figure 1: Vicinity Map	2
Figure 2: Proposed Conceptual Site Plan	4
Figure 3: Intersection Reference Map	6
Figure 4: Futures 2040 Maps for Long Range Roadway Systems Map	7
Figure 5: Access Spacing for Driveway "A" and "B"	9
Figure 6: Driveway "A" Sight Distance	.2
Figure 7: Driveway "B" Sight Distance	.3
Figure 8: IDO Zone Atlas Map	.6
Figure 9: Portion of Futures 2040 Long Range Bikeway System	.7
Figure 10: Portion of Future 2040 Long Range Transit Network	.8
Figure 11: Portion of Future 2040 Pedestrian Composite Index	20
Figure 12: Traffic Count Camera Location	<u>'</u> 1

Figure 13: Portion of 2022 Traffic Flow Map23
Figure 14: Subarea Map28
Figure 15: Trip Distribution Map (%)32
Figure 16: Trip Assignments - % Entering
Figure 17: Trips Assignments - % Exiting34
Figure 18: Signalized Intersection of Woodward Rd. SW at SE 303/2 nd St. SW37
Figure 19: Unsignalized Intersection Areial of Hill St. SW at SR 303/2 nd St. SW40
Figure 20: Signalized Intersection of SR 500/Rio Bravo Blvd. SW at SR 303/2 nd St. SW
Figure 21: Driveway "A" at SR 303/2nd St Mitigation Exhibit

List of Tables

Table 3: Access Spacing Standards for Intersections and Driveways	10
Table 4: Minimum Intersection Sight Distance (feet)	11
Table 6: Coyote Gravel Inc. Crash Analysis Summary	25
Table 7: Crash Intensity	26
Table 8: Trip Generations Data	27
Table 9: Trip Distribution	29
Table 10: Trip Distribution Continued	30
Table 11: Design Process Manual LOS Criteria	36
Table 12: 2025 Implementation Year Woodward Rd. at SR 303/2nd St. AM Peak LVAM Sumr	nary
	38
Table 13: 2035 Horizon Year Woodward Rd. at SR 303/2nd St. LVAM Summary	39
Table 14: 2025 Implementation Year Hill St. at SR 303/2nd St. LVAM Summary	41
Table 15: 2035 Horizon Year Hill St. at SR 303/2nd St. LVAM Summary	42
Table 16: 2025 Implementation Year SR 500/Rio Bravo Blvd. at SR 303/2nd St. LVAM Summa	ry44
Table 17: 2035 Horizon Year SR 500/Rio Bravo Blvd. at SR 303/2nd St. LVAM Summary	45
Table 18: 2025 Implementation Year Driveway "A" at SR 303/2nd St. LVAM Summary	46
Table 19: 2035 Horizon Year Driveway "A" at SR 303/2nd St. LVAM Summary	47
Table 20: Intersection LOS Analysis Summary Table	48
Table 21: Turn Lane Warrant Summary	48

Coyote Gravel, Inc. Secondary Site SR 303/2nd St South of Woodward Rd. Draft Traffic Impact Study

Introduction

Purpose of the Analysis

The purpose of this Traffic Impact Study (TIS) is to evaluate transportation conditions before and after the implementation of the proposed Coyote Gravel, Inc. Secondary Site; to determine the impact of the site development on the adjacent transportation system; and to recommend improvements to mitigate those impacts, where necessary. This TIS has been prepared in accordance with the requirements set forth by the City of Albuquerque and Bernalillo County.

Project Scope

The traffic impact study (TIS) scoping meeting was held on March 28, 2024. The attendees include Matthew Grush, P.E. (City of Albuquerque), Curtis Cherne, P.E. (City of Albuquerque), Julie Luna, P.E. (Bernalillo County), Ronald R. Bohannan, P.E. (Tierra West LLC.), Terry Brown P.E. (Tierra West LLC.), and Jimeia Roberts (Tierra West LLC.). During the scoping meeting the study area was defined, crash analysis was determined to be included in the study, the implementation year was assigned, and traffic count parameters were established. The scoping letter is available on Appendix Pages A-1 through A-3.

Project Study Area Conditions

The proposed Coyote Gravel, Inc. Secondary Site will be located approximately 1,770 ft. south of Woodward Rd., and approximately 6,310 ft. north of SR 500/Rio Bravo Blvd. SW along the west side of SR 303/2nd St. SW in the City of Albuquerque, New Mexico. See Figure 1: Vicinity Map below and attached on Appendix Page A-4.

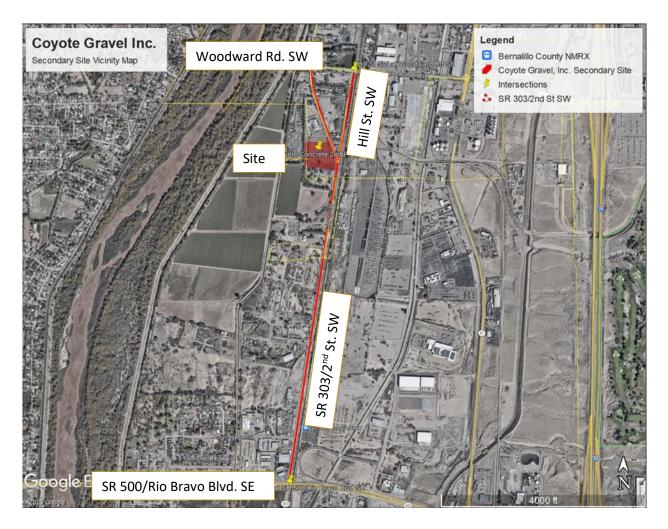


Figure 1: Vicinity Map

At the scoping meeting, it was determined that the study area for the TIS would include two signalized intersections, one unsignalized intersection, and one new driveway (listed below). The City of Albuquerque's scoping letter for this TIS is provided on Appendix Pages A-1 through A-3.

- 1. Woodward Rd. SW at SR 303/2nd St. SW (Signalized)
- 2. Hill St. SW/Driveway "B" at SR 303/2nd St. SW (Unsignalized Site Access)
- 3. SR 500/Rio Bravo Blvd. SW at SR 303/2nd St. SW (Signalized)
- Driveway "A" at SR 303/2nd St. SW (Unsignalized Site Access)
 Note: Driveway "A" and Driveway "B" are new driveways on the west side of SR 303/2nd St.

Proposed Development

Coyote Gravel Inc. is proposing to expand its existing operations by developing an additional facility at the proposed location. The approximately 7.6-acre subject site lies within the jurisdiction of both the City of Albuquerque and Bernalillo County. The project will consist of a single user operating across two separate areas—referred to as the North Lot and South Lot—each designated for distinct uses. The combined development will include a total of 85,000 sq-ft of enclosed building floor area. The proposed conceptual site plan is provided on the following page and on Appendix Pages A-5.

SETBACKS:


FRONT 20' MINIMUM SIDE 10' MINIMUM BACK 10' MINIMUM

KEYED NOTES

- 1 ACCESSIBLE PARKING PER ADA STANDARDS WITH SIGN (SEE DETAIL SHT. DET-1
- 2 CONCRETE SIDEWALK AT BUILDING (SEE DETAIL SHT. DET-1)
- 3 MONUMENT SIGN
- 4 DUMPSTER
- 5 RELOCATED SITE LIGHT
- 6 RELOCATED GAS METER
- 7) RELOCATED ELECTRICAL TRANSFORMER

LANDSCAPING AND SIGNAGE WILL
NOT INTERFERE WITH CLEAR SIGHT
REQUIREMENTS. THEREFORE, SIGNS,
WALLS, TREES AND SHRUBBERY
BETWEEN 3' AND 8' TALL(AS
MEASURED FROM GUTTER PAN)
WILL NOT BE ACCEPTABLE IN THE
CLEAR SIGHT TRIANGLE

LEGAL DESCRIPTION:

TRACT MRGCD MAP #44 TR 100-C AND 100-D TR 2 PLAT OF TRACT LANDS OF GOOD CENTS INC

LEGEND CURB & GUTTER - BOUNDARY LINE - BUILDING - EXISTING BOUNDARY LINE EXISTING HYDRANT PROPOSED HYDRANT EXISTING FENCE EASEMENT SIDEWALK SITE LIGHTS $\dot{\phi}$ EXISTING SIDEWALK

NORTH SITE DATA		SOUTH SITE DATA	
PROPOSED USAGE:	WAREHOUSING	PROPOSED USAGE:	OFFICE, SHOP, & STORAGE
LOT AREA:	180,326 SF (4.14 ACRES)	LOT AREA:	140,255 SF (3.22 ACRES)
ZONING.	ND CM	ZONING.	ND CH

BUILDING AREA: 74,415 SF 3,000 SF 4,000 SF 3,000 SF OFFICE SHOP PARKING REQUIRED: NO REQUIREMENT: PARKING PROVIDED: 48 SPACES PARKING REQUIRED: HC PARKING REQUIRED: 2 SPACES HC PARKING PROVIDED: 2 SPACES

MOTORCYCLE PARKING REQUIRED: NO REQUIREMENT MOTORCYCLE PARKING PROVIDED: 2 SPACES BICYCLE PARKING REQUIRED: NO REQUIREMENT

LANDSCAPE AREA REQUIRED: 27,049 SF LANDSCAPE AREA PROVIDED: XX,XXX SF

BICYCLE PARKING PROVIDED: 10 SPACES

BUILDING AREA: 74,415 SF STORAGE NO REQUIREMENT OFFICE 14 SPACES SHOP 6 SPACES PARKING PROVIDED: 25 SPACES HC PARKING REQUIRED: 2 SPACES

HC PARKING PROVIDED: 2 SPACES MOTORCYCLE PARKING REQUIRED: 1 SPACE

BICYCLE PARKING REQUIRED: 2 SPACES BICYCLE PARKING PROVIDED: 6 SPACES

MOTORCYCLE PARKING PROVIDED: 2 SPACES

LANDSCAPE AREA REQUIRED: 21,038 SF LANDSCAPE AREA PROVIDED: XX,XXX SF

DRAWN BY ENGINEER'S SEAL COYOTE CONCRETE ALBUQUERQUE CONCEPTUAL SITE PLAN SHEET # SP 5571 MIDWAY PARK PLACE NE ALBUQUERQUE, NM 87109 (505) 858-3100 www.tierrawestlic.com JOB # 2024017 RONALD R. BOHANNAN P.E. #7868

Figure 2: Proposed Conceptual Site Plan

September 5, 2025

Coyote Gravel, Inc. Secondary Site

Traffic Impact Study

Page 4

Study Area Definition

The proposed Concrete Gravel, Inc Secondary Site will be located west of SR 303/2nd St SW south of Woodward Rd., and north of SR 500/Rio Bravo Blvd. SW in the City of Albuquerque, New Mexico. From the scoping meeting the intersections of interest were determined to include two signalized intersections, one unsignalized intersection that will double as an access point, and one access point listed below. See the reference map shown on Figure 3: Intersection Reference Map.

- 1. Woodward Rd. SW at SR 303/2nd St. SW (Signalized)
- 2. Hill St. SW/ Driveway "B" at SR 303/2nd St. SW (Unsignalized Site Access)
- 3. SR 500/Rio Bravo Blvd. SW at SR 303/2nd St. SW (Signalized)
- 4. Driveway "A" at SR 303/2nd St. SW (Unsignalized Site Access)

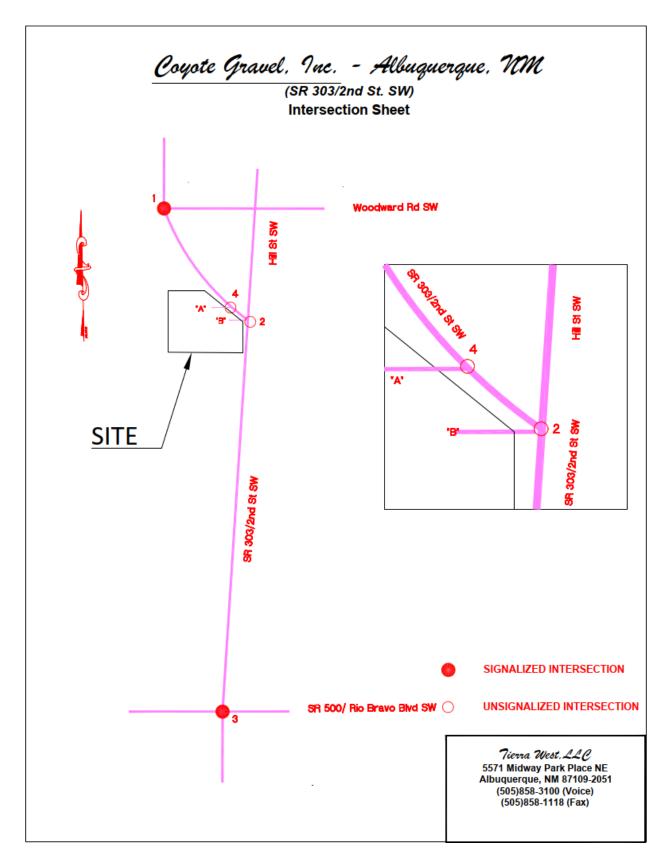


Figure 3: Intersection Reference Map

The Long Range Roadway System (LRRS) classifies the regional role of existing and planned future 2040 arterials within the overall network. By categorizing network links into two groups regional and community, considerations for existing and planned future 2040 transportation system improvements are ensured. The roadway categories within the study area are illustrated in Figure 4: Futures 2040 Maps for Long Range Roadway Systems Map.

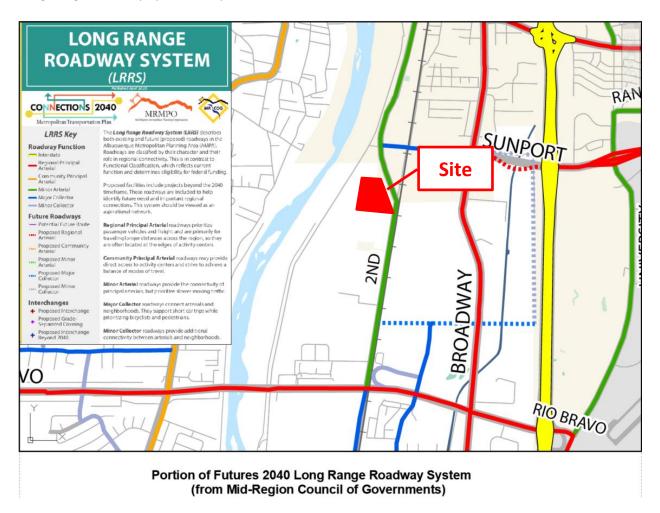


Figure 4: Futures 2040 Maps for Long Range Roadway Systems Map

SR 303/2nd St. SW is classified as an existing **minor arterial** on Figure 4: Futures 2040 Maps for Long Range Roadway Systems. Within the study area, SR 303/2nd St. SW is a two-lane undivided roadway with one lane in each direction and no raised medians, curbs and gutters, or sidewalks. The posted speed limit along SR 303/2nd St. SW is 35 mph north of the merge point and 45 mph south of the merge intersection with Hill St. SW.

Woodward Rd. SW is classified as an urban existing **major collector** on Figure 4: Futures 2040 Maps for Long Range Roadway Systems. It is a three-lane facility with a center left-turn lane, curbs and gutters, and sidewalks. The posted speed limit along Woodward Rd. SW within the study area is 30 mph.

SR 500/Rio Bravo Blvd. SW is classified as an existing **regional principal arterial** on Figure 4: Futures 2040 Maps for Long Range Roadway Systems. It is generally a four-lane divided roadway with no curbs and gutters, and no sidewalks. The posted speed limit along SR 500/Rio Bravo Blvd. SW is 45 mph.

Site Access

Access to the project is proposed via two new full-access, unsignalized driveways. Driveway "A" is proposed to be located approximately 1,772 ft south of Woodward Rd. SW (measured centerline to centerline). Driveway "B" is proposed to be located approximately 6,280 ft north of SR 500/Rio Bravo Blvd. (measured centerline to centerline). Driveway "B" will serve as the west leg of the unsignalized intersection of Hill St. SW and SR 303/2nd St. SW.

Unsignalized Intersection of Driveway "A" at SR 303/2nd St. SW

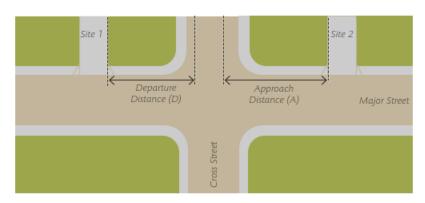
Driveway 'A' is a proposed as a "full access" driveway and is the only access to the 'main warehouse' of the site.

Unsignalized Intersection of Hill St./Driveway "B" at SR 303/2nd St. SW

Driveway 'B' is a proposed as a "full access" driveway and is the only access to the 'batch plant' of the site. Driveway 'B' should be aligned with the east leg of the intersection, Hill St. SW.

Access Spacing Analysis

Roadway geometry was considered to evaluate the distance between existing roadway access points and intersections. As shown in Figure 5: Access Spacing for Driveway "A" and "B" below, the spacing between Driveway "A" and Hill St. is approximately 176 ft. Driveway "B" is aligned with Hill St.


Figure 5: Access Spacing for Driveway "A" and "B"

Based on

Table 1: Access Spacing Standards for Intersections and *Driveways* shown below, the driveways meet the minimum access spacing standards of 75 feet approaching and 75 feet departing the intersection for full-access driveways on minor arterials intersecting with local roads.

Table 1: Access Spacing Standards for Intersections and Driveways

Intersection

TABLE 7.4.45 Minimum Distance Between Commercial Site Access and Intersection							
Cross Street Classes							
Type of Street	Arterial		Collector		Local		
	Α	D	Α	D	Α	D	
Principal Arterial	300 ft.	200 ft.	200 ft.	150 ft.	150 ft.	100 ft.	
Minor Arterial	200 ft.	150 ft.	150 ft.	100 ft.	100 ft.	100 ft.	
Major Collector	150 ft.	150 ft.	100 ft.	100 ft.	75 ft.	75 ft.	
Minor Collector	150 ft.	150 ft.	100 ft.	100 ft.	75 ft.	75 ft.	
Local (additional distance may be required for queuing)	75 ft.	75 ft.	50 ft.	50 ft.	25 ft.	25 ft.	

TABLE 7.4.46 Maximum Number of Commercial Site Access Points per Site					
Type of Street					
Principal Arterials	1-2 access points per 300 ft. frontage				
Minor Arterials	1-2 access points per 200 ft. frontage				
Collectors	1 access point per 100 ft. frontage				

Below is an excerpt of

Table 2: Minimum Intersection Sight Distance (feet) from the City of Albuquerque DPM.

Table 2: Minimum Intersection Sight Distance (feet)

TABLE 7.4.65 Minimum Intersection Sight Distance								
Speed Limit (MPH)	Minimum Intersection Sight Distance							
	2 Lane Undivided		3 Lane Undivided or 2 Lane Divided w/ 12 ft. Median		4 Lane Undivided			
	Left Turn	Right Turn	Left Turn	Right Turn	Left Turn	Right Turn		
20	230 ft.	200 ft.	240 ft.	200 ft.	250 ft.	200 ft.		
25	280 ft.	240 ft.	300 ft.	240 ft.	320 ft.	240 ft.		
30	340 ft.	290 ft.	360 ft.	290 ft.	380 ft.	290 ft.		
35	390 ft.	340 ft.	420 ft.	340 ft.	440 ft.	340 ft.		
40	450 ft.	390 ft.	480 ft.	390 ft.	500 ft.	390 ft.		
45	500 ft.	430 ft.	530 ft.	430 ft.	570 ft.	430 ft.		
50	560 ft.	480 ft.	590 ft.	480 ft.	630 ft.	480 ft.		

The required entering sight distance for a 2-lane highway with a posted speed of 35 mph and 45 mph has a minimum criterion for combination trucks of 340 ft and 500 ft, respectively. As shown below, both driveways meet the minimum requirement for the entering sight distance.

Figure 6: Driveway "A" Sight Distance

Figure 7: Driveway "B" Sight Distance

Study Area Characteristics

Existing Land Use

The project spans approximately 7.6 acres across three existing parcels, all currently designated for agricultural use. Adjacent parcels appear to be fully developed and are designated for commercial retail, general manufacturing, and agricultural uses.

Existing and Planned Zoning

The proposed site is currently zoned under the Integrated Development Ordinance (IDO) as Non-Residential – General Manufacturing (NR-GM). The NR-GM zone is intended to accommodate a range of non-residential uses related to general manufacturing. The former zoning designation was M-2 (Heavy Manufacturing), which includes conditional uses permitted under the M-1 (Light Manufacturing) zone. Below is an excerpt from the City of Albuquerque Comprehensive Zoning Code, Chapter 14 - Zoning, Planning, and Building, Part 2: Zoning Districts, describing the conditional uses allowed under Light Manufacturing.

(B) Conditional Uses.

- If so approved, the following uses may be conducted in an area not completely enclosed by a wall or fence:
 - (a) Air separation plant not otherwise allowed as a permissive use.
 - (b) Animal raising, other than those animals which are permissive in this section.
 - (c) Building material storage or sales.
 - (d) Concrete or cement products manufacturing, batching plant, processing of stone.
 - (e) Contractor's equipment storage, or contractor's plant.
 - (f) Feed or fuel storage or sales.
 - (g) Gravel, sand, or dirt removal activity, stockpiling, processing, or distribution.
 - (h) Rental, sales, display, and repair of operative contractor's and heavy farm equipment.
 - Salvage yard for storage and sale of used material provided the yard is enclosed on all sides by a solid wall or fence at least six feet high.
 - Truck terminal, tractor, trailer, or truck storage, including maintenance facilities.

Authorities 1 Zoning District Conditional Use

The purpose of the Airport Protection Overlay (APO) zone is to ensure that land use and development are compatible with airport operations, thereby protecting the public from noise, vibration, and other hazards. The proposed site is located entirely within the APO zone. This overlay provides protections related to runway proximity, airspace, and noise exposure.

The Airspace Protection Sub-Area restricts building heights to a maximum of 150 feet above the highest point of the usable landing area.

The Runway Protection Sub-Area covers areas adjacent to runway approach surfaces and flares. For areas within this zone, the proposed site recommends additional striping in accordance with the United States Department of Transportation Federal Aviation Administration (FAA) Advisory Circular, Chapter 5: Other Surface Markings, Section 5.2: Vehicle Roadway Markings. FAA regulations require the installation of reflective pavement markings, traffic signs, and roadway lighting to ensure the safety of aircraft operations.

The Noise Contour Sub-Area, as determined by the FAA's Integrated Noise Model, includes areas with a Day-Night Average Sound Level (DNL) of 65. The proposed land use—classified as "Other Manufacturing, Fabrication, and Assembly"—is a permissive use within the 65 DNL contour. See Appendix Page A-6 for APO zone map and the zone atlas map below.

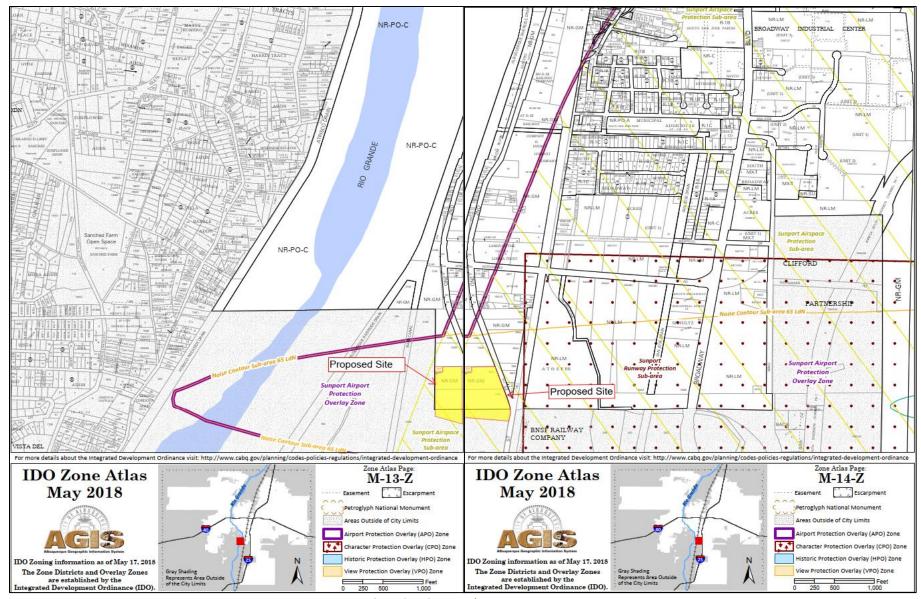
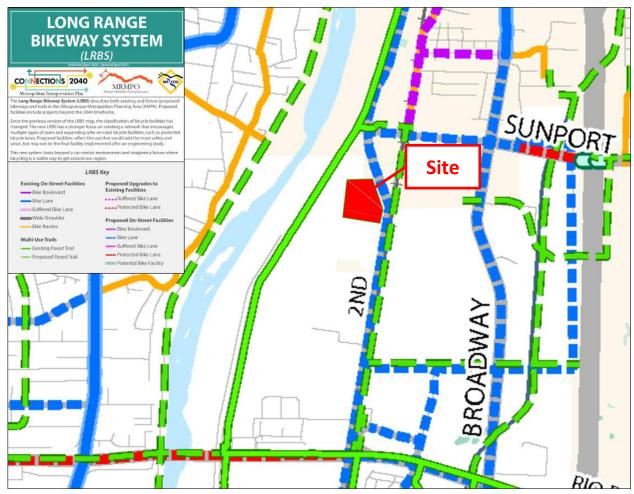



Figure 8: IDO Zone Atlas Map

Long Range Bike Network

The Long Range Bikeway System (LRBS) designates existing and future bikeways and paved trails with the goal of providing safe and efficient bicycle facilities based on engineering assessments. Overall, the LRBS supports a sustainable, healthy, and connected community. The bikeway classifications within the study area are illustrated in Figure 9: Portion of Futures 2040 Long Range Bikeway System below.

Portion of Futures 2040 Long Range Bikeway System (from Mid-Region Council of Governments)

Figure 9: Portion of Futures 2040 Long Range Bikeway System

According to the LRBS, SR 303/2nd Street SE is designated for proposed bike lanes along the roadway. Additionally, a proposed paved trail is planned to run from Woodward Rd. SW, along Hill St. SW, and merge onto the SR 303/2nd St. roadway. An existing paved trail is located along the south side of SR 500/Rio Bravo Blvd. SE, and proposed bike lanes are planned on both the north and south sides of SR

500/Rio Bravo Blvd. West of SR 303/2nd St. SE, along SR 500/Rio Bravo Blvd. SW, a proposed protected bike lane is also identified.

Long Range Transit Network

The Long Range Transit Network (LRTN) is designed to support the goals of the 2040 Target Scenario, which aims to create a more connected and accessible transit system that can meet future demands and support sustainable growth. The LRTN achieves this by efficiently connecting regional activity centers with the areas where residents live, work, and seek entertainment. It expands the frequency of transit services along mixed-use corridors to ensure regular and reliable service. Transit route classifications within the study area are illustrated in Figure 10: Portion of Future 2040 Long Range Transit Network below.

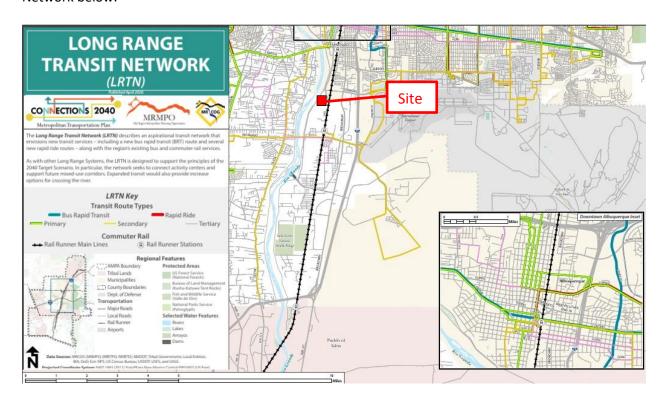


Figure 10: Portion of Future 2040 Long Range Transit Network

Within the study area, the LRTN identifies a secondary transit route running eastbound and westbound along San Jose Ave. SE, designated as Route 16 (Broadway–University–Gibson). This route operates Monday through Saturday at 45-minute intervals, and every 65 minutes on Sundays. However, the route is located north of the site and does not extend far enough east to connect with arterials within the study area.

Another route, Route 51 (Atrisco–Rio Bravo), runs along SR 500/Rio Bravo Blvd. SW in both directions. It operates Monday through Saturday at 60-minute intervals and does not run on Sundays. Route 51 also services SR 303/2nd Street SW, south of SR 500/Rio Bravo Boulevard SW.

Additionally, Route 222 (Rio Bravo–Sunport) is available just southwest of the proposed site along SR 500/Rio Bravo Blvd. SW, providing a connection between the Bernalillo County Rail Runner Station and Albuquerque International Sunport. This route operates Monday through Friday at 65-minute intervals.

Based on the LRTN, **no additional accommodations to the proposed bus route network are recommended**. It can be concluded that transit service to the project site is limited, as the nearest existing transit route is more than 0.25 miles away. See City of Albuquerque bus route map on Appendix Page A-7.

Pedestrian Composite Index

The Pedestrian Composite Index (PCI) is a tool used to evaluate and prioritize areas for pedestrian improvements based on multiple factors. The PCI framework is designed to enhance walkability and pedestrian accessibility within urban environments. Factors considered in determining the index include proximity to city centers, demographics, roadway density, commute patterns, and travel reliability. The pedestrian activity categories within the study area are illustrated in Figure 11: Portion of Future 2040 Pedestrian Composite Index.

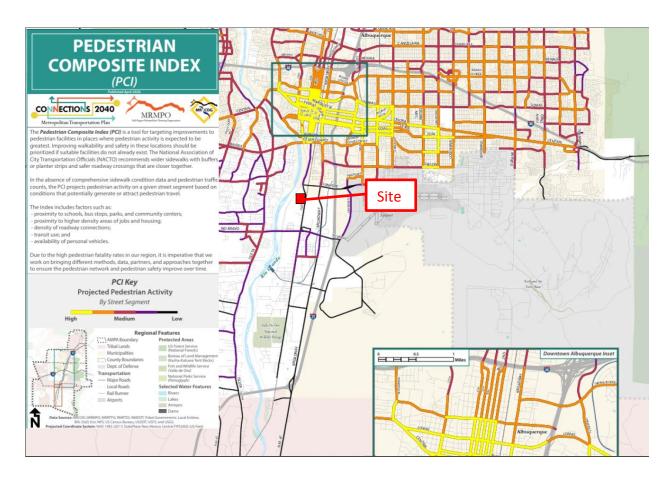


Figure 11: Portion of Future 2040 Pedestrian Composite Index

The segment along SR 303/2nd St. has a low PCI rating, primarily due to the absence of sidewalks and bus stops along the roadway. Given the proposed paved trail in the area, no additional pedestrian accommodations are recommended.

Analysis of Existing Conditions

Existing Traffic Volumes

Since the implementation year is less than three years in the future and the annual background traffic growth rate ranges between 0.6% and 0.8%, no existing-year analysis was performed. The Implementation Year NO BUILD analyses are expected to closely approximate existing conditions. Existing traffic volumes (turning movement counts) were collected at the intersections targeted for analysis in this study on April 16, 2024. Figure 12: Traffic Count Camera Location shows the camera location to capture counts and the traffic counts are attached on Appendix Pages A-8 through A-16.

Figure 12: Traffic Count Camera Location

Existing traffic volumes were collected on April 16, 2024, while school was in session. Turning movement counts were calculated for the 2025 and 2035 AM and PM peak hours under NO BUILD and BUILD conditions for each movement at each intersection within the study area. NO BUILD volumes were generated by adjusting the existing volumes to account for background traffic growth. BUILD volumes were then calculated by adding the project-generated trips to the NO BUILD volumes. Summarized turning movement counts for 2025 volumes are provided on Appendix Pages A-17 through A-25. Summarized turning movement counts for 2035 volumes can be found on Appendix Pages A-26 through A-34.

Existing Signal Timing

The most current signal timing information was gathered from Bernalillo County for the intersection of SR 500/Rio Bravo Blvd. For the intersection of Woodward Rd. at SR 303/2nd St. SW signal timing information was gathered from the City of Albuquerque. Existing signal timing information is available on Appendix Pages A-35 through A-37.

Average Annual Weekday Traffic

The Traffic Flow Maps illustrate traffic patterns by representing vehicle movement and density on road networks. These maps assist in planning and managing roadway infrastructure, assessing congestion, and identifying maintenance and improvement options. The values shown on the traffic flow maps represent Average Annual Weekday Traffic (AAWT), which measures the average number of vehicles on a roadway during weekdays over a full year. The 2022 Traffic Flow Map is presented in Figure 13: Portion of 2022 Traffic Flow Map shown below.

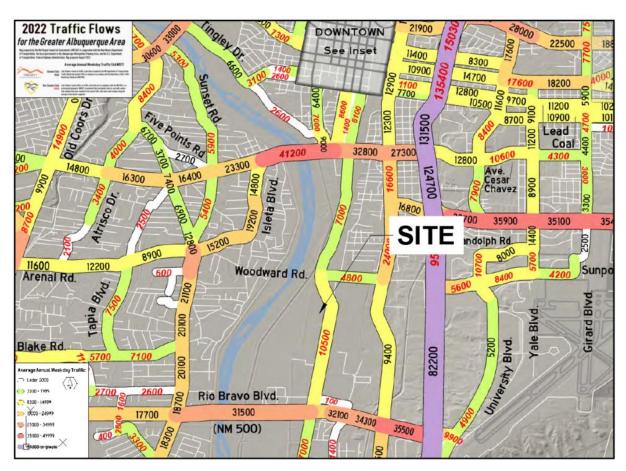


Figure 13: Portion of 2022 Traffic Flow Map

SR 303/2nd St. experiences a moderately low weekday traffic volume, with an AAWT of 10,540 vehicles. This volume was obtained from the Mid-Region Council of Governments (MRCOG) Transportation Analysis and Querying Application (TAQA) website.

Crash Analysis

A crash analysis for the proposed development was conducted to improve road safety by understanding the causes and consequences of traffic incidents. The crash analysis Identifies factors that contributed to the crash such as driver behavior, road conditions, vehicle performance, and environmental influences. The crash analysis evaluates the severity of the crash and its effects on vehicles, passengers, and infrastructure, and assists in finding a safety measure to reduce the occurrence of the crash type. With the crash analysis data, the development of safety measures can be implemented by proposing improvements in road design, traffic regulations, and vehicle safety features to prevent similar accidents in the future. The data provided in this portion of the TIS support policy decisions and infrastructure planning aimed at reducing accident rates and enhancing overall traffic study.

Crash data for the study area was collected for the years 2018, 2019, 2020, 2021, and 2022. The crash data was taken from the New Mexico Department of Transportation's (NMDOT) statewide database. The crash history data was collected for the intersections (3 intersections) surrounding the Coyote Gravel, Inc. Secondary Site study area.

Based on the high number of crashes reported over the recent five-year period (252 crashes), this report finds that there are significant safety issues in the study area. These issues are due to the high volume of traffic utilizing SR 500/Rio Bravo Blvd. and the vicinity of the railroad tracks within the intersection. This poses a driver reaction issue evident in the data retrieved. Table 3: Coyote Gravel Inc. Crash Analysis Summary below summarizes the crashes by year and by crash attributes:

Crash Analysis Summary Table

Coyote Gravel Inc. Secondary Site

(City of Albuquerque & Bernalillo County, NM)

Crash Analysis Summary Table

Crash Data from (IPRA) Internal Request

CDACH TVDE			Year			SUBTOTAL	PERCENTAGE
CRASH TYPE	2018	2019	2020	2021	2022	SUBTUTAL	CRASH TYPE
BACKING UP	0	0	1	0	1	2	1%
FIXED OBJECT	4	2	3	0	4	13	5%
LEFT-TURN ANGLE	0	1	5	2	3	11	4%
U-TURN	1	0	0	0	0	1	0%
RIGHT-TURN-ANGLED	8	10	8	4	6	36	14%
HEAD-ON COLLISION	0	1	0	0	0	1	0%
REAR-END	21	24	13	14	25	97	38%
SIDESWIPE LL	0	0	1	1	1	3	1%
SIDESWIPE RL	2	4	4	3	2	15	6%
T-BONE	0	0	2	1	1	4	2%
ROLLOVER	1	0	1	0	0	2	1%
PEDESTRIAN	0	0	0	1	0	1	0%
MOTORCYCLIST	0	0	0	1	0	1	0%
PEDACYCLIST	1	0	3	0	0	4	2%
OTHER	0	2	1	2	1	6	2%
UNKNOWN	3	7	25	1	19	55	22%
SUBTOTAL	41	51	66	30	62	252	100.00%

The right-turn crashes, and rear-end crashes were the highest rate of crashes. Rear-end types of crashes are common at signalized intersections. Right-angle types of crashes are more common at unsignalized intersections. Most crashes are the result of driver error and not an issue to traffic features and infrastructure. There was one fatality reported.

Crash Analysis Summary Table

Coyote Gravel Inc. Secondary Site Crash Data from IPRA

CDACH TVDE			Year			CURTOTAL	PERCENTAGE
CRASH TYPE	2018	2019	2020	2021	2022	SUBTOTAL	CRASH TYPE
FATALITY	1	1	0	0	0	2	0.8%
INJURY	13	21	19	11	14	78	31.0%
PROPERTY DAMAGE	35	36	25	20	39	155	61.5%
NO DATA	=	-	-	=	=	17	6.7%
SUBTOTAL	49	58	44	31	53	252	100.0%

Analysis of Future Conditions

Traffic Volume Projections

The anticipated Implementation Year for this project is 2025 and the Horizon Year is 2035. MRCOG Traffic Flow Map data was used for traffic growth from 2010 to 2021 to determine the historical growth rates for the study area. The calculated growth rate at the intersections varies between 0.6% and 0.8% and is the same for both the Implementation Year and Horizon Year. See Appendix Pages A-38 through A-40 for the Historic Growth Rate Data Table and Graph. The following growth rates percentages were used for each intersection.

- 1. Woodward Rd. SW at SR $303/2^{nd}$ St. SW -0.6%
- 2. Hill St. SW/Driveway "B" at SR $303/2^{nd}$ St. SW -0.6%
- 3. SR 500/Rio Bravo Blvd. SW at SR $303/2^{nd}$ St. SW -0.8%
- 4. Driveway "A" at SR 303/2nd St. SW 0.6%

The growth rates were then applied to the background traffic volumes. The 2025 construction year net volumes are 565 and 807 vehicles per hour, for the AM and PM peaks respectively. The projected turning movement spread sheet is attached Appendix Pages A-17 through A-25 and Appendix Pages A-26 through A-34.

To balance traffic volumes when building the Synchro 12 model, it was assumed that southbound traffic entering SR 303/2nd St. from Woodward Rd. would terminate prior to the proposed driveway

locations. This assumption was based on current conditions as well as residential and commercial properties north of the proposed site location.

Trip Generation

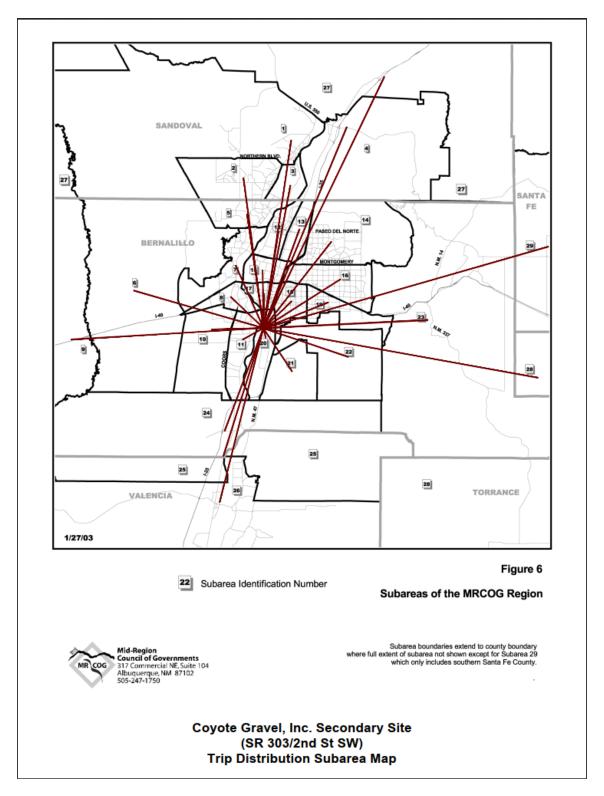
Trip generation is a prediction of trips originating from the proposed new site development that are influenced by land use characteristics, and purpose of trip. The calculated trips generated indicated the number of additional vehicles contributing to traffic demands, and multimodal impacts. The Institute of Transportation Engineers (ITE) Trip Generation Manual provides comprehensive data on vehicles trips generated from corresponding land uses. Each land use has a category of residential, commercial, industrial, and institutional. Table 5: Trip Generations Data summarized the new trip generations, considering pass by trips below and on Appendix Pages A-41 and A-42.

Coyote Gravel Products, Inc. (3053 2nd Street NW)

Trip Generation Data (ITE Trip Generation Manual - 11th Edition)

Table 5: Trip Generations Data

	USE (ITE CODE)		24 HR VOL	A. M. PE	AK HR.	P. M. PE	AK HR.
COMMENT	DESCRIPTION		GROSS	ENTER	EXIT	ENTER	EXIT
	Summary Sheet	Units					
	Specialty Trade Contractor	85.00	792	104	37	52	112
	Total Primary Trips	•		104	37	52	112


The ITE Code used for the proposed Coyote Gravel, Inc. Secondary Site Development is the following: ITE Code (180) Specialty Trade Contractor. The proposed development trip generation is expected to be 141 trucks per hour turning volume with 104 entering and 37 exiting during the AM peak. In addition to that, 164 trucks per hour turning volume with 52 entering and 112 exiting during the PM peak.

Trip Distribution

MRCOG Socio-economic data uses a Geographical Information System (GIS) to support various planning activities. The sub area map enhances the precision and effectiveness of trip distribution models allowing for a granular analysis of travel patterns, accurate data on trip origin and destination, identify congestion issues, and evaluate different scenarios on traffic patterns. Construction trips were distributed based on Mid-Region Council of Governments' Socio-economic data (2016-2040 data set).

The construction trips were distributed based on the population distribution regionally inversely proportional to the distance of the subarea from the project. See Subarea Map below. Table 6: Trip Distribution and

Table 7: Trip Distribution Continued was used to calculate the Construction Trip Distributions percentages for each subarea.

Trip Distribution Table

Coyote Gravel, Inc.

Sub Area Employment Data:

For determination of Trip Distribution for Proposed Office / Warehouse Development Trips

2016 and 2040 Data Taken from Mid-Region Council of Governments' 2040 Data Set Socioeconomic Forecasts by Data Analysis Subzones for the Mid-Region of New Mexico

									(2N)			(WE)		(HE)			
									SR 30	03/2nd St SW	(North)	Wood	tward Rd. SW	(East)		Hill St. (East)	
Sub Area I.D.#	% Sub Area in Study	2016 Employment	2040 Employment	Interpolated Employment for the Year	Employment in Study	Dist. (Mi.)	Employment / Distance	% Employment / Distance	% Utilizing	% Employment / Dist. Utilizing	Employment	% Utilizing	% Employment / Dist. Utilizing	Employment	% Utilizing	% Employment / Dist. Utilizing	Employmen
		2016	2040	2025													
1	100%	44,711	62,255		51,290				0%			10070	2.08%	2,914	0%		
2	100%	54,828	62,222		57,601	14	-,		0%		_		2.93%		0%		
3	100%	8,510	10,377	9,210	9,210				0%				0.49%	682	0%		
4	100%	13,817	17,784		15,305				0%				0.54%		0%		
5	100%	59,285	58,890		59,137	10.7	-,	3.94%	0%		_		3.94%		0%		
6	100%	5,988	9,663		7,366				0%				0.42%		0%		
7	100%	59,485	71,484		63,985		-,		0%		_		7.13%	-1	0%		
8	100%	31,699	34,678		32,816				20%				4.46%		0%		
9	100%	2,158	3,112	2,516	2,516		141	0.10%	0%			100%	0.10%		0%		
10	100%	64,323	61,537	63,278	63,278			9.40%	0%		0		0.00%	0	0%	0.00%	
11	100%	33,210	40,174	35,822	35,822				0%				0.00%		0%		
12	100%	15,936	22,087	18,243	18,243	9.1	2,005	1.43%	0%	0.00%	0	100%	1.43%	2,005	0%	0.00%	
13	100%	9,888	12,530	10,879	10,879	9.8	1,110	0.79%	0%	0.00%	0	100%	0.79%	1,110	0%	0.00%	
14	100%	73,684	84,299	77,665	77,665	10.2	7,614	5.43%	0%	0.00%	0	100%	5.43%	7,614	0%	0.00%	
15	100%	24,829	33,670	28,144	28,144	5.4	5,212		0%	0.00%	0	100%	3.72%	5,212	0%	0.00%	
16	100%	82,412	94,137	86,809	86,809	8.4	10,334	7.37%	0%	0.00%	0	100%	7.37%	10,334	0%	0.00%	
17	100%	22,270	37,540	27,996	27,996	3.2	8,749	6.24%	20%	1.25%	1,750	80%	4.99%	6,999	0%	0.00%	
18	100%	41,643	56,762	47,313	47,313	3.6	13,142	9.37%	0%	0.00%	0	100%	9.37%	13,142	0%	0.00%	
19	100%	65,540	81,066	71,362	71,362	6.5	10,979	7.83%	0%	0.00%	0	100%	7.83%	10,979	0%	0.00%	
20*	100%	9,636	10,794	10,070	10,070	1	10,070	7.18%	50%	3.59%	5,035	0%	0.00%	0	0%	0.00%	
21	100%	559	17,783	7,018	7,018	4.8	1,462	1.04%	0%	0.00%	0	0%	0.00%	0	0%	0.00%	
22	100%	3,511	3,820	3,627	3,627	8.3	437	0.31%	0%	0.00%	0	0%	0.00%	0	0%	0.00%	
23	100%	19,163	27,184	22,171	22,171	15.3	1,449	1.03%	0%	0.00%	0	100%	1.03%	1,449	0%	0.00%	
24	100%	2,531	3,352	2,839	2,839	10.2	278	0.20%	0%	0.00%	0	0%	0.00%	0	0%	0.00%	
25	100%	863	1,161	975	975	12.4	79	0.06%	0%	0.00%	0	0%	0.00%	0	0%	0.00%	
26	100%	56,155	59,697	57,483	57,483	16.6	3,463	2.47%	0%	0.00%	0	0%	0.00%	0	0%	0.00%	
27	100%	19,926	24,499	21,641	21,641	25.9	836	0.60%	0%	0.00%	0	100%	0.60%	836	0%	0.00%	
28	100%	15,662	18,407	16,691	16,691	25.9	644	0.46%	0%	0.00%	. 0	0%	0.00%	0	0%	0.00%	
29	100%	10,397	11,564	10,835	10,835	27.5	394	0.28%	0%	0.00%	0	100%	0.28%	394	0%	0.00%	
-		852,619	1,032,528	920,085	920,085		140,259	100.00%		5.95%			64.91%			0.00%	0.00
0.4											5.95%			64.91%			
Subarea	i in which tr	ne site it locate	ea.								Use 6%			Use 65%			Use 1%

^{&#}x27; - Subarea in which the site it located.

Trip Distribution Table Coyote Gravel, Inc.

Sub Area Employment Data:

For determination of Trip Distribution for Proposed Office / Warehouse Development Trips

2016 and 2040 Data Taken from Mid-Region Council of Governments' 2040 Data Set Socioeconomic Forecasts by Data Analysis Subzones for the Mid-Region of New Mexico

									SD 500	(RE) / Rio Bravo Bl	ud (East)	CD 2/	(2S) 03/2nd St SW ((Courth)	(RW) SR 500/ Rio Bravo Blvd (West)			
Sub Area I.D.#	% Sub Area in Study	2016 Employment	2040 Employment	Interpolated Employment for the Year	Employment in Study	Dist. (Mi.)	Employment / Distance	% Employment / Distance	% Utilizing	% Employment / Dist. Utilizing	Employment	% Utilizing	% Employment / Dist. Utilizing	Employment	% Utilizing	% Employment / Dist. Utilizing	Employment	
		2016	2040	2025														
1	100%	44,711	62,255	51,290	51,290	17.6	2,914		0%						0%	0.00%		
2	100%	54,828	62,222	57,601	57,601	14	4,114	2.93%	0%	0.00%	0	0%	0.00%	0	0%	0.00%		
3	100%	8,510		9,210	9,210				0%						0%	0.00%		
4	100%	13,817	17,784	15,305	15,305	20.2	758	0.54%	0%	0.00%	0	0%	0.00%	0	0%	0.00%		
5	100%	59,285	58,890	59,137	59,137	10.7	5,527	3.94%	0%	0.00%	0	0%	0.00%	0	0%	0.00%	(
6	100%	5,988	9,663	7,366	7,366	12.5	589	0.42%	0%	0.00%	0	0%	0.00%	0	0%	0.00%	(
7	100%	59,485	71,484	63,985	63,985	6.4	9,998	7.13%	0%	0.00%	0	0%	0.00%	0	0%	0.00%	(
8	100%	31,699	34,678	32,816	32,816	4.2	7,813	5.57%	0%	0.00%	0	0%	0.00%	0	0%	0.00%	(
9	100%	2,158	3,112	2,516	2,516	17.9	141	0.10%	0%	0.00%	0	0%	0.00%	0	0%	0.00%	0	
10	100%	64,323	61,537	63,278	63,278	4.8	13,183	9.40%	0%	0.00%	0	0%	0.00%	0	100%	9.40%	13,183	
11	100%	33,210	40,174	35,822	35,822	2.2	16,283	11.61%	0%	0.00%	0	0%	0.00%	0	100%	11.61%	16,283	
12	100%	15,936	22,087	18,243	18,243	9.1	2,005	1.43%	0%	0.00%	0	0%	0.00%	0	0%	0.00%		
13	100%	9,888	12,530	10,879	10,879	9.8	1,110	0.79%	0%	0.00%	0	0%	0.00%	0	0%	0.00%	0	
14	100%	73,684	84,299	77,665	77,665	10.2	7,614	5.43%	0%	0.00%	0	0%	0.00%	0	0%	0.00%	0	
15	100%	24,829	33,670	28,144	28,144	5.4	5,212	3.72%	0%	0.00%	0	0%	0.00%	0	0%	0.00%		
16	100%	82,412	94,137	86,809	86,809	8.4	10,334	7.37%	0%	0.00%	0	0%	0.00%	0	0%	0.00%		
17	100%	22,270	37,540	27,996	27,996	3.2	8,749	6.24%	0%	0.00%	0	0%	0.00%	0	0%	0.00%	0	
18	100%	41,643	56,762	47,313	47,313	3.6	13,142	9.37%	0%	0.00%	0	0%	0.00%	0	0%	0.00%		
19	100%	65,540	81,066						0%		0	0%	0.00%	0	0%	0.00%		
20*	100%	9,636	10,794				10,070		0%			50%			0%	0.00%		
21	100%	559	17,783						0%		0	100%				0.00%		
22	100%	3,511	3,820	3,627	3,627	8.3	437	0.31%	100%	0.31%	437	0%	0.00%	. 0	0%	0.00%		
23	100%	19,163	27.184	22,171	22,171	15.3	1,449	1.03%	0%	0.00%	. 0	0%	0.00%	0	0%	0.00%		
24	100%	2,531	3,352			10.2			100%							0.00%		
25	100%	863	1,161	975		12.4			100%							0.00%		
26	100%	56,155	59,697	57.483	57,483	16.6		2.47%	100%	2.47%	3.463	0%	0.00%	0	0%	0.00%		
27	100%	19,926	24,499		21,641	25.9			0%							0.00%	Č	
28	100%	15,662	18,407	16,691	16,691	25.9		0.46%	100%					_		0.00%		
29	100%	10,397	11,564			27.5			0%									
20	10070	852,619					140,259		0,0	3.49%			4.63%	_		21.01%		
- Subarea	in which th	ne site it locate	ed.								Use 3%			4.63% Use 5%			Use 21%	

Page 30

Trip Assignments

Trip assignment is the process of determining the specific routes that trips will take through a transportation network. Assignment percentages are used to distribute the trips generated by the proposed development to individual traffic movements at each intersection within the study area. These percentages are derived from the trip distribution analysis and logical routing based on the existing roadway network and expected travel patterns. Trip assignment diagrams for each route are provided below..

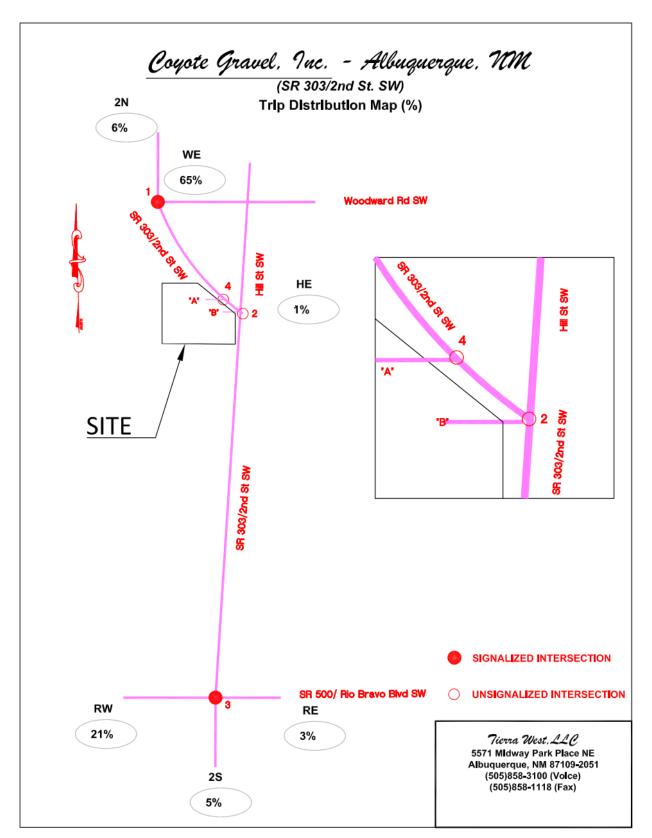


Figure 15: Trip Distribution Map (%)

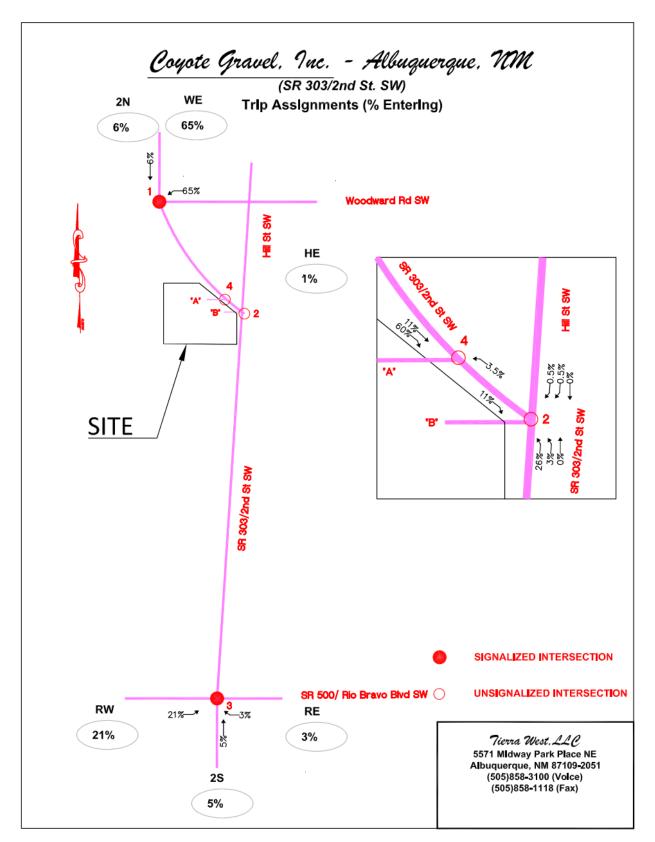


Figure 16: Trip Assignments - % Entering

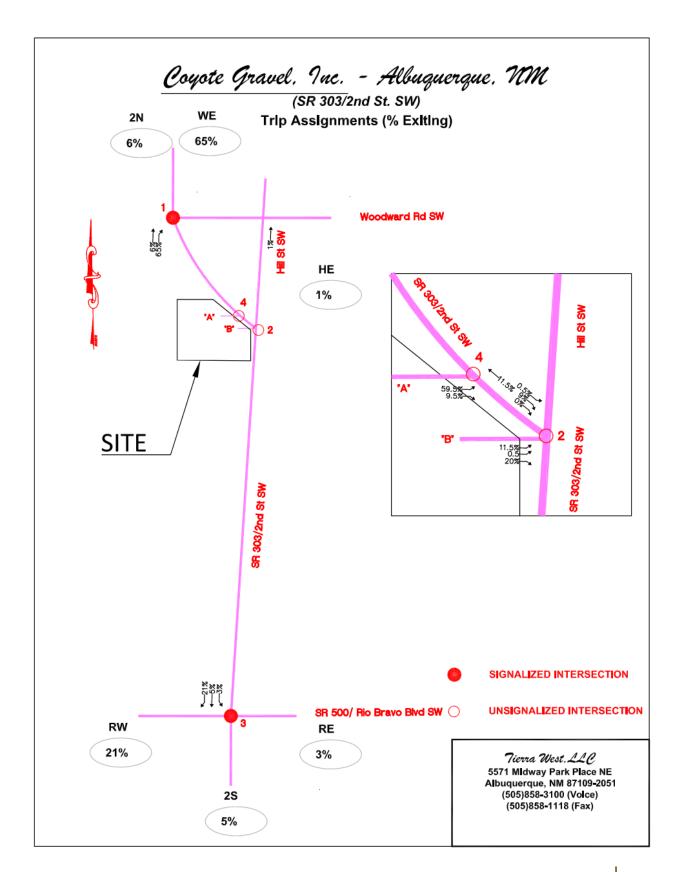


Figure 17: Trips Assignments - % Exiting

Intersection Capacity Analysis

The Highway Capacity Manual establishes a criterion for the determinations of signalized and unsignalized levels-of-service. These levels determine if an intersection will be proficient enough to accommodate the projected volumes from the new development. The average control delay is calculated for each intersection and for each lane group of each leg of the intersection. The analysis of the calculated control delay determines the level of service for each lane group. However, if the v/c ratio is 1.0 or greater, then the v/c ratio overrides the calculated delay and qualifies the lane group to be LOS "F". The control delay generally determines the level-of-service based on the following table:

LEVEL-OF-SERVICE CRITERIA FOR UNSIGNALIZED INTERSECTIONS

Average Delay (secs)	<u>Level-of-Service</u>
≤ 10	Α
> 10 and ≤ 15	В
> 15 and ≤ 25	С
> 25 and ≤ 35	D
> 35 and ≤ 50	E
> 50	F

For parameters of acceptance, generally a Level-of-Service D or better is an acceptable parameter for design purposes.

In summary, the proposed Coyote Gravel Inc. Secondary Site will have minimal adverse impact on the adjacent transportation system. Level of service (LOS) at the intersections in the study area meet the City of Albuquerque's/Bernalillo County's minimum acceptable Level of Service Standards for the 2025 implementation year and 2035 horizon year for all intersections in the study area with the exception noted in the executive summary.

Level of Service (LOS)

According to the City of Albuquerque Design Process Manual (DPM), LOS standards are defined by Access Category. Table 8: Design Process Manual LOS Criteria identifies the minimum acceptable LOS standards according to Functional Classification & Roadway Type and City of Albuquerque's ABC Comp Plan Type.

TABLE 7.5.88 Desired LOS by Location and Corridor Type ABC Comp Plan Center Type **Employment Center Jrban Center Functional** Station Area Downtown Classification & Outside Center Activity Center **Transit** Roadway Type E-F **Premium Transit** E-F E-F E-F E-F E-F E-F E-F Major Transit Ε Ε Ε D-E D-E D-E

Ε

Ε

D

D-E

D-E

Ε

D-E

D-E

D-E

D

D-E

D-E

D-E

D-E

C-D

D-E

D-E

D-E

C-D

D

D-E

D

D

D

C-D

E

Ε

Ε

Ε

Ε

Ε

Ε

Ε

D-E

Multi-modal

Other Arterial

Minor Arterial

Commuter

Collector

Table 8: Design Process Manual LOS Criteria

SR 303/2nd St. is classified as an "Other Arterial" within a Transit Station Area. Intersections and driveways along SR 303/2nd St. are required to operate at a LOS E or better. Under Build conditions, LOS should remain at E or better, or mitigation should be provided to ensure that LOS is maintained at levels equivalent to No Build conditions.

The following Lanes/Volumes Analysis (LVA) tables demonstrate the impacts of the proposed development on the surrounding roadway network. These tables quantify AM Peak Hour (APH) and PM Peak Hour (PPH) traffic volumes under No Build and Build conditions, along with corresponding volume-to-capacity (v/c) ratios, LOS, average delays, and 95th percentile queue lengths.

The analysis evaluates both proposed driveway access points and existing intersections within the study area.

#1 – Signalized Intersection of Woodward Rd. SW at SR 303/2nd St. SW

Figure 18: Signalized Intersection of Woodward Rd. SW at SE 303/2nd St. SW

The results of the 2025 Implementation Year for the APH and PPH analysis of the unsignalized intersection of Woodward Rd. at SR 303/2nd St. are summarized in Table 9: 2025 Implementation Year Woodward Rd. at SR 303/2nd St. AM Peak LVAM Summary, as well as attached on Appendix Pages A-43through A-46. The results of the 2035 Horizon Year for the APH and PPH analysis of the unsignalized intersection of Woodward Rd. at SR 303/2nd St. are summarized in Table 10: 2035 Horizon Year Woodward Rd. at SR 303/2nd St. LVAM Summary, as well as attached on Appendix Pages A-57 through A-60.

1: Woodward Rd. & SR 303/2nd St.

2025_Conditions

Woodward Rd.

SR 303/2nd St.

Signalized

Woodward Rd. / SR 303/2nd St.	WB (V	/oodwai	d Rd.)	NB (S	R 303/2	nd St.)	SB (S	R 303/2r	nd St.)
2025_Conditions	L	Т	R	L	Т	R	L	Т	R
Existing Lane Geometry	1		1		1>		1	1	
AM Peak Hour									
2025_NO BUILD Volumes	117		60		539	338	52	117	
V/C Ratio	0.15		0.09		0.00	0.91	0.14	0.09	
Level-of-Service	В		В			D	В	Α	
Control Delay (Seconds)	18.4		17.9		0.0	39.8	15.8	9.0	
Intersection LOS				(C - 32.7	7			
95th Percentile Queue (veh)									
2025_BUILD Volumes	185		60		541	362	52	123	
V/C Ratio	0.23		0.09		0.00	0.81	0.17	0.09	
Level-of-Service	В		В			С	В	Α	
Control Delay (Seconds)	19.4		17.9		0.0	26.6	14.7	9.0	
Intersection LOS			•		C - 23.1	1	•		•
95th Percentile Queue (veh)	1.7		0.5		0.0	9.8	0.3	0.6	

PM	Peal	kΗ	OUT

2025_NO BUILD Volumes	366	165		133	93	133	286	
V/C Ratio	0.39	0.21		0.00	0.20	0.14	0.18	
Level-of-Service	С	В			В	В	Α	
Control Delay (Seconds)	21.6	19.2		0.0	15.7	10.4	9.7	
Intersection LOS				B - 16.0)			
95th Percentile Queue (veh)	3.1	1.3		0.0	1.5	0.7	1.4	
2025_BUILD Volumes	400	165		140	166	133	289	
V/C Ratio	0.50	0.24		0.00	0.31	0.19	0.22	
Level-of-Service	С	В			В	В	В	
Control Delay (Seconds)	23.6	19.7		0.0	15.5	10.7	10.0	
Intersection LOS			ı	B - 16.8	3			
95th Percentile Queue (veh)	4.3	1.6		0.0	2.3	0.7	1.6	

1: Woodward Rd. & SR 303/2nd St.

2035 Conditions

Woodward Rd.

SR 303/2nd St.

Signalized

Woodward Rd. / SR 303/2nd St.	WB (V	Voodwar	d Rd.)	NB (S	R 303/2	nd St.)	SB (SR 303/2nd St.)			
2035_Conditions	L	T	R	L	T	R	L	Т	R	
Existing Lane Geometry	1		1		1>		1	1		
AM Peak Hour										
2025_NO BUILD Volumes	124		64		571	358	55	124		
V/C Ratio	0.16		0.09		0.00	0.96	0.16	0.09		
Level-of-Service	В		В			D	В	Α		
Control Delay (Seconds)	18.5		17.9		0.0	48.8	17.1	9.0		
Intersection LOS				ı	D - 39.2	2				
95th Percentile Queue (veh)	1.1		0.6		0.0	15.1	0.4	0.7		
2025_BUILD Volumes	192		64		573	382	55	130		
V/C Ratio	0.24		0.09		0.00	0.98	0.17	0.10		
Level-of-Service	В		В			D	В	Α		
Control Delay (Seconds)	19.5		17.9		0.0	52.9	15.7	9.1		
Intersection LOS		•	•		D - 42.	1		•	•	
95th Percentile Queue (veh)	1.8		0.6		0.0	15.8	0.4	0.7		

PM Peak Hour									
2025_NO BUILD Volumes	388		175		141	98	141	303	
V/C Ratio	0.49		0.26		0.00	0.25	0.18	0.23	
Level-of-Service	С		В			В	В	В	
Control Delay (Seconds)	23.3		19.9		0.0	16.2	10.9	10.1	
Intersection LOS	B - 16.8								
95th Percentile Queue (veh)	4.1		1.7		0.0	1.9	0.9	1.8	
2025_BUILD Volumes	422		175		148	171	141	306	
V/C Ratio	0.53		0.26		0.00	0.32	0.20	0.23	
Level-of-Service	С		В			В	В	В	
Control Delay (Seconds)	24.2		19.9		0.0	15.9	10.8	10.1	
Intersection LOS		•			B - 17.	1			
95th Percentile Queue (veh)	4.6		1.7		0.0	2.5	8.0	1.7	

Both the implementation year and the horizon year analysis in the above tables show the signalized intersection of Woodward Rd. at SR 303/2nd St. is operating at an acceptable level of service for all conditions evaluated in this study. The V/C ratio for the northbound right-turn movement is nearly at capacity, 0.91 and the 95th percentile queue length is 15 vehicles for the AM NO Build analysis. For all the other conditions analyzed and movements, the V/C ration and 95th percentile queue length are negligible. The delay experienced by the intersection is 32.7 seconds and 39.2 seconds for the APH No

Build Conditions during both the implementation year and horizon year, respectively. The new trips generated for Coyote Gravel, Inc. Secondary Site present no significant adverse impact to this signalized intersection.

#2 – Unsignalized Intersection of Hill St. SW/Driveway "B" at SR 303/2nd St. SW

Figure 19: Unsignalized Intersection Areial of Hill St. SW at SR 303/2nd St. SW

The results of the 2025 Implementation Year for the APH and PPH analysis of the signalized intersection of Hill St. at SR 303/2nd St. are summarized in Table 11: 2025 Implementation Year Hill St. at SR 303/2nd St. LVAM Summary, as well as attached on Appendix Pages A-47 through A-50. The results of the 2035 Horizon Year for the APH and PPH analysis of the signalized intersection of Hill St. at SR 303/2nd St. are summarized in Table 12: 2035 Horizon Year Hill St. at SR 303/2nd St. LVAM Summary, as well as attached on Appendix Pages A-61 through A-64.

2: Hill St./Driveway "B" & SR 303/2nd St.

2025_Conditions

Hill St/Driveway B

SR 303/2nd St.

Unsignalized

Hill St/Driveway B / SR 303/2nd St.	EB (Hil	I St/Drive	eway B)	WB (Hil	I St/Driv	eway B)	NB (S	R 303/2i	nd St.)	SB (SR 303/2nd St.)		
2025_Conditions	L	T	R	L	Т	R	L	Τ	R	L	T	R
Existing Lane Geometry					<1>			1>			<1	
AM Peak Hour												
2025_NO BUILD Volumes				0	0	0		857	0	0	229	
V/C Ratio												
Level-of-Service					Α					Α		
Control Delay (Seconds)					0.0					0.0		
Intersection LOS						A -	0.0					
95th Percentile Queue (veh)										0.0		
Build Lane Geometry		<1>			<1>			<1>			<1>	
2025_BUILD Volumes	4	0	7	0	1	1	27	860	0	0	232	11
V/C Ratio		0.02			0.01		0.02					
Level-of-Service		С			С		Α	Α		Α		
Control Delay (Seconds)		15.3			18.7	0.0		0.0				
Intersection LOS						A -	0.4					
95th Percentile Queue (veh)		0.1 0.0 0.1 0.0										

PM Peak Hour

I W I Cak Hour												
Existing Lane Geometry					<1>			1>			<1	
2025_NO BUILD Volumes				0	0	0	0	233	4	0	684	
V/C Ratio					0.00					0.00		
Level-of-Service					Α					Α		
Control Delay (Seconds)					9.0					0.0		
Intersection LOS						A -	0.0					
95th Percentile Queue (veh)					0.0					0.0		
Build Lane Geometry		<1>			<1>			<1>			<1>	
2025_BUILD Volumes	13	1	22	0	0	4	14	235	4	1	694	6
V/C Ratio		0.08			0.00		0.01			0.00		
Level-of-Service		С			В		В	Α		Α	Α	
Control Delay (Seconds)		16.6			10.4		10.2	0.0		7.5	0.0	
Intersection LOS		•				Α-	8.0			•	•	
95th Percentile Queue (veh)		0.2			0.0		0.0			0.0		

2: Hill St./Driveway "B" & SR 303/2nd St.

2035_Conditions

Hill St/Driveway B

SR 303/2nd St.

Unsignalized

Hill St/Driveway B / SR 303/2nd St.	EB (Hil	St/Drive	eway B)	WB (Hi	I St/Driv	eway B)	NB (S	R 303/2i	nd St.)	SB (S	R 303/2	nd St.)	
2035_Conditions	L	T	R	L	T	R	L	Т	R	L	T	R	
Existing Lane Geometry					<1>			1>			<1		
AM Peak Hour													
2025_NO BUILD Volumes				0	0	0		908	0	0	243		
V/C Ratio													
Level-of-Service									Α	Α			
Control Delay (Seconds)		0.0 0.0											
Intersection LOS		A - 0.0											
95th Percentile Queue (veh)										0.0			
Build Lane Geometry		<1>			<1>			1>			<1		
2025_BUILD Volumes	4	0	7	0	1	1	27	911	0	0	246	11	
V/C Ratio		0.02			0.01		0.02						
Level-of-Service	C C A A A												
Control Delay (Seconds)		15.9			19.6		8.8	0.0		0.0			
Intersection LOS		•	•	•	•	Α-	0.4		-	•	•		
95th Percentile Queue (veh)		0.1			0.0		0.1			0.0			

PM Peak Hour												
Existing Lane Geometry					<1>			1>			<1	
2025_NO BUILD Volumes				0	0	4	0	247	4	0	725	0
V/C Ratio										0.00		
Level-of-Service									Α	Α		
Control Delay (Seconds)									0.0	0.0		
Intersection LOS						Α-	0.0					
95th Percentile Queue (veh)										0.0		
Build Lane Geometry		<1>			<1>			1>			<1	
2025_BUILD Volumes	13	1	22	0	0	4	14	249	4	1	735	6
V/C Ratio		0.08			0.00		0.01			0.00		
Level-of-Service		С			В		В	Α		Α	Α	
Control Delay (Seconds)		17.3			10.4		10.3	0.0		7.6	0.0	
Intersection LOS						A -	8.0					
95th Percentile Queue (veh)		0.3			0.0		0.0			0.0		

Both the implementation year and the horizon year analysis in the above tables show the unsignalized intersection of Hill St./Driveway "B" at SR 303/2nd St. is operating at an acceptable level of service for all conditions evaluated in this study. The V/C and the 95th percentile queue length are negligible for each approached analyzed. The delay experienced by the intersection is 7.3 seconds for PPH during both the implementation year and horizon year. The new trips generated for Coyote Gravel, Inc. Secondary Site present no significant adverse impact to this unsignalized intersection.

Figure 20: Signalized Intersection of SR 500/Rio Bravo Blvd. SW at SR 303/2nd St. SW

The results of the 2025 Implementation Year for the APH and PPH analysis of the unsignalized intersection of SR 500/Rio Bravo Blvd. at SR 303/2nd St. are summarized in Table 13: 2025 Implementation Year SR 500/Rio Bravo Blvd. at SR 303/2nd St. LVAM Summary, as well as attached on Appendix Pages A-51 through A-54. The results of the 2035 Horizon Year for the APH and PPH analysis of the unsignalized intersection of Woodward Rd. at University Blvd are summarized in Table 14: 2035 Horizon Year SR 500/Rio Bravo Blvd. at SR 303/2nd St. LVAM Summary, as well as on Appendix Pages A-65 through A-68. The intersection configuration is shown in Figure 20: Signalized Intersection of SR 500/Rio Bravo Blvd. SW at SR 303/2nd St. SW.

3: . SR 500/ Rio Bravo Blvd. & SR 303/2nd St

2025_Conditions

Rio Bravo Blvd.

SR 303/2nd St.

Signalized

Rio Bravo Blvd. / SR 303/2nd St.	EB (R	io Bravo	Blvd.)	WB (R	io Bravo	Blvd.)	NB (S	R 303/2i	nd St.)	SB (S	R 303/2	nd St.)
2025_Conditions	L	T	R	L	Т	R	L	Т	R	L	T	R
Existing Lane Geometry	1	2	1	1	2	1	1	1>		1	1	1
AM Peak Hour												
2025_NO BUILD Volumes	413	1,468	262	40	702	76	226	130		61	79	133
V/C Ratio	0.76	0.93	0.38	0.19	0.65	0.17	0.41	0.00	0.40	0.15	0.21	
Level-of-Service	С	D	С	С	С	С	С		С	С	С	
Control Delay (Seconds)	20.1	38.1	20.2	24.4	29.3	25.2	25.2	0.0	29.6	26.7	31.3	0.0
Intersection LOS						C - :	30.9					
95th Percentile Queue (veh)	4.4	13.0	3.0	0.5	5.1	1.0	2.9	0.0	2.7	0.8	1.2	0.0
2025_BUILD Volumes	413	1,468	262	40	702	76	226	130	56	61	79	133
V/C Ratio	0.76	0.93	0.38	0.19	0.65	0.17	0.41	0.00	0.40	0.15	0.21	
Level-of-Service	С	D	С	С	С	С	С		С	С	С	
Control Delay (Seconds)	20.1	38.1	20.2	24.4	29.3	25.2	25.2	0.0	29.6	26.7	31.3	0.0
Intersection LOS						C - :	30.9					
95th Percentile Queue (veh)	4.4	13.0	3.0	0.5	5.1	1.0	2.9	0.0	2.7	0.8	1.2	0.0

eak Hour												
2025_NO BUILD Volumes	113	818	218	28	1,871	28	181	44	56	52	105	35′
V/C Ratio	0.47	0.40	0.24	0.06	0.98	0.04	0.39	0.00	0.26	0.13	0.31	
Level-of-Service	С	В	В	В	D	В	С		С	С	D	
Control Delay (Seconds)	23.1	17.6	16.2	14.9	47.0	16.3	31.8	0.0	34.8	32.8	38.3	0.0
Intersection LOS						D - 3	35.4					
95th Percentile Queue (veh)	1.0	4.5	2.2	0.3	19.8	0.3	2.8	0.0	1.6	0.8	1.8	0.0
2025_BUILD Volumes	124	818	218	28	1,871	30	181	47	56	55	111	375
V/C Ratio	0.54	0.42	0.25	0.07	1.03	0.04	0.41	0.00	0.28	0.14	0.34	
Level-of-Service	С	В	В	В	F	В	С		D	С	D	
Control Delay (Seconds)	23.6	18.0	16.5	15.2	59.6	16.6	31.9	0.0	35.2	32.9	38.9	0.0
Intersection LOS	D - 42.2											
95th Percentile Queue (veh)	12	4.8	24	0.3	22.8	0.3	29	0.0	1.8	0.9	2.0	0.0

3: . SR 500/ Rio Bravo Blvd. & SR 303/2nd St

2035_Conditions

Rio Bravo Blvd.

SR 303/2nd St.

Signalized

Rio Bravo Blvd. / SR 303/2nd St. EB (Rio Bravo Blvd.) WB (Rio Bravo Blvd.) NB (SR 303/2nd St.) SB (SR 303/2nd St.)												
Rio Bravo Blvd. / SR 303/2nd St.	EB (R	io Bravo	Blvd.)	WB (R	io Bravo	Blvd.)	NB (S	R 303/2i	nd St.)	SB (S	R 303/2	nd St.)
2035_Conditions	L	T	R	L	Т	R	L	Т	R	L	Т	R
Existing Lane Geometry	1	2	1	1	2	1	1	1>		1	1	1
AM Peak Hour												
2025_NO BUILD Volumes	422	1,584	283	44	757	78	244	135	61	65	83	135
V/C Ratio	0.79	1.01	0.41	0.23	0.70	0.18	0.44	0.00	0.42	0.16	0.22	
Level-of-Service	С	F	С	С	С	С	С		С	С	С	
Control Delay (Seconds)	21.1	54.8	21.0	25.5	30.5	25.8	25.3	0.0	30.2	27.5	32.2	0.0
Intersection LOS						D - 3	38.5					
95th Percentile Queue (veh)	4.6	17.3	3.4	0.5	5.7	1.0	3.2	0.0	2.9	0.9	1.2	0.0
2025_BUILD Volumes	444	1,584	283	44	757	81	244	140	61	66	85	143
V/C Ratio	0.82	1.01	0.41	0.23	0.72	0.19	0.44	0.00	0.43	0.16	0.23	
Level-of-Service	С	F	С	С	С	С	С		С	С	С	
Control Delay (Seconds)	22.2	54.9	21.0	25.9	31.4	26.5	25.3	0.0	30.4	27.5	32.3	0.0
Intersection LOS		•	-	•	-	D - 3	38.7				-	
95th Percentile Queue (veh)	5.0	17.3	3.4	0.6	5.8	1.1	3.2	0.0	3.0	0.9	1.3	0.0

PM Peak Hour												
2025_NO BUILD Volumes	122	883	235	30	2,019	30	196	48	61	57	113	379
V/C Ratio	0.54	0.46	0.28	0.08	1.12	0.04	0.44	0.00	0.29	0.14	0.35	
Level-of-Service	С	В	В	В	F	В	С		D	С	D	
Control Delay (Seconds)	23.8	18.9	17.1	15.5	91.5	16.8	31.7	0.0	35.2	33.2	39.3	0.0
Intersection LOS	E - 59.4											
95th Percentile Queue (veh)	1.2	5.4	2.6	0.3	29.4	0.3	3.2	0.0	1.9	0.9	2.1	0.0
2025_BUILD Volumes	133	883	235	30	2,019	32	196	51	61	60	119	403
V/C Ratio	0.58	0.46	0.28	0.08	1.12	0.05	0.44	0.00	0.29	0.15	0.36	
Level-of-Service	С	В	В	В	F	В	С		D	С	D	
Control Delay (Seconds)	24.0	18.8	17.1	15.6	92.0	16.9	31.8	0.0	35.4	33.2	39.5	0.0
Intersection LOS	E - 59.6											
95th Percentile Queue (veh)	1.3	5.4	2.6	0.3	29.5	0.3	3.2	0.0	1.9	1.0	2.2	0.0

Both the implementation year and the horizon year analysis in the above tables show the signalized intersection of SR 500/Rio Bravo Blvd. at SR 303/2nd St. is operating at an acceptable level of service for all conditions evaluated in this study. The V/C ratio exceeds 1.0 for the westbound through movement along SR 500/Rio Bravo Blvd. during the PPH No build condition. The 95th percentile queue length is 23 vehicles during the PPH for the westbound through movement. The delay for the westbound through movement is approximately 60 seconds. The delay experienced by the intersection is 7.1 seconds and 7.2 seconds for both the APH and PPH during both the implementation year and horizon year. The

new trips generated for Coyote Gravel, Inc. Secondary Site present no significant adverse impact to this signalized intersection.

#4 - Unsignalized Intersection of Driveway "A" at SR 303/2nd St. SW

The results of the 2025 Implementation Year for the APH and PPH analysis of the unsignalized intersection of Driveway "A" at SR 303/2nd St. are summarized in Table 15: 2025 Implementation Year Driveway "A" at SR 303/2nd St. LVAM Summary, as well as attached on Appendix Pages A-55 through A-56. The results of the 2035 Horizon Year for the APH and PPH analysis of the unsignalized intersection of Driveway "A" at SR 303/2nd St. are summarized in Table 15: 2025 Implementation Year Driveway "A" at SR 303/2nd St. LVAM Summary, as well as attached on Appendix Pages A-69 through A-70.

Table 15: 2025 Implementation Year Driveway "A" at SR 303/2nd St. LVAM Summary

Synchro Results Summary Sheet

4: Driveway A & SR 303/2nd St.

2025_Conditions

Driveway A

SR 303/2nd St.

Unsignalized

Driveway A / SR 303/2nd St.	EB	(Drivewa	ıy A)	NB (S	R 303/2	nd St.)	SB (S	R 303/2r	nd St.)
2025_Conditions	L	T	R	L	Т	R	L	T	R
Existing Lane Geometry		<1>			<1>			<1>	
AM Peak Hour									
2025_BUILD Volumes	22		4	4	861			240	62
V/C Ratio	0.06			0.00					
Level-of-Service	С			Α	Α				
Control Delay (Seconds)	17.7			8.8	0.0				
Intersection LOS	A - 0.4								
95th Percentile Queue (veh)	0.2			0.0					

PM Peak Hour							
2025_BUILD Volumes	67	11	2	246		690	31
V/C Ratio	0.15		0.00				
Level-of-Service	С		Α	Α			
Control Delay (Seconds)	17.4		9.9	0.0			
Intersection LOS				A - 1.3	}		
95th Percentile Queue (veh)	0.5		0.0				

4: Driveway A & SR 303/2nd St.

2035 Conditions

Driveway A

SR 303/2nd St.

Unsignalized

Driveway A / SR 303/2nd St.	EB	(Drivewa	ıy A)	NB (S	R 303/2i	nd St.)	SB (S	R 303/2r	nd St.)
2035_Conditions	L	T	R	L	Т	R	L	Т	R
Existing Lane Geometry		<1>			<1>			<1>	
AM Peak Hour									
2025_BUILD Volumes	22	0	4	4	912	0	0	254	62
V/C Ratio		0.06		0.00					
Level-of-Service		С		Α	Α				
Control Delay (Seconds)		18.6		8.8	0.0				
Intersection LOS	A - 0.4								
95th Percentile Queue (veh)		0.2		0.0					

PM Peak Hour									
2025_BUILD Volumes	67	0	11	2	260	0	0	731	31
V/C Ratio		0.15		0.00					
Level-of-Service		С		В	Α				
Control Delay (Seconds)		18.2		10.1	0.0				
Intersection LOS					A - 1.3	,			
95th Percentile Queue (veh)		0.5		0.0					

Both the implementation year and the horizon year analysis in the above tables show the unsignalized intersection of Driveway "A" at SR 303/2nd St. is operating at an acceptable level of service for all conditions evaluated in this study. The V/C and the 95th percentile queue length are negligible for each approached analyzed. The delay experienced by the intersection is 1.3 seconds for PPH during both the implementation year and horizon year. The new trips generated for Coyote Gravel, Inc. Secondary Site present no significant adverse impact to this unsignalized intersection.

Intersection Capacity Analysis Summary

The analysis was performed to comply with the requirements set forth by the City of Albuquerque and Bernalillo County. The results of the Implementation Year (2025) and Horizon Year (2035) AM Peak Hour (APH) and PM Peak Hour (PPH) NO BUILD and BUILD conditions are summarized in below. All intersections within the study area are performing at a level of service (LOS) E or above, although some intersection turning movements are performing at a LOS F.

Intersction LOS Analysis Summary Table

Coyote Gravel Inc. Secondary Site (Albuquerque, NM)

	Intersection	Intersection	Case Evaluation		on Year (2025) litions		ear (2035) litions
	Description	Operation	Case Evaluation	AM Peak LOS Delays (s)	PM Peak LOS Delays (s)	AM Peak LOS Delays (s)	PM Peak LOS Delays (s)
1	Woodward Rd. / SR 303-	Signalized	No Build	C (32.7)	B (16.0)	D (39.2)	B (16.8)
1	2nd St.	Signatized	Build	C (23.1)	B (16.8)	D (41.2)	B (17.1)
2	Hill St-Driveway "B" / SR	Unsignalized	No Build	A (0.0)	A (0.0)	A (0.0)	A (0.0)
2	303-2nd St.	Ulisigilalizeu	Build	A (0.4)	A (0.8)	A (0.4)	A (0.8)
3	SR 500-Rio Bravo Blvd. /	Circuliand	No Build	C (30.9)	D (35.4)	D (38.5)	E (59.6)
3	SR 303-2nd St.	Signalized	Build	C (30.9)	D (42.2)	D (38.7)	E (59.4)
	Driveway "A" / SR 303-	l la sign alian d	No Build	-	-	-	-
4	2nd St.	Unsignalized	Build	A (0.4)	A (1.3)	A (0.4)	A (1.3)

Deceleration Lane Warrant Analysis

A deceleration lane warrant analysis was conducted for both proposed driveways along SR 303/2nd St. SW. See Table 18: Turn Lane Warrant Summary below:

Table 18: Turn Lane Warrant Summary

City of Albuquerque Turn Lane Warrants for								
Driveway "A" & Driveway "B"								
Design Process Manual Table 7.4.67								
(2nd St. Speed Limit ia 35 MPH north of Hill St. SW and 45 mph south of Hill St. SW)								
Left Turn			Right Turn					
Design Speed (MPH)	Volume per Hour		Design Speed (MPH)	Required Turning Volume per Hour for Decel Lane	Projected Right Turn			
Driveway "A" & 2nd St 35 MPH								
30-40	40 4		30-40	50	62			
Not Warranted Warranted								
Driveway "B" & 2nd St 45 MPH								
45	30 27		30-40	45	11			
	Not Warranted Not Warranted							

Based on the results above, Driveway "A" warranted a southbound right deceleration lane with a minimum storage length of 240 ft with a 150 ft $\,$ – 150 ft reverse curve transition length.

Mitigation Analysis

This mitigation analysis builds upon the findings of the Traffic Impact Study to evaluate potential impacts on adjacent roadways. The proposed secondary site is not expected to generate additional strain on traffic flow, density, or delays. The site is anticipated to have minimal impact on surrounding facilities and does not present any safety concerns related to SSD or ESD.

However, a northbound right-turn deceleration lane is warranted at Driveway "A" along SR 303/2nd St. See the figure below for reference.

Figure 21: Driveway "A" at SR 303/2nd St Mitigation Exhibit

Supplemental information regarding the intersection of Hill St./Driveway "B" at SSR 303/2nd St. is included in the Appendix. This information includes a deceleration lane analysis.

Recommendations

Based on the analysis provided in this analysis, the following are the recommendations for improvements to the adjacent transportation system in the study area:

- Construct a new southbound right turn deceleration lane for Driveway "A" at SR 303/2nd St (240 ft of storage with 300/150 transition)
- Add "Trucks Entering Highway" signage located northbound and southbound SSR 303/2nd
 St.
- All construction on this project shall maintain adequate sight distances at the proposed driveways and existing intersections.

Bibliography

- DEVELOPMENT PROCESS MANUAL DEVELOPMENT PROCESS MANUAL. (2020, June 08). Albuquerque, New Mexico, USA. Retrieved 2024
- Institute of Traffic Engineer's. (n.d.). *Trip Generation Rates* (11th ed.). USA. Retrieved November 27, 2024, from https://www.itetripgen.org/
- MRMPO Long Range Roadway System (LRRS). (2024, 10 31). Retrieved from Mid-Region Council og Governments:
 - https://mrmpo.maps.arcgis.com/apps/webappviewer/index.html?id=9d3876c8b09f4e22aacd3e 900892c381

Appendices

Report and Site Information				
Traffic Impact Study Scoping Letter	A-1 through A-3			
Vicinity Map - Google Earth	A-4			
Site Plan	A-5			
APO Zone Map	A-6			
City of Albuquerque Bus Route Map	A-7			
Traffic Data				
Count Data Sheets	A-8 & A-16			
2025 Turning Movement Counts				
Turning Movement Volumes Summary Sheet	A-17			
Intersection 1 - Woodward Rd. SW at SR 303/2nd St.	A-18 & A-19			
Intersection 2 - Hill St. SW/Driveway "B" at SR 303/2nd St.	A-20 & A-21			
Intersection 3 - SR 500/Rio Bravo Blvd. SW at SR 303/2nd St.	A-22 & A-23			
Intersection 4 - Driveway "A" at SR 303/2nd St.	A-24 & A-25			
2035 Turning Movement Counts				
Turning Movement Volumes Summary Sheet	A-26			
Intersection 1 - Woodward Rd. SW at SR 303/2nd St.	A-27 & A-28			
Intersection 2 - Hill St. SW/Driveway "B" at SR 303/2nd St.	A-29 & A-30			
Intersection 3 - SR 500/Rio Bravo Blvd. SW at SR 303/2nd St.	A-31 & A-32			
Intersection 4 - Driveway "A" at SR 303/2nd St.	A-33 & A-34			
<u>Signal Data</u>				
SR 500/Rio Bravo Blvd. at SR 303/2nd St	A-35 & A-36			
Woodward Rd. at SR 303/2nd St	A-37			
Background Growth				
Background Growth Worksheet	A-38			
Historic Background Growth Graph	A-39 & A-40			
<u>Trip Generation</u>				
Trip Generation Summary & Worksheets	A-41 & A-42			
2025 Intersection Analysis				
Intersection 1 - Woodward Rd. SW at SR 303/2nd St.	A-43 through A-46			
Intersection 2 - Hill St. SW/Driveway "B" at SR 303/2nd St.	A-47 through A-50			
Intersection 3 - SR 500/Rio Bravo Blvd. SW at SR 303/2nd St.	A-51 through A-54			
Intersection 4 - Driveway "A" at SR 303/2nd St.	A-55 & A-56			
2035 Intersection Analysis				
Intersection 1 - Woodward Rd. SW at SR 303/2nd St.	A-57 through A-60			
Intersection 2 - Hill St. SW/Driveway "B" at SR 303/2nd St.	A-61 through A-64			
Intersection 3 - SR 500/Rio Bravo Blvd. SW at SR 303/2nd St.	A-65 through A-68			
Intersection 4 - Driveway "A" at SR 303/2nd St.	A-69 & A-70			

SCOPE OF TRAFFIC IMPACT STUDY (TIS)

TO: Ronald R. Bohannan, P.E. Tierra West, LLC 5571 Midway Park Pl. NE Albuquerque, NM 87108 **MEETING DATE:** Monday March 18, 2024 at 3:30 pm. ATTENDEES: Matthew Grush, P.E. and Curtis Cherne, P.E. (City of Albuquerque), Julie Luna (Bernalillo County), Ronald R. Bohannan, P.E., Jimeia Roberts, and Terry Brown (Tierra West, LLC) PROJECT: Coyote Gravel, Inc. Secondary Site (2nd St. South of Woodward Rd.) **REQUESTED CITY ACTION:** Zone Change X Site Development Plan Subdivision Building Permit Sector Plan Sector Plan Amendment Curb Cut Permit Conditional Use Annexation Site Plan Amendment **ASSOCIATED APPLICATION:** Gravel Contractor Yard and Warehousing SCOPE OF REPORT: The Traffic Impact Study should follow the standard report format, which is outlined in the DPM. The following supplemental information is provided for the preparation of this specific studv. 1. Trip Generation - Use Trip Generation Manual, 11th Edition. Local data may be used for certain land use types as determined by staff. Consultant to provide. 2. Appropriate study area: Signalized Intersections; a. Woodward Rd. / 2nd St. b. Rio Bravo Blvd. / 2nd St. Unsignalized Intersections; a. Hill St. / 2nd St.

3. Intersection turning movement counts

Driveway Intersections: Driveway(s) on 2nd St.

- Study Time 7-9 a.m. peak hour, 4-6 p.m. peak hour Consultant to provide for all intersections listed above.
- 4. Type of intersection progression and factors to be used. Type III arrival type (see "Highway Capacity Manual, current edition" or equivalent as

approved by staff). Unless otherwise justified, peak hour factors and % heavy commercial should be taken directly from the MRCOG turning movement data provided or as calculated from current count data by consultant.

5. Boundaries of area to be used for trip distribution.

City Wide - residential, office or industrial; x mile radius – commercial; Interstate or to be determined by consultant - motel/hotel APS district boundary mapping for each school and bus routes

6. Basis for trip distribution.

Residential – Use inverse relationship based upon distance and employment. Use employment data from 2040 Socioeconomic Forecasts, MRCOG – See MRCOG website for most current data.

Office/Industrial - Use inverse relationship based upon distance and population. Use population data from 2040 Socioeconomic Forecasts, MRCOG – See MRCOG website for most current data.

Commercial - Use relationship based upon population. Use population data from 2040 Socioeconomic Forecasts, MRCOG — See MRCOG website for most current data.

Residential - Ts = (Tt) (Se/D) / (Se/D)

Ts = Development to Individual Subarea Trips

Tt = Total Trips

Se = Subarea Employment

D = Distance from Development to Subarea

Office/Industrial - Ts = (Tt)(Sp/D)/(Sp/D)

Ts = Development to Individual Subarea Trips

Tt = Total Trips

Sp = Subarea Population

D = Distance from Development to Subarea

Commercial -

Ts = (Tt)(Sp)/(Sp)

Ts = Development to Individual Subarea Trips

Tt = Total Trips

Sp = Subarea Population

- 7. Traffic Assignment. Logical routing on the major street system.
- 8. Proposed developments which have been approved but not constructed that are to be Included in the analyses. Projects in the area include:
 - a. N/A
- 9. Method of intersection capacity analysis planning or operational (see "2016 Highway Capacity Manual" or equivalent [i.e. HCS, Synchro, etc.] as approved by staff). Must use latest version of design software and/or current edition of design manual.

Implementation Year: 2026

Horizon Year: 2036

- 10. Traffic conditions for analysis:
 - a. Existing analysis ___ yes _X_ no year (N/A);

- b. Phase implementation year(s) without proposed development 2026
- c. Phase implementation year(s) with proposed development 2026
- d. Project completion year without proposed development 2036
- e. Project completion year with proposed development 2036
- f. Other -
- 11. Background traffic growth.

Method: use 10-year historical growth based on standard data from the MRCOG Traffic Flow Maps. Minimum growth rate to be used is 1/2%.

12. Planned (programmed) traffic improvements.

List planned CIP improvements in study area and projected project implementation year:

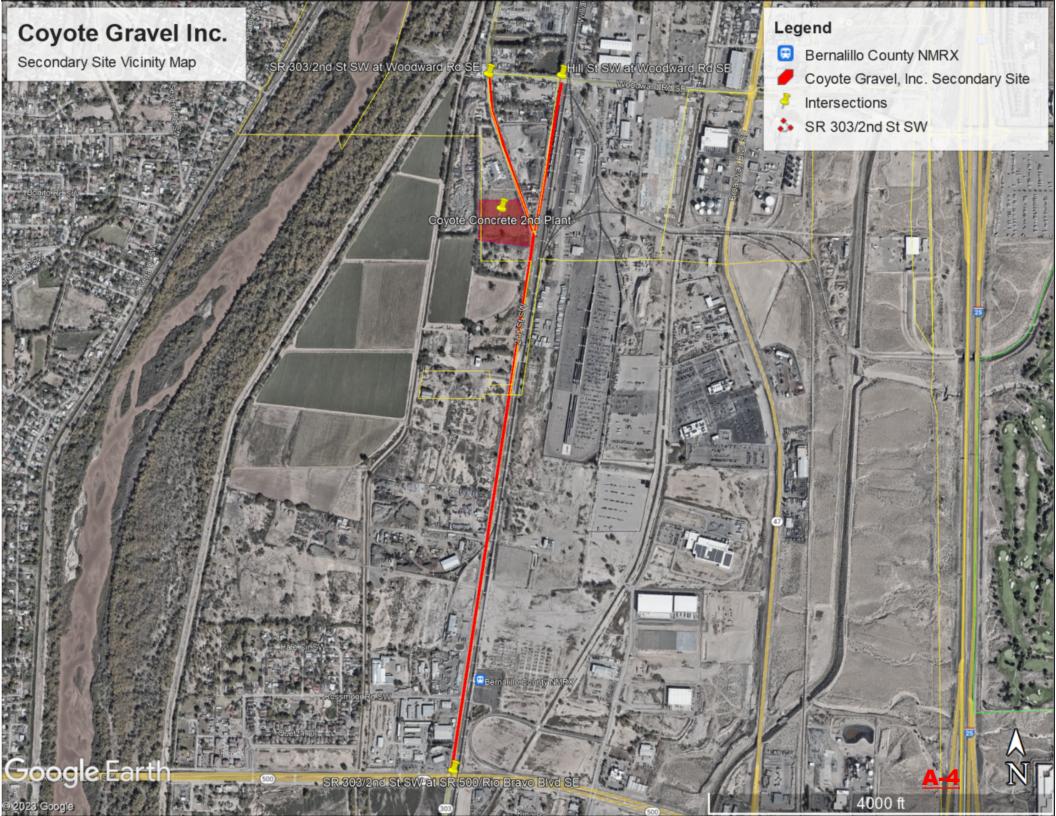
- a. Project Location (Implementation Year) N/A
- 13. Items to be included in the study:
 - a. Intersection analysis. Yes
 - b. Signal progression An analysis is required if the driveway analysis indicates a traffic signal is possibly warranted. Analysis Method: N/A
 - c. Arterial LOS analysis; No
 - d. Recommended street, intersection and signal improvements. Yes
 - e. Site design features such as turning lanes, median cuts, queuing requirements and site circulation, including driveway signalization and visibility. Yes
 - f. Transportation system impacts. Yes
 - g. Other mitigating measures.
 - h. Accident analyses X yes no; Location(s): Hill St. / 2nd St. (Julie Luna to provide crash data)
 - i. Weaving analyses yes X no; Location(s):
- 14. Other: Consultant to collect local trip generation data from similar site.

SUBMITTAL REQUIREMENTS:

- 1. Number of copies of report required
 - a. No paper copies
 - b. 1 digital copy
- 2. Submittal Fee \$1300 for up to 3 reviews (plus technology fee)

The Traffic Impact Study for this development proposal, project name, shall be performed in accordance with the above criteria. If there are any questions regarding the above items, please contact me at 924-3362.

Matt Grush, P.E. Date
Senior Engineer

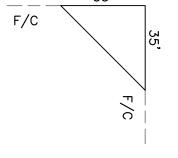

via: email

City of Albuquerque, Planning

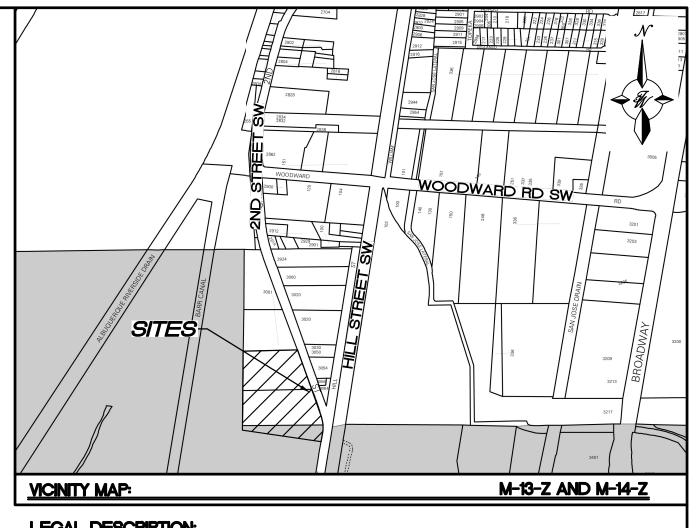
C: TIS Task Force Attendees, file

Transportation Development Section

Page 3 of 3



SETBACKS:


FRONT 20' MINIMUM SIDE 10' MINIMUM BACK 10' MINIMUM

KEYED NOTES

- 1 ACCESSIBLE PARKING PER ADA STANDARDS WITH SIGN (SEE DETAIL SHT. DET-1
- (2) CONCRETE SIDEWALK AT BUILDING (SEE DETAIL SHT. DET-1)
- 3 MONUMENT SIGN
- 4 DUMPSTER
- (5) RELOCATED SITE LIGHT
- 6 RELOCATED GAS METER
- (7) RELOCATED ELECTRICAL TRANSFORMER

LANDSCAPING AND SIGNAGE WILL NOT INTERFERE WITH CLEAR SIGHT REQUIREMENTS. THEREFORE, SIGNS, WALLS, TREES AND SHRUBBERY BETWEEN 3' AND 8' TALL(AS MEASURED FROM GUTTER PAN) WILL NOT BE ACCEPTABLE IN THE CLEAR SIGHT TRIANGLE

LEGAL DESCRIPTION:

TRACT MRGCD MAP #44 TR 100-C AND 100-D TR 2 PLAT OF TRACT LANDS OF GOOD CENTS INC

LEGEND BOUNDARY LINE ---- EXISTING CURB & GUTTER --- EXISTING BOUNDARY LINE EXISTING HYDRANT

PROPOSED HYDRANT ---- EXISTING FENCE

---- EASEMENT

SITE LIGHTS EXISTING SIDEWALK

NORTH SITE DATA

PROPOSED USAGE: WAREHOUSING 180,326 SF (4.14 ACRES) LOT AREA: LOT AREA: NR-GM **ZONING:** BUILDING AREA: 74,415 SF

PARKING REQUIRED: NO REQUIREMENT: PARKING PROVIDED: 48 SPACES

HC PARKING REQUIRED: 2 SPACES HC PARKING PROVIDED: 2 SPACES MOTORCYCLE PARKING REQUIRED: NO REQUIREMENT

MOTORCYCLE PARKING PROVIDED: 2 SPACES BICYCLE PARKING REQUIRED: NO REQUIREMENT

BICYCLE PARKING PROVIDED: 10 SPACES LANDSCAPE AREA REQUIRED: 27,049 SF

LANDSCAPE AREA PROVIDED: XX,XXX SF

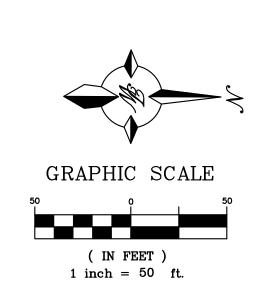
SOUTH SITE DATA

OFFICE, SHOP, & STORAGE PROPOSED USAGE: 140,255 SF (3.22 ACRES) **ZONING:** NR-GM

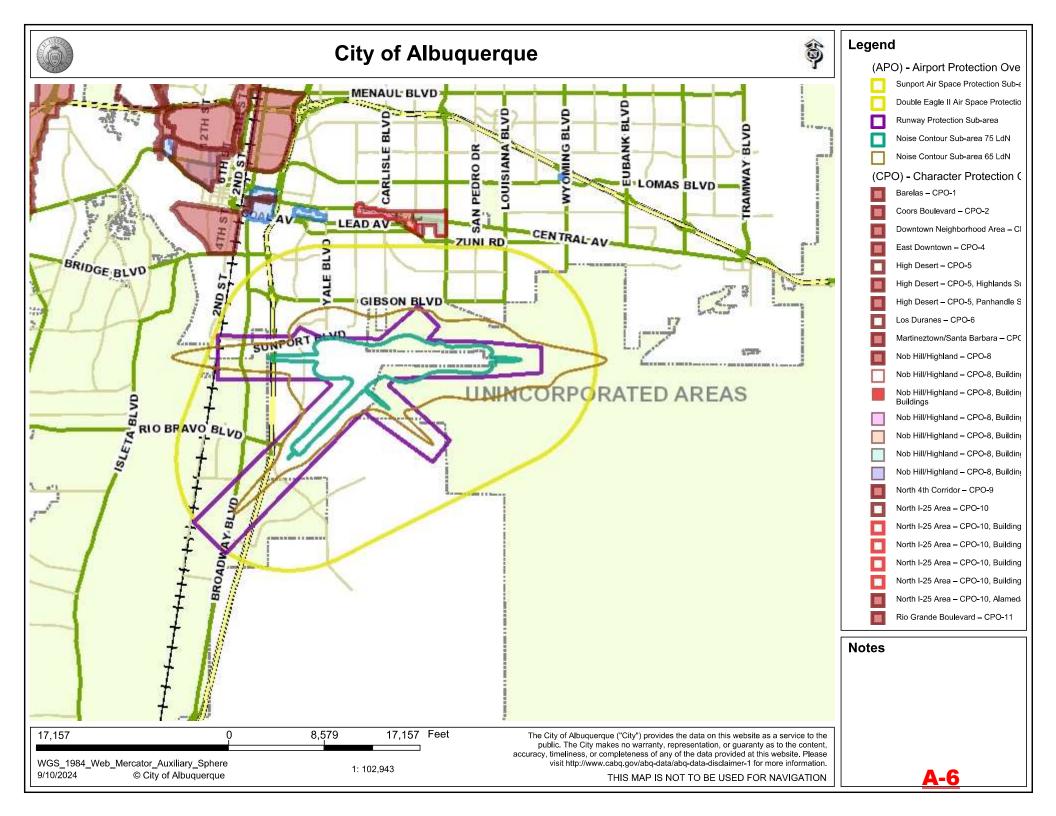
> BUILDING AREA: 74,415 SF 3,000 SF STORAGE 4,000 SF OFFICE 3,000 SF SHOP

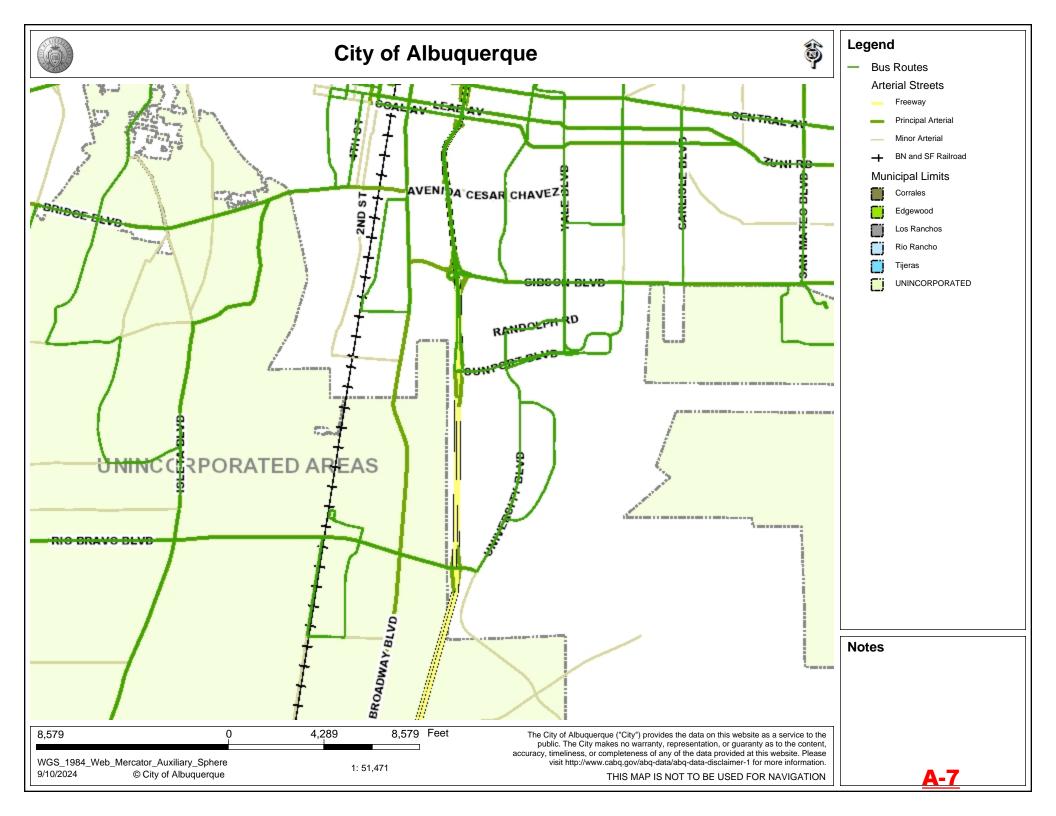
PARKING REQUIRED:

NO REQUIREMENT STORAGE 14 SPACES OFFICE 6 SPACES


PARKING PROVIDED: 25 SPACES HC PARKING REQUIRED: 2 SPACES

HC PARKING PROVIDED: 2 SPACES MOTORCYCLE PARKING REQUIRED: 1 SPACE


MOTORCYCLE PARKING PROVIDED: 2 SPACES BICYCLE PARKING REQUIRED: 2 SPACES


BICYCLE PARKING PROVIDED: 6 SPACES

LANDSCAPE AREA REQUIRED: 21,038 SF LANDSCAPE AREA PROVIDED: XX,XXX SF

SEAL	COYOTE CONCRETE ALBUQUERQUE	DRAWN BY RMG DATE		
	CONCEPTUAL SITE PLAN	08/22/2024		
	TIERRA WEST, LLC 5571 MIDWAY PARK PLACE NE ALBUQUERQUE, NM 87109	SHEET #		
RONALD R. BOHANNAN P.E. #7868	(505) 858-3100 www.tierrawestllc.com	JOB # 2024017		

Traffic Count Data Sheet

Year Counts Taker	n:	2024 E-W Street Woodward Rd. Speed Limit (Woodward Rd.)= N-S Street: SR 303/2nd St Speed Limit (SR 303/2nd St)= Signalized 4								30 35 4/14/24			
D	F. 1	F (b											0/0 - 1 0()
Begin	End	Eastbound (Woodward Rd.)		Westbound (Woodward Rd.)		Northbound (SR 303/2nd St)				und (SR 30	, ,		
Time 6:00 AM	Time 6:15 AM	L 0	0	R 0	0	0 0	R 0	L 	0	R 0	0 L	0	R 0
6:15 AM	6:30 AM	0	0	0	0	0	0	0	0	0	0	0	0
6:30 AM	6:45 AM	0	0	0	0	0	0	0	0	0	0	0	0
6:45 AM	7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
7:00 AM	7:00 AW	0	0	0	22	0	13	0	71	28	4	19	0
7:15 AM	7:13 AW	0	0	0	21	0	9	0	72	48	9	19	0
7:30 AM	7:45 AM	0	0	0	34	0	18	0	92	80	10	25	0
7:45 AM	8:00 AM	0	0	0	29	0	15	0	134	84	13	29	0
8:00 AM	8:15 AM	0	0	0	29	0	19	0	100	68	7	25	0
8:15 AM	8:30 AM	0	0	0	30	0	8	0	96	43	13	30	0
8:30 AM	8:45 AM	0	0	0	29	0	20	0	58	28	9	35	0
8:45 AM	9:00 AM	0	0	0	24	0	13	0	40	24	4	23	0
0.43 AW	3.00 AW	- 0	0		24		13	U	40	24	4		
Peak Hour Vol. (A	.M)	0	0	0	122	0	60	0	422	275	43	109	0
% of Total Traffic		0.0%	0.0%	0.0%	11.8%	0.0%	5.8%	0.0%	40.9%	26.7%	4.2%	10.6%	0.0%
% Directional		0.070	0.0%	0.070	11.070	17.7%	PHF =	0.85	67.6%	20.770	4.2 /0	14.7%	0.070
70 Directional													
Begin	End	Eastbour	nd (Woodw		Westbou	ind (Wood)		Northbo	ound (SR 303		Southbo	und (SR 30	
Time	Time	L	T	R	L	T	R	L	T	R	L	T	R
11:00 AM	11:15 AM	0	0	0	0	0	0	0	0	0	0	0	0
11:15 AM	11:30 AM	0	0	0	0	0	0	0	0	0	0	0	0
11:30 AM	11:45 AM	0	0	0	0	0	0	0	0	0	0	0	0
11:45 AM	12:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
12:00 PM	12:15 PM	0	0	0	0	0	0	0	0	0	0	0	0
12:15 PM	12:30 PM	0	0	0	0	0	0	0	0	0	0	0	0
12:30 PM	12:45 PM	0	0	0	0	0	0	0	0	0	0	0	0
12:45 PM	1:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
Peak Hour Vol. (M	lidday)	0	0	0	0	0	0	0	0	0	0	0	0
% of Total Traffic	iluuuy,	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
% Directional		0.070	0.0%	0.070	0.070	0.0%	PHF =	#DIV/0!	0.0%	0.070	0.070	0.0%	0.070
Begin	End	Eastbour	nd (Woodw		Westbou	ind (Wood)	· ·	Northbo	ound (SR 303		Southbo	und (SR 30	
Time	Time	L	T	R	L	T	R	L	T	R	L	T	R
2:00 PM	2:15 PM	0	0	0	0	0	0	0	0	0	0	0	0
2:15 PM	2:30 PM	0	0	0	0	0	0	0	0	0	0	0	0
2:30 PM	2:45 PM	0	0	0	0	0	0	0	0	0	0	0	0
2:45 PM	3:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
3:00 PM	3:15 PM	0	0	0	0	0	0	0	0	0	0	0	0
3:15 PM	3:30 PM 3:45 PM	0	0	0	0	0	0	0	0	0	0	0	0
3:30 PM		0	0	0	0	0	0	0	0	0	0	0	0
3:45 PM 4:00 PM	4:00 PM 4:15 PM	0	0	0	0 80	0	0 43	0	0 47	0 20	9	73	0
4:00 PM 4:15 PM	4:15 PM 4:30 PM	0	0	0	78	0	32	0	38	20 22	17	73	0
4:15 PM 4:30 PM	4:30 PM 4:45 PM	0	0	0	82	0	30	0	38	16	31	70	0
4:45 PM	5:00 PM	0	0	0	101	0	29	0	40	23	12	74	0
5:00 PM	5:15 PM	0	0	0	91	0	41	0	33	23	33	71	0
5:15 PM	5:30 PM	0	0	0	60	0	27	0	40	26	12	56	0
5:30 PM	5:45 PM	0	0	0	62	0	36	0	28	17	6	51	0
5:45 PM	6:00 PM	0	0	0	68	0	16	0	27	18	7	49	0
U.TU I IVI	J.00 I WI	<u> </u>			1 00					. ,,		1 73	
Peak Hour Vol. (P	M)	0	0	0	352	0	132	0	143	84	93	289	0
% of Total Traffic		0.0%	0.0%	0.0%	34.1%	0.0%	12.8%	0.0%	13.9%	8.1%	9.0%	28.0%	0.0%
% Directional			0.0%			46.9%	PHF =	0.94	22.0%			37.1%	

Year Counts Taken: 2024 E-W Street Woodward Rd. Speed Limit (Woodward Rd.)= 30
N-S Street: SR 303/2nd St Speed Limit (SR 303/2nd St)= 35

Signalized 4/14/24

Begin	End	Eastbour	nd (Woodwa	ard Rd.)	Westbou	ınd (Wood	ward Rd.)	Northbo	ound (SR 303	3/2nd St)	Southbo	und (SR 30	3/2nd St)
Time	Time	L	Т	R	L	Т	R	L	T	R	L	T	R
7:00 AM	7:15 AM	0	0	0	22	0	13	0	71	28	4	19	0
7:15 AM	7:30 AM	0	0	0	21	0	9	0	72	48	9	19	0
7:30 AM	7:45 AM	0	0	0	34	0	18	0	92	80	10	25	0
7:45 AM	8:00 AM	0	0	0	29	0	15	0	134	84	13	29	0
8:00 AM	8:15 AM	0	0	0	29	0	19	0	100	68	7	25	0
8:15 AM	8:30 AM	0	0	0	30	0	8	0	96	43	13	30	0
8:30 AM	8:45 AM	0	0	0	29	0	20	0	58	28	9	35	0
8:45 AM	9:00 AM	0	0	0	24	0	13	0	40	24	4	23	0
4X Peak 15-Min. V	ol. (AM)	0	0	0	116	0	60	0	536	336	52	116	0
% of Total Traffic		0.0%	0.0%	0.0%	9.5%	0.0%	4.9%	0.0%	44.1%	27.6%	4.3%	9.5%	0.0%
% Directional			0.0%			14.5%	Inters	ection	71.7%			13.8%	

Begin	End	Eastbour	nd (Woodwa	ard Rd.)	Westbou	ınd (Wood	ward Rd.)	Northbo	ound (SR 303	3/2nd St)	Southbo	und (SR 30	3/2nd St)
Time	Time	L	Т	R	L	Т	R	L	T	R	L	T	R
4:00 PM	4:15 PM	0	0	0	80	0	43	0	47	20	9	73	0
4:15 PM	4:30 PM	0	0	0	78	0	32	0	38	22	17	74	0
4:30 PM	4:45 PM	0	0	0	82	0	30	0	32	16	31	70	0
4:45 PM	5:00 PM	0	0	0	101	0	29	0	40	23	12	74	0
5:00 PM	5:15 PM	0	0	0	91	0	41	0	33	23	33	71	0
5:15 PM	5:30 PM	0	0	0	60	0	27	0	40	26	12	56	0
5:30 PM	5:45 PM	0	0	0	62	0	36	0	28	17	6	51	0
5:45 PM	6:00 PM	0	0	0	68	0	16	0	27	18	7	49	0
4X Peak 15-Min. \	Vol. (PM)	0	0	0	364	0	164	0	132	92	132	284	0
% of Total Traffic		0.0%	0.0%	0.0%	31.2%	0.0%	14.0%	0.0%	11.3%	7.9%	11.3%	24.3%	0.0%
% Directional			0.0%			45.2%	Inters	ection	19.2%			35.6%	

Traffic Count Data Sheet (Bicyles / Pedestrians)

Year Counts Taken:	2024	E-W Street: N-S Street:	Woodward Rd. SR 303/2nd St		Speed Limit (Woodward Rd.)= Speed Limit (SR 303/2nd St)=	30 35	MPH MPH
				Signalized	, , ,	A/1A/2A	

Begin	End	Ea	stbound (V	Voodward	Rd.)	We	stbound (V	Voodward	Rd.)	No	orthbound (S	R 303/2nd	St)	So	uthbound (SR 303/2n	rd St)
Time	Time	L	T	R	Pedestrians	L	T	R	Pedestrians	L	T	R	Pedestrians	L	T	R	Pedestrians
6:00 AM	6:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6:15 AM	6:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6:30 AM	6:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6:45 AM	7:00 AM	0	s	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:00 AM	7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	8:00 AM	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
8:00 AM	8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
8:45 AM	9:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM Peak Hour	r Volumes	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0

Begin	End	Eas	stbound (V	Voodward	Rd.)	We	estbound (V	Voodward	Rd.)	N	orthbound (S	R 303/2nd	St)	Soi	uthbound (SR 303/2n	d St)
Time	Time	L	T	R	Pedestrians	L	T	R	Pedestrians	L	T	R	Pedestrians	L	T	R	Pedestrians
11:00 AM	11:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:15 AM	11:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:30 AM	11:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:45 AM	12:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:00 PM	12:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:15 PM	12:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:30 PM	12:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:45 PM	1:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Noon Peak Ho	ur Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Begin	End	Ea	stbound (V	Voodward	Rd.)	We	stbound (V	Voodward	Rd.)	No	orthbound (S	R 303/2nd	St)	So	uthbound (SR 303/2n	d St)
Time	Time	L	T	R	Pedestrians	L	T	R	Pedestrians	L	T	R	Pedestrians	L	T	R	Pedestrians
2:00 PM	2:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:15 PM	2:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:30 PM	2:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:45 PM	3:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:00 PM	3:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:15 PM	3:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:30 PM	3:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:45 PM	4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:00 PM	4:15 PM	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
4:15 PM	4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	5:45 PM	1	0	0	0	0	0	0	1	0	0	0	1	0	1	0	0
5:45 PM	6:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PM Peak Hour	r Volumes	1	0	0	0	0	0	0	1	0	0	0	1	0	1	0	0

E-W Street Hill St. Speed Limit (Hill St.)= Year Counts Taken: N-S Street: SR 303/2nd St Speed Limit (SR 303/2nd St)= Signalized 4/14/24 Eastbound (Hill St.) Westbound (Hill St.) Northbound (SR 303/2nd St) Southbound (SR 303/2nd St) Begin End Time Time R R R R 6:00 AM 6:15 AM 6:15 AM 6:30 AM 6:30 AM 6:45 AM 6:45 AM 7:00 AM 7:00 AM 7:15 AM 7:15 AM 7:30 AM 7:30 AM 7:45 AM 7:45 AM 8:00 AM 8:00 AM 8:15 AM 8:30 AM n 8:15 AM O 8:30 AM 8:45 AM n 8:45 AM 9:00 AM Peak Hour Vol. (AM) n O O O 0.0% 0.0% 0.0% 0.0% 0.0% % of Total Traffic 0.0% 0.1% 0.0% 0.0% 0.0% 75.8% 24 1% % Directional 0.0% 0.1% PHF = 0.84 75.8% 24 1% Eastbound (Hill St.) Westbound (Hill St.) Northbound (SR 303/2nd St) Southbound (SR 303/2nd St) Begin Fnd Time Time R R 11:00 AM 11:15 AM 11:15 AM 11:30 AM 11:30 AM 11:45 AM 11:45 AM 12:00 PM 12:00 PM 12:15 PM 12:15 PM 12:30 PM 12:30 PM 12:45 PM 12:45 PM 1:00 PM Peak Hour Vol. (Midday) 0.0% % of Total Traffic 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% PHF = #DIV/0! % Directional 0.0% 0.0% 0.0% 0.0% Eastbound (Hill St.) Westbound (Hill St.) Northbound (SR 303/2nd St) Southbound (SR 303/2nd St) Begin End R R Time Time R Т R 2:00 PM 2:15 PM 2:15 PM 2:30 PM 2:30 PM 2:45 PM 2:45 PM 3:00 PM 3:00 PM 3:15 PM 3:15 PM 3:30 PM 3:30 PM 3:45 PM 3:45 PM 4:00 PM 4:15 PM 4:00 PM 4:30 PM 4:15 PM 4:30 PM 4:45 PM 4:45 PM 5:00 PM 5:15 PM 5:00 PM 5:15 PM 5:30 PM 5:30 PM 5:45 PM 5:45 PM 6:00 PM n n Peak Hour Vol. (PM) n n O n n O 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.1% 0.0% 0.0% % of Total Traffic 0.0% 24 1% 70.1% % Directional 0.0% 0.2% PHF = 0.93 24.2% 70.1%

Year Counts Taken: 2024 E-W Street Hill St. Speed Limit (Hill St.)= 30
N-S Street: SR 303/2nd St Speed Limit (SR 303/2nd St)= 35

Signalized 4/14/24

Begin	End	Eastl	oound (Hill	St.)	Wes	tbound (Hi	II St.)	Northbo	ound (SR 303	/2nd St)	Southbo	und (SR 30	3/2nd St)
Time	Time	L	T	R	L	Т	R	L	T	R	L	T	R
7:00 AM	7:15 AM	0	0	0	0	0	0	0	100	1	0	41	0
7:15 AM	7:30 AM	0	0	0	0	0	0	0	131	0	0	29	0
7:30 AM	7:45 AM	0	0	0	1	0	0	0	168	0	0	58	0
7:45 AM	8:00 AM	0	0	0	0	0	0	0	213	0	0	57	0
8:00 AM	8:15 AM	0	0	0	0	0	0	0	161	0	0	44	0
8:15 AM	8:30 AM	0	0	0	0	0	0	0	144	0	0	59	0
8:30 AM	8:45 AM	0	0	0	0	0	0	0	84	1	0	67	0
8:45 AM	9:00 AM	0	0	0	0	0	0	0	61	0	1	42	0
4X Peak 15-Min. V	ol. (AM)	0	0	0	0	0	0	0	852	0	0	228	0
% of Total Traffic		0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	78.9%	0.0%	0.0%	21.1%	0.0%
% Directional			0.0%			0.0%	Inters	ection	78.9%			21.1%	

Begin	End	Eastl	ound (Hill	St.)	Wes	tbound (Hi	II St.)	Northbo	ound (SR 303	3/2nd St)	Southbo	und (SR 30	3/2nd St)
Time	Time	L	T	R	L	T	R	L	T	R	L	T	R
4:00 PM	4:15 PM	0	0	0	0	0	0	0	59	0	0	158	0
4:15 PM	4:30 PM	0	0	0	0	0	1	0	60	0	0	153	0
4:30 PM	4:45 PM	0	0	0	0	0	0	0	43	0	0	148	0
4:45 PM	5:00 PM	0	0	0	0	0	1	0	58	1	0	170	0
5:00 PM	5:15 PM	0	0	0	0	0	0	0	57	0	0	163	0
5:15 PM	5:30 PM	0	0	0	0	0	0	0	61	0	0	123	0
5:30 PM	5:45 PM	0	0	0	0	0	0	0	42	0	0	117	0
5:45 PM	6:00 PM	0	0	0	0	0	0	0	44	0	0	121	0
4X Peak 15-Min.	Vol. (PM)	0	0	0	0	0	4	0	232	4	0	680	0
% of Total Traffic		0.0%	0.0%	0.0%	0.0%	0.0%	0.4%	0.0%	25.2%	0.4%	0.0%	73.9%	0.0%
% Directional			0.0%			0.4%	Inters	ection	25.7%			73.9%	

Traffic Count Data Sheet (Bicyles / Pedestrians)

 Year Counts Taken:
 2024
 E-W Street:
 Hill St.
 Speed Limit (Hill St.)=
 30 MPH

 N-S Street:
 SR 303/2nd St
 Speed Limit (SR 303/2nd St)=
 35 MPH

 Signalized
 4/14/24

								•									
Begin	End		Eastbour	d (Hill St.)			Westbour	nd (Hill St.)		No	orthbound (S	R 303/2nd	St)	So	uthbound (SR 303/2n	d St)
Time	Time	L	T	R	Pedestrians	L	T	R	Pedestrians	L	T	R	Pedestrians	L	T	R	Pedestrians
6:00 AM	6:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6:15 AM	6:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6:30 AM	6:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6:45 AM	7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:00 AM	7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
8:45 AM	9:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM Peak Hour	Volumes	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0

Begin	End		Eastboun	nd (Hill St.)			Westbour	nd (Hill St.)		N	orthbound (S	R 303/2nd	St)	So	uthbound (SR 303/2n	d St)
Time	Time	L	T	R	Pedestrians	L	T	R	Pedestrians	L	T	R	Pedestrians	L	T	R	Pedestrians
11:00 AM	11:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:15 AM	11:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:30 AM	11:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:45 AM	12:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:00 PM	12:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:15 PM	12:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:30 PM	12:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:45 PM	1:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Noon Peak Ho	our Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Begin	End		Eastbour	d (Hill St.)			Westbour	nd (Hill St.)		No	orthbound (S	R 303/2nd	St)	So	uthbound (SR 303/2n	d St)
Time	Time	L	T	R	Pedestrians	L	T	R	Pedestrians	L	T	R	Pedestrians	L	T	R	Pedestrians
2:00 PM	2:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:15 PM	2:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:30 PM	2:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:45 PM	3:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:00 PM	3:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:15 PM	3:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:30 PM	3:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:45 PM	4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:00 PM	4:15 PM	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
4:15 PM	4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	5:45 PM	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
5:45 PM	6:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PM Peak Hou	r Volumes	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0

E-W Street SR 500/Rio Bravo Speed Limit (SR 500/Rio Bravo)= Year Counts Taken: N-S Street: SR 303/2nd St Speed Limit (SR 303/2nd St)= Signalized 4/14/24 Eastbound (SR 500/Rio Bravo) Westbound (SR 500/Rio Bravo) Northbound (SR 303/2nd St) Southbound (SR 303/2nd St) Begin End Time Time R R 6:00 AM 6:15 AM 6:15 AM 6:30 AM 6:30 AM 6:45 AM 6:45 AM 7:00 AM 7:00 AM 7:15 AM 7:15 AM 7:30 AM 7:30 AM 7:45 AM 7:45 AM 8:00 AM 8:00 AM 8:15 AM 8:15 AM 8:30 AM 8:30 AM 8:45 AM 8:45 AM 9:00 AM Peak Hour Vol. (AM) 1.8% % of Total Traffic 8.9% 44 6% 6.6% 1 4% 20.5% 14% 5.7% 2.3% 1.5% 1 7% 3 7% % Directional 60.0% 23.3% PHF = 0.96 9.4% 7 2% Eastbound (SR 500/Rio Bravo) Westbound (SR 500/Rio Bravo) Northbound (SR 303/2nd St) Southbound (SR 303/2nd St) Begin Fnd Time Time R R R 11:00 AM 11:15 AM 11:15 AM 11:30 AM 11:30 AM 11:45 AM 11:45 AM 12:00 PM 12:00 PM 12:15 PM 12:15 PM 12:30 PM 12:30 PM 12:45 PM 12:45 PM 1:00 PM Peak Hour Vol. (Midday) % of Total Traffic 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% PHF = #DIV/0! % Directional 0.0% 0.0% 0.0% 0.0% Eastbound (SR 500/Rio Bravo) Westbound (SR 500/Rio Bravo) Northbound (SR 303/2nd St) Southbound (SR 303/2nd St) Begin End Time Time R R R 2:00 PM 2:15 PM 2:15 PM 2:30 PM 2:30 PM 2:45 PM 2:45 PM 3:00 PM 3:00 PM 3:15 PM 3:15 PM 3:30 PM 3:30 PM 3:45 PM 3:45 PM 4:00 PM 4:00 PM 4:15 PM 4:30 PM 4:15 PM 4:30 PM 4:45 PM 4:45 PM 5:00 PM 5:15 PM 5:00 PM 5:30 PM 5:15 PM 5:30 PM 5:45 PM 5:45 PM 6:00 PM Peak Hour Vol. (PM) 0.8% 1.8% % of Total Traffic 3.6% 22 4% 4 9% 0.5% 47.3% 6.8% 19% 16% 2 1% 12.5% % Directional 30.9% 48.7% PHF = 0.95 10.3% 16.4%

Year Counts Taken: 2024 E-W Street SR 500/Rio Bravo Speed Limit (SR 500/Rio Bravo)= 45
N-S Street: SR 303/2nd St Speed Limit (SR 303/2nd St)= 45

Signalized Speed 2mm (erross/2md styring)

Begin	End	Eastbound	(SR 500/R	io Bravo)	Westbour	d (SR 500/	Rio Bravo)	Northbo	ound (SR 303	/2nd St)	Southbo	und (SR 30	3/2nd St)
Time	Time	L	T	R	L	T	R	L	T	R	L	T	R
7:00 AM	7:15 AM	52	379	43	13	120	16	40	19	8	13	10	21
7:15 AM	7:30 AM	57	355	36	8	115	11	43	24	14	12	15	16
7:30 AM	7:45 AM	71	378	53	9	195	13	31	13	15	14	23	29
7:45 AM	8:00 AM	97	364	65	10	174	18	56	31	14	15	19	31
8:00 AM	8:15 AM	64	401	52	12	155	11	57	24	11	15	14	30
8:15 AM	8:30 AM	72	381	54	17	177	5	51	10	10	13	7	37
8:30 AM	8:45 AM	50	359	46	6	148	16	48	14	16	13	10	41
8:45 AM	9:00 AM	42	305	38	20	192	11	45	7	8	11	12	26
4X Peak 15-Min. V	/ol. (AM)	388	1456	260	40	696	72	224	124	56	60	76	124
% of Total Traffic		10.9%	40.7%	7.3%	1.1%	19.5%	2.0%	6.3%	3.5%	1.6%	1.7%	2.1%	3.5%
% Directional			58.8%			22.6%	Inters	ection	11.3%			7.3%	

Begin	End	Eastbound	(SR 500/R	io Bravo)	Westboun	d (SR 500/	Rio Bravo)	Northbo	ound (SR 303	/2nd St)	Southbo	und (SR 30	3/2nd St)
Time	Time	L	Т	R	L	Т	R	L	Τ	R	L	Т	R
4:00 PM	4:15 PM	35	189	38	6	369	5	78	20	20	15	16	111
4:15 PM	4:30 PM	28	203	54	7	464	7	45	11	14	13	26	87
4:30 PM	4:45 PM	29	198	36	3	408	12	48	10	15	20	15	116
4:45 PM	5:00 PM	31	176	40	1	376	5	61	23	6	14	15	113
5:00 PM	5:15 PM	26	169	35	5	441	4	55	11	9	16	10	70
5:15 PM	5:30 PM	26	177	39	3	422	9	53	11	7	7	9	85
5:30 PM	5:45 PM	31	160	31	2	382	4	60	5	5	12	7	105
5:45 PM	6:00 PM	33	191	33	3	388	3	53	10	5	12	11	92
4X Peak 15-Min. V	/ol. (PM)	112	812	216	28	1856	28	180	44	56	52	104	348
% of Total Traffic		2.9%	21.2%	5.6%	0.7%	48.4%	0.7%	4.7%	1.1%	1.5%	1.4%	2.7%	9.1%
% Directional			29.7%			49.8%	Interse	ection	7.3%			13.1%	

Traffic Count Data Sheet (Bicyles / Pedestrians)

Year Counts Taken:	2024	E-W Street: N-S Street:	SR 500/Rio Bravo SR 303/2nd St		Speed Limit (SR 500/Rio Bravo)= Speed Limit (SR 303/2nd St)=	45 45	MPH MPH	
		11 0 00000	011 000/2114 01	Signalized	Opoda 2 (0.1.000/2.10 0.)	4/14/24		

Begin	End	East	tbound (SR	8 500/Rio B	ravo)	Wes	tbound (SF	8 500/Rio B	ravo)	No	orthbound (S	R 303/2nd	St)	So	uthbound (SR 303/2n	d St)
Time	Time	L	T	R	Pedestrians	L	T	R	Pedestrians	L	T	R	Pedestrians	L	T	R	Pedestrians
6:00 AM	6:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6:15 AM	6:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6:30 AM	6:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6:45 AM	7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:00 AM	7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
8:45 AM	9:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM Peak Hour	r Volumes	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0

Begin	End	East	tbound (SR	500/Rio B	ravo)	Wes	tbound (SF	R 500/Rio B	ravo)	N	orthbound (S	R 303/2nd	St)	So	uthbound (SR 303/2n	d St)
Time	Time	L	T	R	Pedestrians	L	T	R	Pedestrians	L	T	R	Pedestrians	L	T	R	Pedestrians
11:00 AM	11:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:15 AM	11:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:30 AM	11:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:45 AM	12:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:00 PM	12:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:15 PM	12:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:30 PM	12:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:45 PM	1:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Noon Peak Ho	our Volume	0	0	0		0	0	0		0	0	0	0	0	0	0	0

Begin	End	East	bound (SR	500/Rio E	Bravo)	Wes	tbound (SF	R 500/Rio E	Bravo)	N	orthbound (S	R 303/2nd	St)	So	uthbound (SR 303/2n	d St)
Time	Time	L	T	R	Pedestrians	L	T	R	Pedestrians	L	T	R	Pedestrians	L	T	R	Pedestrians
2:00 PM	2:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:15 PM	2:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:30 PM	2:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:45 PM	3:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:00 PM	3:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:15 PM	3:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:30 PM	3:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:45 PM	4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:00 PM	4:15 PM	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
4:15 PM	4:30 PM	0	0	0	2	0	0	0	0	0	0	0	2	0	0	0	0
4:30 PM	4:45 PM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
4:45 PM	5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	5:15 PM	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	5:45 PM	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
5:45 PM	6:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PM Peak Hou	r Volumes	0	0	0	2	0	0	0	1	1	0	0	2	0	0	0	0

Coyote Gravel Inc. (SR 303/2nd St., NM)
Projected Turning Movements SUMMARY
PROPOSED DEVELOPMENT (2025) - 100% Development

INTERSECTION:	S u	m m a	r y									
Woodward Rd. SW / SR 303/2	2nd St	0.85			0.85			0.85			0.85	PHF
(1)	Eastbound	(Woodward	Rd. SW)	Westbound	(Woodware	d Rd. SW)	Northbou	ind (SR 303)	2nd St)	Southbou	ind (SR 303/	2nd St)
3% Truck	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Existing (2024)	0	0	0	116	0	60	0	536	336	52	116	0
2025 (NO BUILD - A.M.)	0	0	0	117	0	60	0	539	338	52	117	0
2025 (BUILD - A.M.)	0	0	0	185	0	60	0	541	362	52	123	0
		0.94			0.94	•		0.94			0.94	PHF
	Eastbound	(Woodward	d Rd. SW)	Westbound	(Woodware	d Rd. SW)	Northbou	ind (SR 303)	2nd St)	Southbou	ind (SR 303/	2nd St)
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Existing (2024)	0	0	0	364	0	164	0	132	92	132	284	0
2025 (NO BUILD - P.M.)	0	0	0	366	0	165	0	133	93	133	286	0
2025 (BUILD - P.M.)	0	0	0	400	0	165	0	140	166	133	289	0
Hill St/Driveway "B" / SR 303		0.84	!!D!!\	VA/ 4	0.84	04.)	Mandala a	0.84	/OI. O.()	0 41-1	0.84	PHF
(2)	Left	nd (Drivewa	,	Left	bound (Hill	,		und (SR 303		Left	und (SR 303)	
3% Truck		Thru	Right		Thru	Right	Left	Thru	Right		Thru	Right
Existing (2024)	0	0	0	0	0	0	0	852	0	0	228 229	0
2025 (NO BUILD - A.M.)	0 4	0	0 7	0	0 1	0	0 27	857 860	0 0	0	229 232	0 11
2025 (BUILD - A.M.)	4		/	U	- 1	7	21		U	U	-	
	Easthau	0.93 nd (Drivewa	ay "B")	Woot	0.93 bound (Hill	C+ /	Northbou	0.93 and (SR 303	12nd St)	Southhou	0.93 and (SR 303)	PHF
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Existing (2024)	0	0	1 (ight	0	0	4	0	232	4	0	680	0
2025 (NO BUILD - P.M.)	0	0	0	0	0	4	0	232	4	0	684	0
2025 (NO BOILD - P.M.)	13	1	22	0	0	4	14	235	4	1	694	6
ZOZO (BOILD - 1 .M.)	10		LL	U	U	7	17	200	7		034	
SR 500/Rio Bravo / SR 303/2	nd St	0.96			0.96			0.96			0.96	PHF
(3)		I (SR 500/Ri	io Bravo)	Westbound	d (SR 500/R	io Bravo)	Northbou	and (SR 303	/2nd St)	Southbou	and (SR 303)	
3% Truck	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Existing (2024)	388	1,456	260	40	696	72	224	124	56	60	76	124
2025 (NO BUILD - A.M.)	391	1,468	262	40	702	73	226	125	56	60	77	125
2025 (BUILD - A.M.)	413	1,468	262	40	702	76	226	130	56	61	79	133
, ,		0.95			0.95			0.95			0.95	PHF
	Eastbound	I (SR 500/Ri	io Bravo)	Westbound	d (SR 500/R	io Bravo)	Northbou	und (SR 303	/2nd St)	Southbou	and (SR 303)	2nd St)
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Existing (2024)	112	812	216	28	1,856	28	180	44	56	52	104	348
2025 (NO BUILD - P.M.)	113	818	218	28	1,871	28	181	44	56	52	105	351
2025 (BUILD - P.M.)	124	818	218	28	1,871	30	181	47	56	55	111	375

Coyote Gravel Inc. (SR 303/2nd St., NM) Projected Turning Movements Worksheet Woodward Rd. SW / SR 303/2nd St

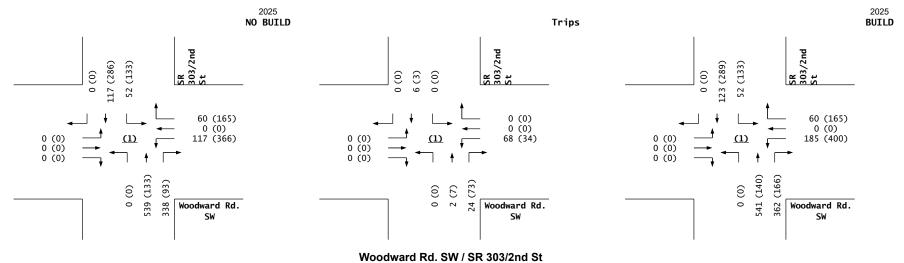
INTERSECTION: F-W Street: Woodward Rd. SW (1)

> N-S Street: SR 303/2nd St

Year of Existing Counts 2024 Horizon Year 2025

> **Growth Rates** 0.60% 0.60% 0.60% 0.60%

Eastbound (Woodward Rd. SW) Westbound (Woodward Rd. SW) Northbound (SR 303/2nd St) Southbound (SR 303/2nd St) Right Right Left Thru Left Thru Left Thru Right Left Thru Right **Existing Volumes** 0 0 0 116 0 60 0 536 336 52 116 0 0 0 0 **Background Traffic Growth** 0 Subtotal (NO BUILD - A.M.) 0 117 0 60 0 539 338 52 117 0 0 Percent Office Trips Generated(Entering) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 65.00% 6.00% Percent Office Trips Generated(Exiting) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 6.00% 65.00% 0.00% 0.00% 0.00% 0 2 **Total Trips Generated** 0 0 0 68 24 0 6 **Total AM Peak Hour BUILD Volumes** 0 0 0 185 0 60 541 362 52 123


> 0.60% 0.60% 0.60% 0.60%

	Eastbound	d (Woodwar	d Rd. SW)	Westbound	d (Woodwar	d Rd. SW)	Northbo	und (SR 303	/2nd St)	Southbou	ınd (SR 303/	2nd St)
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Existing Volumes	0	0	0	364	0	164	0	132	92	132	284	0
Background Traffic Growth	<u>0</u>	<u>0</u>	<u>0</u>	<u>2</u>	<u>0</u>	<u>1</u>	<u>0</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>2</u>	<u>0</u>
Subtotal (NO BUILD - P.M.)	0	0	0	366	0	165	0	133	93	133	286	0
Percent Office Trips Generated(Entering)	0.00%	0.00%	0.00%	65.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	6.00%	0.00%
Percent Office Trips Generated(Exiting)	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	6.00%	65.00%	0.00%	0.00%	0.00%
Total Trips Generated	0	0	0	34	0	0	0	7	73	0	3	0
Total PM Peak Hour BUILD Volumes	0	0	0	400	0	165	0	140	166	133	289	0

Entering Exiting

Number of Office Trips Generated 104 37 A.M. 100% Office Development

52 112 P.M.

Coyote Gravel Inc. (SR 303/2nd St., NM) Projected Turning Movements Worksheet Hill St/Driveway "B" / SR 303/2nd St

INTERSECTION: E-W Street: Hill St/Driveway "B" (2)

N-S Street: SR 303/2nd St

Year of Existing Counts 2024 Horizon Year 2025

		(5	~ <i>,</i> _ ,			U ,		aa (5.1.556	,a o c,	000000	aa (0.1.000)	0.,
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Existing Volumes	0	0	0	0	0	0	0	852	0	0	228	0
Background Traffic Growth	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>5</u>	<u>0</u>	<u>0</u>	<u>1</u>	<u>0</u>
Subtotal (NO BUILD - A.M.)	0	0	0	0	0	0	0	857	0	0	229	0
Percent Office Trips Generated(Entering)	0.00%	0.00%	0.00%	0.00%	0.50%	0.50%	26.00%	3.00%	0.00%	0.00%	0.00%	11.00%
Percent Office Trips Generated(Exiting)	11.50%	0.50%	20.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.50%	9.00%	0.00%
Total Trips Generated	4	0	7	0	1	1	27	3	0	0	3	11
Subtotal AM Pk Hr. BUILD Volumes	4	0	7	0	1	1	27	860	0	0	232	11
Total AM Peak Hour BUILD Volumes	4	0	7	0	1	1	27	860	0	0	232	11

0.60% 0.60% 0.60% 0.60% Eastbound (Driveway "B") Westbound (Hill St.) Northbound (SR 303/2nd St) Southbound (SR 303/2nd St) Left Right Thru Right Thru Right Left Thru Left Left Thru Right **Existing Volumes** 232 0 0 0 0 0 4 0 680 0 0 **Background Traffic Growth** 0 0 0 4 Subtotal (NO BUILD - P.M.) 233 684 0 Percent Office Trips Generated(Entering) 0.00% 0.00% 0.00% 0.00% 0.50% 0.50% 26.00% 3.00% 0.00% 0.00% 0.00% 11.00% Percent Office Trips Generated(Exiting) 0.00% 0.00% 0.00% 0.00% 0.00% 11.50% 0.50% 20.00% 0.00% 0.00% 0.50% 9.00% **Total Trips Generated** 13 1 0 0 14 2 10 13 22 0 235 Subtotal PM Pk Hr. BUILD Volumes 0 14 694 6 13 22 235 **Total PM Peak Hour BUILD Volumes** 0 0 14 694

Entering Exiting

Number of Office Trips Generated 104 37 A.M. 100% Office Development

112 P.M.

Hill St/Driveway "B" / SR 303/2nd St

Coyote Gravel Inc. (SR 303/2nd St., NM) Projected Turning Movements Worksheet

SR 500/Rio Bravo / SR 303/2nd St

INTERSECTION: E-W Street: SR 500/Rio Bravo (3)

N-S Street: SR 303/2nd St

Year of Existing Counts 2024 Horizon Year 2025

Growth Rates 0.80% 0.80% 0.80% 0.80% 0.80%

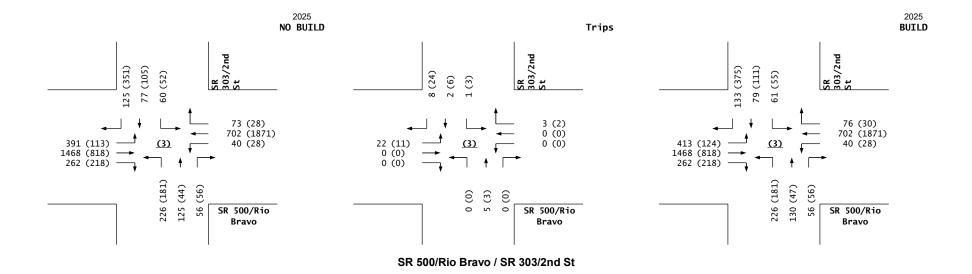
Eastbound (SR 500/Rio Bravo) Westbound (SR 500/Rio Bravo) Northbound (SR 303/2nd St) Southbound (SR 303/2nd St) Left Left Right Thru Right Left Thru Right Left Thru Right Thru **Existing Volumes** 388 40 224 76 1,456 260 696 72 124 56 60 124 12 **Background Traffic Growth** 0 6 40 60 77 Subtotal (NO BUILD - A.M.) 391 1,468 262 702 73 226 125 56 125 Percent Office Trips Generated(Entering) 21.00% 0.00% 0.00% 0.00% 0.00% 3.00% 0.00% 5.00% 0.00% 0.00% 0.00% 0.00% Percent Office Trips Generated(Exiting) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 3.00% 5.00% 21.00%

Total Trips Generated 22 0 0 0 0 5 0 2 **Total AM Peak Hour BUILD Volumes** 413 1,468 262 40 702 76 226 130 56 61 79 133

Existing Volumes
Background Traffic Growth
Subtotal (NO BUILD - P.M.)

Percent Office Trips Generated(Entering)
Percent Office Trips Generated(Exiting)

Total Trips Generated


Total PM Peak Hour BUILD Volumes

	Eastboun	d (SR 500/R	io Bravo)	Westboun	d (SR 500/R	io Bravo)	Northbo	und (SR 303	/2nd St)	Southboo	und (SR 303	3/2nd St)
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Ī	112	812	216	28	1,856	28	180	44	56	52	104	348
	<u>1</u>	<u>6</u>	<u>2</u>	<u>0</u>	<u>15</u>	<u>0</u>	<u>1</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>1</u>	<u>3</u>
Ī	113	818	218	28	1,871	28	181	44	56	52	105	351
	21.00%	0.00%	0.00%	0.00%	0.00%	3.00%	0.00%	5.00%	0.00%	0.00%	0.00%	0.00%
	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	3.00%	5.00%	21.00%
	11	0	0	0	0	2	0	3	0	3	6	24
s	124	818	218	28	1,871	30	181	47	56	55	111	375

Entering Exiting

Number of Office Trips Generated **104 37** A.M. 100% Office Development

112 P.M.

Coyote Gravel Inc. (SR 303/2nd St., NM) Projected Turning Movements Worksheet Diveway "A" / SR 303/2nd St

INTERSECTION: E-W Street: Diveway "A" (4)

N-S Street: SR 303/2nd St

Year of Existing Counts 2024 Horizon Year 2025

Growth Rates 0.60% 0.60% 0.60% 0.60%

Existing Volumes
Background Traffic Growth

Subtotal (NO BUILD - A.M.)

Percent Office Trips Generated(Entering)
Percent Office Trips Generated(Exiting)

Total AM Peak Hour BUILD Volumes

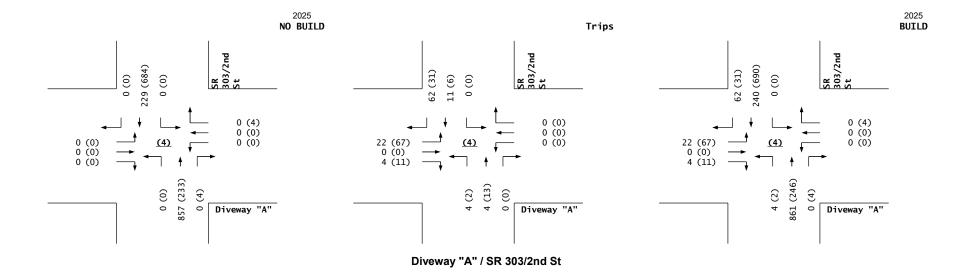
Eas	tbou	ınd (Divewa	ıy "A")	Westbo	und (Divewa	ay "A")	Northbo	und (SR 303	/2nd St)	Southbo	und (SR 303	/2nd St)
Left		Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
	0	0	0	0	0	0	0	852	0	0	228	0
	0	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>5</u>	<u>0</u>	<u>0</u>	<u>1</u>	<u>0</u>
	0	0	0	0	0	0	0	857	0	0	229	0
0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	3.50%	0.00%	0.00%	0.00%	11.00%	60.00%
59.50%	6	0.00%	9.50%	0.00%	0.00%	0.00%	0.00%	11.50%	0.00%	0.00%	0.00%	0.00%
3	22	0	4	0	0	0	4	861	0	0	240	62

Existing Volumes

Background Traffic Growth

Subtotal (NO BUILD - P.M.)

Percent Office Trips Generated(Entering)
Percent Office Trips Generated(Exiting)


Total PM Peak Hour BUILD Volumes

		0.60%			0.60%			0.60%			0.60%	
	Eastbo	und (Divewa	ay "A")	Westbo	und (Divew	ay "A")	Northbo	und (SR 303	/2nd St)	Southbo	und (SR 303	/2nd St)
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Г	0	0	0	0	0	4	0	232	4	0	680	0
	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>1</u>	<u>0</u>	<u>0</u>	<u>4</u>	<u>0</u>
	0	0	0	0	0	4	0	233	4	0	684	0
	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	3.50%	0.00%	0.00%	0.00%	11.00%	60.00%
	59.50%	0.00%	9.50%	0.00%	0.00%	0.00%	0.00%	11.50%	0.00%	0.00%	0.00%	0.00%
s	67	0	11	0	0	4	2	246	4	0	690	31

Entering Exiting

Number of Office Trips Generated 104 37 A.M. 52 112 P.M.

100% Office Development

Coyote Gravel Inc. (SR 303/2nd St., NM)

Projected Turning Movements SUMMARY

PROPOSED DEVELOPMENT (2035) - 100% Development

		<u> </u>	PRUPUSEI	D DEVELOP	IVILIVI (20	JJ) - 100/0 I	<i>Jevelopilie</i>	IIL				
INTERSECTION:	Su	mma	r v									
Woodward Rd. SW / SR 303/	2nd St	0.85			0.85			0.85			0.85	PHF
(1)	Eastbound	(Woodward	Rd. SW)	Westbound	(Woodwar	d Rd. SW)	Northbou	ınd (SR 303	/2nd St)	Southbou	ind (SR 303/	/2nd St)
3% Truck	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Existing (2024)	0	0	0	116	0	60	0	536	336	52	116	0
2035 (NO BUILD - A.M.)	0	0	0	124	0	64	0	571	358	55	124	0
2035 (BUILD - A.M.)	0	0	0	192	0	64	0	573	382	55	130	0
		0.94			0.94			0.94			0.94	PHF
		(Woodward	Rd. SW)	Westbound	•			ınd (SR 303	/2nd St)		ind (SR 303/	/2nd St)
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Existing (2024)	0	0	0	364	0	164	0	132	92	132	284	0
2035 (NO BUILD - P.M.)	0	0	0	388	0	175	0	141	98	141	303	0
2035 (BUILD - P.M.)	0	0	0	422	0	175	0	148	171	141	306	0
U:II C4/Driveyer "D" / CD 202	12md C4											5.15
Hill St/Driveway "B" / SR 303		0.84 nd (Drivewa	w "B"\	West	0.84 bound (Hill	Ct)	Northbou	0.84 and (SR 303	1/2nd St)	Southbox	0.84 and (SR 303)	PHF
(2) 3% Truck	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Existing (2024)	0	0	0	0	0	0	0	852	0	0	228	0
2035 (NO BUILD - A.M.)	0	0	0	0	0	0	0	908	0	0	243	0
2035 (BUILD - A.M.)	4	0	7	0	1	1	27	911	Ö	0	246	11
		0.93	-	-	0.93			0.93		-	0.93	PHF
	Eastbou	nd (Drivewa	ay "B")	West	bound (Hill	St.)	Northbou	and (SR 303	3/2nd St)	Southbou	und (SR 303	
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Existing (2024)	0	0	0	0	0	4	0	232	4	0	680	0
											705	
2035 (NO BUILD - P.M.)	0	0	0	0	0	4	0	247	4	0	725	0
2035 (NO BUILD - P.M.) 2035 (BUILD - P.M.)	13	0 1	0 22	0 0	0 0	4 4	0 14	247 249	4 4	1	725 735	6
2035 (BUILD - P.M.)	13	1		-	0		-	249		-	735	6
2035 (BUILD - P.M.) SR 500/Rio Bravo / SR 303/2	13 nd St	0.96	22	0	0.96	4	14	249 0.96	4	1	735	6 PHF
2035 (BUILD - P.M.) SR 500/Rio Bravo / SR 303/20 (3)	nd St Eastbound	0.96 I (SR 500/Ri	22 o Bravo)	0 Westbound	0.96 d (SR 500/R	4 lio Bravo)	14 Northbou	0.96 und (SR 303	4 3/2nd St)	1 Southbou	735 0.96 und (SR 303	PHF /2nd St)
2035 (BUILD - P.M.) SR 500/Rio Bravo / SR 303/26 (3) 3% Truck	nd St Eastbound Left	0.96 I (SR 500/Ri Thru	22 o Bravo) Right	Westbound	0.96 d (SR 500/R Thru	io Bravo) Right	Northbou Left	0.96 und (SR 303 Thru	4 3/2nd St) Right	Southbou Left	0.96 und (SR 303 Thru	PHF /2nd St) Right
2035 (BUILD - P.M.) SR 500/Rio Bravo / SR 303/26 (3) 3% Truck Existing (2024)	nd St Eastbound Left 388	0.96 I (SR 500/Ri Thru 1,456	o Bravo) Right 260	Westboun Left	0.96 d (SR 500/R Thru	dio Bravo) Right 72	Northbou Left 224	0.96 und (SR 303 Thru 124	4 3/2nd St) Right 56	Southbou Left	0.96 und (SR 303 Thru	PHF /2nd St) Right 124
2035 (BUILD - P.M.) SR 500/Rio Bravo / SR 303/26 (3) 3% Truck Existing (2024) 2035 (NO BUILD - A.M.)	nd St Eastbound Left 388 422	0.96 I (SR 500/Ri Thru 1,456 1,584	22 o Bravo) Right 260 283	Westbound Left 40 44	0.96 d (SR 500/R Thru 696 757	io Bravo) Right 72 78	Northbou Left 224 244	0.96 und (SR 303 Thru 124 135	### 4 ### 56 61 ### 61	Southboo Left 60 65	735 0.96 und (SR 303) Thru 76 83	PHF /2nd St) Right 124 135
2035 (BUILD - P.M.) SR 500/Rio Bravo / SR 303/26 (3) 3% Truck Existing (2024)	nd St Eastbound Left 388	1 0.96 I (SR 500/Ri Thru 1,456 1,584 1,584	o Bravo) Right 260	Westboun Left	0.96 d (SR 500/R Thru 696 757 757	dio Bravo) Right 72	Northbou Left 224	0.96 und (SR 303 Thru 124 135 140	4 3/2nd St) Right 56	Southbou Left	735 0.96 und (SR 303 Thru 76 83 85	PHF /2nd St) Right 124 135 143
2035 (BUILD - P.M.) SR 500/Rio Bravo / SR 303/26 (3) 3% Truck Existing (2024) 2035 (NO BUILD - A.M.)	13 nd St Eastbounc Left 388 422 444	0.96 I (SR 500/Ri Thru 1,456 1,584 1,584	22 to Bravo) Right 260 283 283	0 Westbound Left 40 44 44	0.96 d (SR 500/R Thru 696 757 757	io Bravo) Right 72 78 81	Northbou Left 224 244 244	0.96 und (SR 303 Thru 124 135 140 0.95	8/2nd St) Right 56 61 61	Southboo Left 60 65 66	735 0.96 und (SR 303) Thru 76 83 85 0.95	PHF /2nd St) Right 124 135 143 PHF
2035 (BUILD - P.M.) SR 500/Rio Bravo / SR 303/26 (3) 3% Truck Existing (2024) 2035 (NO BUILD - A.M.)	13 nd St Eastbounc Left 388 422 444	1 0.96 I (SR 500/Ri Thru 1,456 1,584 1,584	22 to Bravo) Right 260 283 283	0 Westbound Left 40 44 44	0.96 d (SR 500/R Thru 696 757 757	io Bravo) Right 72 78 81	Northbou Left 224 244 244	0.96 und (SR 303 Thru 124 135 140	8/2nd St) Right 56 61 61	Southboo Left 60 65 66	735 0.96 und (SR 303 Thru 76 83 85	PHF /2nd St) Right 124 135 143 PHF
2035 (BUILD - P.M.) SR 500/Rio Bravo / SR 303/26 (3) 3% Truck Existing (2024) 2035 (NO BUILD - A.M.)	13 md St Eastbound Left 388 422 444 Eastbound	0.96 I (SR 500/Ri Thru 1,456 1,584 1,584 0.95 I (SR 500/Ri	22 o Bravo) Right 260 283 283 o Bravo)	Westbound Left 40 44 44 Westbound	0.96 d (SR 500/R Thru 696 757 757 0.95 d (SR 500/R	iio Bravo) Right 72 78 81	Northbot Left 224 244 244 Northbot	0.96 und (SR 303 Thru 124 135 140 0.95 und (SR 303	3/2nd St) Right 56 61 61 8/2nd St)	Southbook Left 60 65 66 Southbook	735 0.96 und (SR 303) Thru 76 83 85 0.95 und (SR 303)	PHF /2nd St) Right 124 135 143 PHF /2nd St)
2035 (BUILD - P.M.) SR 500/Rio Bravo / SR 303/2i (3) 3% Truck Existing (2024) 2035 (NO BUILD - A.M.) 2035 (BUILD - A.M.)	13 nd St Eastbound Left 388 422 444 Eastbound Left	0.96 I (SR 500/Ri Thru 1,456 1,584 1,584 0.95 I (SR 500/Ri Thru	o Bravo) Right 260 283 283 co Bravo) Right	Westbound Left 40 44 44 Westbound Left	0.96 d (SR 500/R Thru 696 757 757 0.95 d (SR 500/R Thru	iio Bravo) Right 72 78 81 iio Bravo) Right	Northboo Left 224 244 244 Northboo Left	0.96 und (SR 303 Thru 124 135 140 0.95 und (SR 303 Thru	#3/2nd St) Right 56 61 61 61 8/2nd St) Right	Southbook Left 60 65 66 Southbook Left	735 0.96 und (SR 303, Thru 76 83 85 0.95 und (SR 303, Thru	PHF //2nd St) Right 124 135 143 PHF //2nd St) Right
2035 (BUILD - P.M.) SR 500/Rio Bravo / SR 303/2(3) 3% Truck Existing (2024) 2035 (NO BUILD - A.M.) 2035 (BUILD - A.M.)	13 nd St Eastbound Left 388 422 444 Eastbound Left 112	0.96 d (SR 500/Ri Thru 1,456 1,584 1,584 0.95 d (SR 500/Ri Thru	22 lo Bravo) Right 260 283 283 lo Bravo) Right 216	Westbound Left 40 44 44 Westbound Left 28	0.96 d (SR 500/R Thru 696 757 757 0.95 d (SR 500/R Thru 1,856	io Bravo) Right 72 78 81 Rio Bravo) Right 28	Northboo Left 224 244 244 Northboo Left 180	0.96 und (SR 303 Thru 124 135 140 0.95 und (SR 303 Thru	8/2nd St) Right 56 61 61 8/2nd St) Right Fight 56	Southbook Left 60 65 66 Southbook Left 52	735 0.96 und (SR 303 Thru 76 83 85 0.95 und (SR 303 Thru 104	PHF //2nd St) Right 124 135 143 PHF //2nd St) Right 348
2035 (BUILD - P.M.) SR 500/Rio Bravo / SR 303/2(3) 3% Truck Existing (2024) 2035 (NO BUILD - A.M.) 2035 (BUILD - A.M.) Existing (2024) 2035 (NO BUILD - P.M.) 2035 (BUILD - P.M.)	13 nd St Eastbound Left 388 422 444 Eastbound Left 112 122 133	1 0.96 1 (SR 500/Ri Thru 1,456 1,584 1,584 0.95 1 (SR 500/Ri Thru 812 883	22 o Bravo) Right 260 283 283 co Bravo) Right 216 235	Westbound Left 40 44 44 Westbound Left 28 30	0 0.96 d (SR 500/R Thru 696 757 757 0.95 d (SR 500/R Thru 1,856 2,019	4	Northbot Left 224 244 244 Northbot Left 180 196	0.96 und (SR 303 Thru 124 135 140 0.95 und (SR 303 Thru 44 48	8/2nd St) Right 56 61 61 8/2nd St) Right 56 67	50uthbot Left 60 65 66 Southbot Left 52 57	735 0.96 und (SR 303 Thru 76 83 85 0.95 und (SR 303 Thru 104 113	PHF /2nd St) Right 124 135 143 PHF /2nd St) Right 348 379
2035 (BUILD - P.M.) SR 500/Rio Bravo / SR 303/2(3) 3% Truck Existing (2024) 2035 (NO BUILD - A.M.) 2035 (BUILD - A.M.) Existing (2024) 2035 (NO BUILD - P.M.) 2035 (BUILD - P.M.)	13 nd St Eastbound Left 388 422 444 Eastbound Left 112 122 133	0.96 I (SR 500/Ri Thru 1,456 1,584 1,584 0.95 I (SR 500/Ri Thru 812 883 883	22 o Bravo) Right 260 283 283 co Bravo) Right 216 235 235	Westbound Left 40 44 44 Westbound Left 28 30 30	0 0.96 d (SR 500/R Thru 696 757 757 0.95 d (SR 500/R Thru 1,856 2,019 2,019	4	Northbot Left 224 244 244 Northbot Left 180 196	0.96 und (SR 303 Thru 124 135 140 0.95 und (SR 303 Thru 44 48 51	### A #### A ### A #### A ### A ##### A #### A #### A #### A #### A ######	50uthbot Left 60 65 66 Southbot Left 52 57 60	735 0.96 Ind (SR 303) Thru 76 83 85 0.95 Ind (SR 303) Thru 104 113 119 1.00	PHF /2nd St) Right 124 135 143 PHF /2nd St) Right 379 403
2035 (BUILD - P.M.) SR 500/Rio Bravo / SR 303/26 (3) 3% Truck Existing (2024) 2035 (NO BUILD - A.M.) 2035 (BUILD - A.M.) Existing (2024) 2035 (NO BUILD - P.M.) 2035 (BUILD - P.M.) Diveway "A" / SR 303/2nd St (4)	13 nd St Eastbound Left 388 422 444 Eastbound Left 112 122 133	0.96 I (SR 500/Ri Thru 1,456 1,584 1,584 0.95 I (SR 500/Ri Thru 812 883 883 1.00 und (Divewa	22 o Bravo) Right 260 283 283 o Bravo) Right 216 235 235	Westbound Left 40 44 44 Westbound Left 28 30 30 Westbound	0 0.96 d (SR 500/R Thru 696 757 757 0.95 d (SR 500/R Thru 1,856 2,019 2,019	io Bravo) Right 72 78 81 io Bravo) Right 28 30 32	Northbot Left 224 244 244 Northbot Left 180 196 196	0.96 und (SR 303 Thru 124 135 140 0.95 und (SR 303 Thru 44 48 51	### A #### A ### A #### A #### A ##### A #### A ######	Southbot Left 60 65 66 Southbot Left 52 57 60 Southbot	735 0.96 Ind (SR 303) Thru 76 83 85 0.95 Ind (SR 303) Thru 104 113 119 1.00 Ind (SR 303)	### PHF
2035 (BUILD - P.M.) SR 500/Rio Bravo / SR 303/26 (3) 3% Truck Existing (2024) 2035 (NO BUILD - A.M.) 2035 (BUILD - A.M.) Existing (2024) 2035 (NO BUILD - P.M.) 2035 (BUILD - P.M.) Diveway "A" / SR 303/2nd St (4) 3% Truck	13 nd St Eastbounc Left 388 422 444 Eastbounc Left 112 122 133 Eastbou Left	0.96 I (SR 500/Ri Thru 1,456 1,584 1,584 0.95 I (SR 500/Ri Thru 812 883 883 1.00 und (Divewa	22 o Bravo) Right 260 283 283 o Bravo) Right 216 235 235 y "A") Right	Westbound Left 40 44 44 Westbound Left 28 30 30 Westbound Left	0 0.96 d (SR 500/R Thru 696 757 757 0.95 d (SR 500/R Thru 1,856 2,019 2,019 1.00 und (Divewa Thru	io Bravo) Right 72 78 81 io Bravo) Right 28 30 32 ay "A") Right	Northbot Left 224 244 244 Northbot Left 180 196 Northbot Left	0.96 und (SR 303 Thru 124 135 140 0.95 und (SR 303 Thru 44 48 51 1.00 und (SR 303 Thru	### A #### A ### A #### A ### A #### A ### A #### A #### A #### A ### A ### A ### A ### A ### A #### A ### A ### A ### A ### A #### A ######	Southbook Control	735 0.96 Ind (SR 303) Thru 76 83 85 0.95 Ind (SR 303) Thru 104 113 119 1.00 Ind (SR 303) Thru	## PHF
2035 (BUILD - P.M.) SR 500/Rio Bravo / SR 303/2t (3) 3% Truck Existing (2024) 2035 (NO BUILD - A.M.) 2035 (BUILD - A.M.) Existing (2024) 2035 (NO BUILD - P.M.) 2035 (BUILD - P.M.) Diveway "A" / SR 303/2nd St (4) 3% Truck Existing (2024)	13 nd St Eastbounc Left 388 422 444 Eastbounc Left 112 122 133 Eastbou Left 0	0.96 I (SR 500/Ri Thru 1,456 1,584 1,584 0.95 I (SR 500/Ri Thru 812 883 883 1.00 Ind (Divewa Thru 0	22 lo Bravo) Right 260 283 283 lo Bravo) Right 216 235 235 ly "A") Right 0	Westbound 44	0 0.96 d (SR 500/R Thru 696 757 757 0.95 d (SR 500/R Thru 1,856 2,019 2,019 1.00 und (Divewa Thru	io Bravo) Right 72 78 81 io Bravo) Right 28 30 32 ay "A") Right 0	Northbot Left 224 244 244 Northbot Left 180 196 196 Northbot Left 0	0.96 und (SR 303 Thru 124 135 140 0.95 und (SR 303 Thru 44 48 51 1.00 und (SR 303 Thru 852	### A #### A ### A ### A ### A ### A ### A #### A #### A #### A #### A ######	Southbox	735 0.96 und (SR 303 Thru 76 83 85 0.95 und (SR 303 Thru 104 113 119 1.00 und (SR 303 Thru 228	### PHF
2035 (BUILD - P.M.) SR 500/Rio Bravo / SR 303/2t (3) 3% Truck Existing (2024) 2035 (NO BUILD - A.M.) 2035 (BUILD - A.M.) Existing (2024) 2035 (NO BUILD - P.M.) 2035 (BUILD - P.M.) Diveway "A" / SR 303/2nd St (4) 3% Truck Existing (2024) 2035 (NO BUILD - A.M.)	13	0.96 I (SR 500/Ri Thru 1,456 1,584 1,584 0.95 I (SR 500/Ri Thru 812 883 883 1.00 Ind (Divewa Thru 0 0	22 lo Bravo) Right 260 283 283 lo Bravo) Right 216 235 235 ly "A") Right 0 0	Westbound 44	0 0.96 d (SR 500/R Thru 696 757 757 0.95 d (SR 500/R Thru 1,856 2,019 2,019 1.00 und (Divewa Thru	io Bravo) Right 72 78 81 io Bravo) Right 28 30 32 ay "A") Right 0 0	Northbou Left 224 244 244 Northbou Left 180 196 196 Northbou Left 0	0.96 und (SR 303 Thru 124 135 140 0.95 und (SR 303 Thru 44 48 51 1.00 und (SR 303 Thru 852 908	### A #### A ### A #### A ##### A #### A ######	Southbox	735 0.96 Ind (SR 303 Thru 76 83 85 0.95 Ind (SR 303 Thru 104 113 119 1.00 Ind (SR 303 Thru 228 243	### 6 PHF
2035 (BUILD - P.M.) SR 500/Rio Bravo / SR 303/2t (3) 3% Truck Existing (2024) 2035 (NO BUILD - A.M.) 2035 (BUILD - A.M.) Existing (2024) 2035 (NO BUILD - P.M.) 2035 (BUILD - P.M.) Diveway "A" / SR 303/2nd St (4) 3% Truck Existing (2024)	13 nd St Eastbounc Left 388 422 444 Eastbounc Left 112 122 133 Eastbou Left 0	0.96 I (SR 500/Ri Thru 1,456 1,584 1,584 0.95 I (SR 500/Ri Thru 812 883 883 1.00 Ind (Divewa Thru 0 0 0	22 lo Bravo) Right 260 283 283 lo Bravo) Right 216 235 235 ly "A") Right 0	Westbound 44	0 0.96 d (SR 500/R Thru 696 757 757 0.95 d (SR 500/R Thru 1,856 2,019 2,019 1.00 und (Divewa Thru 0 0	io Bravo) Right 72 78 81 io Bravo) Right 28 30 32 ay "A") Right 0	Northbot Left 224 244 244 Northbot Left 180 196 196 Northbot Left 0	0.96 und (SR 303 Thru 124 135 140 0.95 und (SR 303 Thru 44 48 51 1.00 und (SR 303 Thru 852 908 912	### A #### A ### A ### A ### A ### A ### A #### A #### A #### A #### A ######	Southbox	735 0.96 Ind (SR 303) Thru 76 83 85 0.95 Ind (SR 303) Thru 104 113 119 1.00 Ind (SR 303) Thru 228 243 254	## PHF
2035 (BUILD - P.M.) SR 500/Rio Bravo / SR 303/2t (3) 3% Truck Existing (2024) 2035 (NO BUILD - A.M.) 2035 (BUILD - A.M.) Existing (2024) 2035 (NO BUILD - P.M.) 2035 (BUILD - P.M.) Diveway "A" / SR 303/2nd St (4) 3% Truck Existing (2024) 2035 (NO BUILD - A.M.)	Eastbound Left Eastbound Left 112 122 133 Eastbou Left 112 22 233	1 0.96 d (SR 500/Ri Thru 1,456 1,584 1,584 0.95 d (SR 500/Ri Thru 812 883 883 1.00 Ind (Divewa Thru 0 0 0 1.00	22 o Bravo) Right 260 283 283 o Bravo) Right 216 235 235 y "A") Right 0 0 4	Westbound Left 40 44 44 Westbound Left 28 30 30 Westbound Left 0 0 0	0 0.96 d (SR 500/R Thru 696 757 757 0.95 d (SR 500/R Thru 1,856 2,019 2,019 1.00 und (Divewa Thru 0 0	A	Northbou Left 224 244 244 Northbou Left 180 196 196 Northbou Left 0 0 0	0.96 und (SR 303 Thru 124 135 140 0.95 und (SR 303 Thru 44 48 51 1.00 und (SR 303 Thru 2.00 und (SR 303 4.00	### ### ### ### ### ### ### ### ### ##	Southbox	735 0.96 und (SR 303 Thru 76 83 85 0.95 und (SR 303 Thru 104 113 119 1.00 und (SR 303 Thru 228 243 254	6 PHF /2nd St) Right 124 135 143 PHF /2nd St) Right 348 379 403 PHF /2nd St) Right 0 62 PHF
2035 (BUILD - P.M.) SR 500/Rio Bravo / SR 303/2t (3) 3% Truck Existing (2024) 2035 (NO BUILD - A.M.) 2035 (BUILD - A.M.) Existing (2024) 2035 (NO BUILD - P.M.) 2035 (BUILD - P.M.) Diveway "A" / SR 303/2nd St (4) 3% Truck Existing (2024) 2035 (NO BUILD - A.M.)	13 Eastbound Left 388 422 444 Eastbound Left 112 122 133 Eastbound Left 0 0 22 Eastbound Carterian Carteri	1 0.96 d (SR 500/Ri Thru 1,456 1,584 1,584 0.95 d (SR 500/Ri Thru 812 883 883 1.00 Ind (Divewa Thru 0 0 0 1.00 Ind (Divewa Ind	22 o Bravo) Right 260 283 283 o Bravo) Right 216 235 235 y "A") Right 0 0 4	Westbound Left	0 0.96 d (SR 500/R Thru 696 757 757 0.95 d (SR 500/R Thru 1,856 2,019 2,019 1.00 und (Divewa Thru 0 0	A	Northbot Left 224 244 244 Northbot Left 180 196 196 Northbot Left 0 0 4 Northbot	0.96 und (SR 303 Thru 124 135 140 0.95 und (SR 303 Thru 44 48 51 1.00 und (SR 303 Thru 852 908 912 1.00 und (SR 303 und (SR 303	### ### ### ### ### ### ### ### ### ##	Southbox	735 0.96 und (SR 303, Thru 76 83 85 0.95 und (SR 303, Thru 104 113 119 1.00 und (SR 303, Thru 228 243 254 1.00 und (SR 303, Under the second text)	## PHF
2035 (BUILD - P.M.) SR 500/Rio Bravo / SR 303/2(3) 3% Truck Existing (2024) 2035 (NO BUILD - A.M.) 2035 (BUILD - A.M.) Existing (2024) 2035 (NO BUILD - P.M.) 2035 (BUILD - P.M.) Diveway "A" / SR 303/2nd St (4) 3% Truck Existing (2024) 2035 (NO BUILD - A.M.) 2035 (BUILD - A.M.)	13 Eastbound Left 388 422 444 Eastbound Left 112 122 133 Eastbound Left 0 0 22 Eastbound Left Control Left Control	1 0.96 I (SR 500/Ri Thru 1,456 1,584 1,584 0.95 I (SR 500/Ri Thru 812 883 883 1.00 Ind (Divewa Thru 0 1.00 Ind (Divewa Thru 1)	22 o Bravo) Right 260 283 283 o Bravo) Right 216 235 235 y "A") Right 0 4 y "A") Right	Westbound Left	0 0.96 d (SR 500/R Thru 696 757 757 0.95 d (SR 500/R Thru 1,856 2,019 2,019 1.00 und (Divewa Thru 0 0 0	A	Northbot Left 224 244 244 Northbot Left 180 196 196 Northbot Left 0 0 4 Northbot Left	0.96 und (SR 303 Thru 124 135 140 0.95 und (SR 303 Thru 44 48 51 1.00 und (SR 303 Thru 852 908 912 1.00 und (SR 303 Thru	### ### ### ### ### ### ### ### ### ##	Southbox	735 0.96 Ind (SR 303, Thru 76 83 85 0.95 Ind (SR 303, Thru 104 113 119 1.00 Ind (SR 303, Thru 228 243 254 1.00 Ind (SR 303, Thru Ind (SR 303, Thru Ind (SR 303, Thru) Ind (SR 303, Thru)	6 PHF /2nd St) Right 124 135 143 PHF /2nd St) Right 348 379 403 PHF /2nd St) Right 0 62 PHF /2nd St) Right
2035 (BUILD - P.M.) SR 500/Rio Bravo / SR 303/2(3) 3% Truck Existing (2024) 2035 (NO BUILD - A.M.) 2035 (BUILD - A.M.) Existing (2024) 2035 (NO BUILD - P.M.) 2035 (BUILD - P.M.) Diveway "A" / SR 303/2nd St (4) 3% Truck Existing (2024) 2035 (NO BUILD - A.M.) 2035 (BUILD - A.M.) Existing (2024)	13 13 14 15 15 15 15 15 15 15	1 0.96 I (SR 500/Ri Thru 1,456 1,584 1,584 1,584 0.95 I (SR 500/Ri Thru 812 883 883 1.00 Ind (Divewa Thru 0 0 1.00 Ind (Divewa Thru 0 0 Ind (Divewa Thru 0	22 o Bravo) Right 260 283 283 o Bravo) Right 216 235 235 y "A") Right 0 4 y "A") Right 0 0 7 Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Westbound Left	0 0.96 d (SR 500/R Thru 696 757 757 0.95 d (SR 500/R Thru 1,856 2,019 2,019 1.00 und (Divewa Thru 0 0 1.00 und (Divewa Thru 0 0 1.00 und (Divewa Thru 0	A	Northbot Left 224 244 244 Northbot Left 180 196 196 Northbot Left 0 0 4 Northbot Left 0 0 0 4	0.96 und (SR 303 Thru 124 135 140 0.95 und (SR 303 Thru 44 48 51 1.00 und (SR 303 Thru 852 908 912 1.00 und (SR 303 Thru 232	### ### ### ### ### ### ### ### ### ##	Southbox	735 0.96 und (SR 303, Thru 76 83 85 0.95 und (SR 303, Thru 104 113 119 1.00 und (SR 303, Thru 228 243 254 1.00 und (SR 303, Thru 680	## PHF
2035 (BUILD - P.M.) SR 500/Rio Bravo / SR 303/2(3) 3% Truck Existing (2024) 2035 (NO BUILD - A.M.) 2035 (BUILD - A.M.) Existing (2024) 2035 (NO BUILD - P.M.) 2035 (BUILD - P.M.) Diveway "A" / SR 303/2nd St (4) 3% Truck Existing (2024) 2035 (NO BUILD - A.M.) 2035 (BUILD - A.M.)	13 Eastbound Left 388 422 444 Eastbound Left 112 122 133 Eastbound Left 0 0 22 Eastbound Left Control Left Control	1 0.96 I (SR 500/Ri Thru 1,456 1,584 1,584 0.95 I (SR 500/Ri Thru 812 883 883 1.00 Ind (Divewa Thru 0 1.00 Ind (Divewa Thru 1)	22 o Bravo) Right 260 283 283 o Bravo) Right 216 235 235 y "A") Right 0 4 y "A") Right	Westbound Left	0 0.96 d (SR 500/R Thru 696 757 757 0.95 d (SR 500/R Thru 1,856 2,019 2,019 1.00 und (Divewa Thru 0 0 0	A	Northbot Left 224 244 244 Northbot Left 180 196 196 Northbot Left 0 0 4 Northbot Left	0.96 und (SR 303 Thru 124 135 140 0.95 und (SR 303 Thru 44 48 51 1.00 und (SR 303 Thru 852 908 912 1.00 und (SR 303 Thru	### ### ### ### ### ### ### ### ### ##	Southbox	735 0.96 Ind (SR 303, Thru 76 83 85 0.95 Ind (SR 303, Thru 104 113 119 1.00 Ind (SR 303, Thru 228 243 254 1.00 Ind (SR 303, Thru Ind (SR 303, Thru Ind (SR 303, Thru) Ind (SR 303, Thru)	## PHF

Coyote Gravel Inc. (SR 303/2nd St., NM) Projected Turning Movements Worksheet Woodward Rd. SW / SR 303/2nd St

INTERSECTION: E-W Street: Woodward Rd. SW (1)

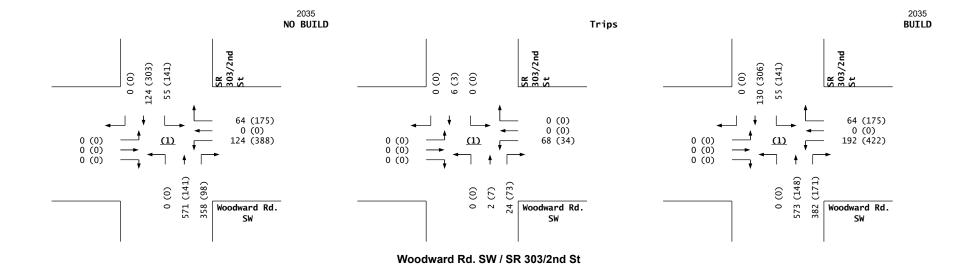
N-S Street: SR 303/2nd St

Year of Existing Counts 2024 Horizon Year **2035**

Growth Rates 0.60% 0.60% 0.60% 0.60%

Eastbound (Woodward Rd, SW) Westbound (Woodward Rd, SW) Northbound (SR 303/2nd St) Southbound (SR 303/2nd St)

Eastbound (Woodward Rd. SW) Westbound (Woodward Rd. SW) Northbound (SR 303/2nd St) Southbound (SR 303/2nd St) Right Right Right Left Thru Left Thru Left Thru Left Thru Right **Existing Volumes** 0 0 0 116 0 60 0 536 336 52 116 0 0 8 0 35 22 3 8 **Background Traffic Growth** 0 Subtotal (NO BUILD - A.M.) 0 124 0 64 0 571 358 55 124 0 0 Percent Office Trips Generated(Entering) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 65.00% 6.00% Percent Office Trips Generated(Exiting) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 6.00% 65.00% 0.00% 0.00% 0.00% 0 2 **Total Trips Generated** 0 0 0 68 24 0 6 **Total AM Peak Hour BUILD Volumes** 0 0 0 192 0 64 573 382 55 130


0.60% 0.60% 0.60% 0.60%

	_uotbou	. (u ,		a (iiooana.	u ,		(0.1.000)		Couringound (Cit Coo/Zina Ct)		
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Existing Volumes	0	0	0	364	0	164	0	132	92	132	284	0
Background Traffic Growth	<u>0</u>	<u>0</u>	<u>0</u>	<u>24</u>	<u>0</u>	<u>11</u>	<u>0</u>	<u>9</u>	<u>6</u>	<u>9</u>	<u>19</u>	<u>0</u>
Subtotal (NO BUILD - P.M.)	0	0	0	388	0	175	0	141	98	141	303	0
Percent Office Trips Generated(Entering)	0.00%	0.00%	0.00%	65.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	6.00%	0.00%
Percent Office Trips Generated(Exiting)	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	6.00%	65.00%	0.00%	0.00%	0.00%
Total Trips Generated	0	0	0	34	0	0	0	7	73	0	3	0
Total PM Peak Hour BUILD Volumes	0	0	0	422	0	175	0	148	171	141	306	0

Entering Exiting

Number of Office Trips Generated 104 37 A.M. 100% Office Development

52 112 P.M.

Coyote Gravel Inc. (SR 303/2nd St., NM) Projected Turning Movements Worksheet Hill St/Driveway "B" / SR 303/2nd St

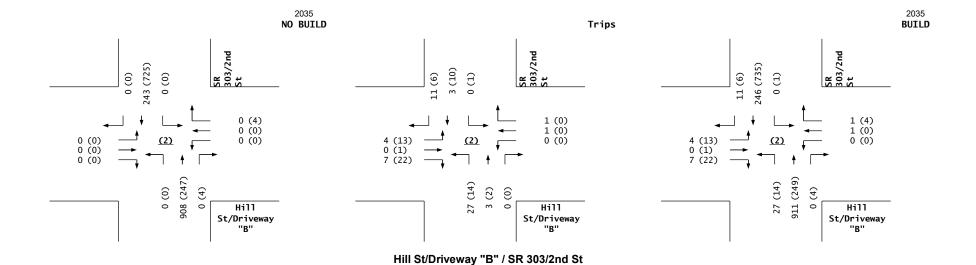
INTERSECTION: Hill St/Driveway "B" (2) E-W Street:

> N-S Street: SR 303/2nd St

Year of Existing Counts 2024 Horizon Year 2035

> **Growth Rates** 0.60% 0.60% 0.60% 0.60%

Eastbound (Driveway "B") Westbound (Hill St.) Northbound (SR 303/2nd St) Southbound (SR 303/2nd St) Left Thru Right Left Thru Right Left Thru Right Left Thru Right **Existing Volumes** 0 0 0 0 0 852 228 **Background Traffic Growth** 0 15 Subtotal (NO BUILD - A.M.) 908 243 Percent Office Trips Generated(Entering) 0.00% 0.00% 0.00% 0.00% 0.50% 0.50% 26.00% 3.00% 0.00% 0.00% 0.00% 11.00% Percent Office Trips Generated(Exiting) 0.00% 0.00% 11.50% 0.50% 0.00% 0.00% 0.00% 0.00% 0.50% 9.00% 0.00% 20.00% **Total Trips Generated** 27 3 3 4 0 0 0 0 **Total AM Peak Hour BUILD Volumes** 27 911 246 0 0 0 1


	Eastbou	und (Drivew	ay "B")	Westbound (Hill St.)			Northbo	und (SR 303	/2nd St)	Southbound (SR 303/2nd St)		
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Existing Volumes	0	0	0	0	0	4	0	232	4	0	680	0
Background Traffic Growth	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>15</u>	<u>0</u>	<u>0</u>	<u>45</u>	<u>0</u>
Subtotal (NO BUILD - P.M.)	0	0	0	0	0	4	0	247	4	0	725	0
Percent Office Trips Generated(Entering)	0.00%	0.00%	0.00%	0.00%	0.50%	0.50%	26.00%	3.00%	0.00%	0.00%	0.00%	11.00%
Percent Office Trips Generated(Exiting)	11.50%	0.50%	20.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.50%	9.00%	0.00%
Total Trips Generated	13	1	22	0	0	0	14	2	0	1	10	6
Total PM Peak Hour BUILD Volumes	13	1	22	0	0	4	14	249	4	1	735	6

Entering Exiting

Number of Office Trips Generated 104 37 A.M. 100% Office Development

52 112 P.M. 11

11

Coyote Gravel Inc. (SR 303/2nd St., NM) Projected Turning Movements Worksheet

SR 500/Rio Bravo / SR 303/2nd St

INTERSECTION: E-W Street: SR 500/Rio Bravo (3)

N-S Street: SR 303/2nd St

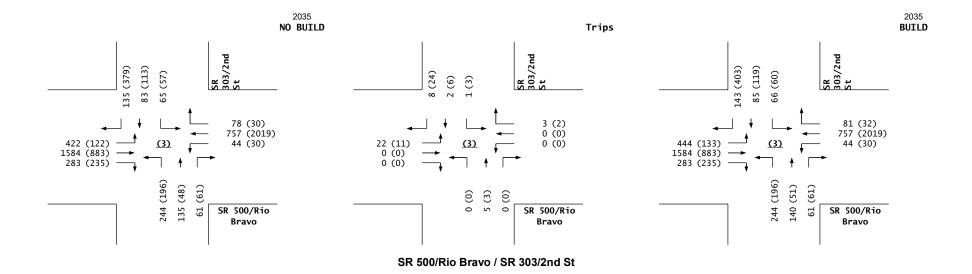
Year of Existing Counts 2024 Horizon Year 2035

Growth Rates 0.80% 0.80% 0.80% 0.80% 0.80%

Eastbound (SR 500/Rio Bravo) Westbound (SR 500/Rio Bravo) Northbound (SR 303/2nd St) Southbound (SR 303/2nd St) Left Thru Right Left Thru Right Left Thru Right Left Thru Right **Existing Volumes** 388 76 1,456 260 40 696 72 224 124 56 60 124 Background Traffic Growth 34 128 4 61 11 11 44 65 83 Subtotal (NO BUILD - A.M.) 422 1,584 283 757 78 244 135 61 135 Percent Office Trips Generated(Entering) 21.00% 0.00% 0.00% 0.00% 0.00% 3.00% 0.00% 5.00% 0.00% 0.00% 0.00% 0.00% Percent Office Trips Generated(Exiting) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 3.00% 5.00% 21.00% 2

Total Trips Generated 22 0 0 0 0 5 444 1,584 283 44 81 244 140 61 66 **Total AM Peak Hour BUILD Volumes** 757

	Eastbound	d (SR 500/Ri	o Bravo)	Westbour	nd (SR 500/R	io Bravo)	Northbo	und (SR 303	3/2nd St)	Southbound (SR 303/2nd St)		
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Existing Volumes	112	812	216	28	1,856	28	180	44	56	52	104	348
Background Traffic Growth	<u>10</u>	<u>71</u>	<u>19</u>	<u>2</u>	<u>163</u>	<u>2</u>	<u>16</u>	<u>4</u>	<u>5</u>	<u>5</u>	<u>9</u>	<u>31</u>
Subtotal (NO BUILD - P.M.)	122	883	235	30	2,019	30	196	48	61	57	113	379
Percent Office Trips Generated(Entering)	21.00%	0.00%	0.00%	0.00%	0.00%	3.00%	0.00%	5.00%	0.00%	0.00%	0.00%	0.00%
Percent Office Trips Generated(Exiting)	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	3.00%	5.00%	21.00%
Total Trips Generated	11	0	0	0	0	2	0	3	0	3	6	24
Total PM Peak Hour BUILD Volumes	133	883	235	30	2,019	32	196	51	61	60	119	403


Entering Exiting

Number of Office Trips Generated **104 37** A.M. 100% Office Development

52 112 P.M.

85

143

Coyote Gravel Inc. (SR 303/2nd St., NM) Projected Turning Movements Worksheet Diveway "A" / SR 303/2nd St

INTERSECTION: (4) E-W Street: Diveway "A"

SR 303/2nd St N-S Street:

Year of Existing Counts 2024 Horizon Year 2035

0.60% **Growth Rates** 0.60% 0.60% 0.60% Westbound (Diveway "A") Northbound (SR 303/2nd St) Southbound (SR 303/2nd St)

Existing Volumes Background Traffic Growth

Subtotal (NO BUILD - A.M.) Percent Office Trips Generated(Entering) Percent Office Trips Generated(Exiting)

Total AM Peak Hour BUILD Volumes

	Luotoo	ana (Biveire	., ,,	******	ana (Bitem	u y	110111100	ana (511 556	,, <u></u>	Oddinodina (Ort Oddizina Ot)			
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	
Ī	0	0	0	0	0	0	0	852	0	0	228	0	
	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>56</u>	<u>0</u>	<u>0</u>	<u>15</u>	<u>0</u>	
	0	0	0	0	0	0	0	908	0	0	243	0	
	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	3.50%	0.00%	0.00%	0.00%	11.00%	60.00%	
	59.50%	0.00%	9.50%	0.00%	0.00%	0.00%	0.00%	11.50%	0.00%	0.00%	0.00%	0.00%	
s	22	0	4	0	0	0	4	912	0	0	254	62	

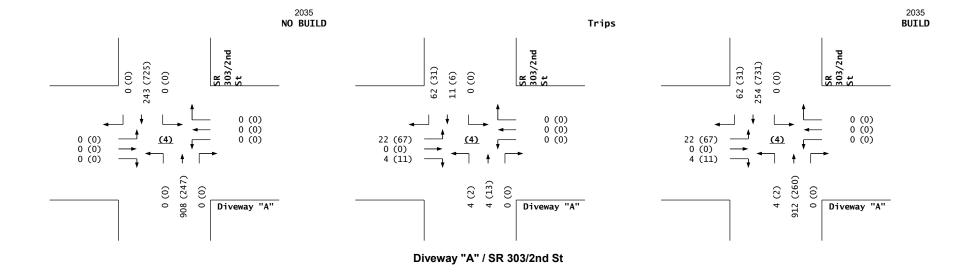
Existing Volumes

Background Traffic Growth

Subtotal (NO BUILD - P.M.) Percent Office Trips Generated(Entering) Percent Office Trips Generated(Exiting)

Total PM Peak Hour BUILD Volumes

		0.60%			0.60%			0.60%		0.60%				
Г	Eastbo	und (Divewa	ay "A")	Westbo	und (Divew	ay "A")	Northbo	und (SR 303	/2nd St)	Southbound (SR 303/2nd St)				
	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right		
ſ	0	0	0	0	0	0	0	232		0	680	0		
	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>15</u>	<u>0</u>	<u>0</u>	<u>45</u>	<u>0</u>		
	0	0	0	0	0	0	0	247	0	0	725	0		
	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	3.50%	0.00%	0.00%	0.00%	11.00%	60.00%		
	59.50%	0.00%	9.50%	0.00%	0.00%	0.00%	0.00%	11.50%	0.00%	0.00%	0.00%	0.00%		
s	67	0	11	0	0	0	2	260	0	0	731	31		


Entering Exiting

Number of Office Trips Generated 104 37 A.M.

52 112 P.M.

Fastbound (Diveway "A")

100% Office Development

Signal Timing and Phase Assignments Rio Bravo & 2nd St.

Direction	W-SB	EB	N-WB	SB	E-NB	WB	S-EB	NB
Camera	3	1	4	2	1	3	2	4
Phase	Ø1	Ø2	ø3	Ø4	ø5	ø6	Ø7	Ø8
Min. Green	7	15	7	10	7	15	7	10
Max. 1	15	100	40	35	15	100	30	35
Max. 2	20	65	45	40	20	65	35	40
Max. 3	25	75	40	35	25	75	30	35
Veh. Ext.	1.5	3.5	3.0	2.5	2.0	3.5	1.5	2.5
Yellow + Red	6.1	6.1	7.1	7.1	6.1	6.1	7.1	7.1
Yellow (3-6)	4.6	4.6	5.6	5.6	4.6	4.6	5.6	5.6
Red Clr. (1-2)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Walk Ped. Clr.		16		32		0		0

Rio Bravo & 2nd St., EW

Yellow + All	Red Sign	al Change In	terval	
	Englis	sh Units	Metri	c Units
Input Items In Red Only				
Approach speed V grade (g) Width of Intersection Length of Vehicle Perception Time (t) (seconds) Gravity (G)	45 0.00% 95 20 1 32.2	MPH Feet Feet Sec Ft/Sec ²	72 0.00% 28.96 6 1 9.8	KM/Hr Meters Meters Sec M/Sec²
Deceleration Rate (a)	10	Ft/Sec ²	3.0	M/Sec ²
Change Plus clearance Time at signalized intersections CP=	6.04	Seconds	6.04	Seconds

Source: ITE Traffic Engineering Handbook - 5th Ed. (Page 481)

Formula CP = T + (V/(2a+2gG))+(W+L)/V

Where V is in FEET/SEC in Formula above

Red clearance Interval shall be 1-2 Seconds

Rio Bravo & 2nd St., NS

Yellow + All	Red Sign	al Change Int	erval	
	Englis	h Units	Metri	Units
Input Items In Red Only				
Approach speed V grade (g)	45 0.00%	MPH	72 0.00%	KM/Hr
Width of Intersection	159	Feet	48.46	Meters
Length of Vehicle	20	Feet	6	Meters
Perception Time (t) (seconds)	1	Sec	1	Sec
Gravity (G)	32.2	Ft/Sec [∠]	9.8	M/Sec²
Deceleration Rate (a)	10	Ft/Sec ²	3.0	M/Sec ²
Change Plus clearance Time at signalized intersections CP=	7.01	Seconds	7.01	Seconds

Source: ITE Traffic Engineering Handbook - 5th Ed. (Page 481)

Formula CP = T + (V/(2a+2gG))+(W+L)/V

Where V is in FEET/SEC in Formula above

Red clearance Interval shall be 1-2 Seconds

Rio Bravo & 2nd St., EW

Minimum Pedestr Time @ Signalized I		
Input Items In Red Only		
Pedestrian Start off Time (P) Walking Distance (D) Walking Speed (S) Yellow Change Interval (Y)	7 70 3.5 4.6	Seconds Feet Ft/Sec Seconds
G _{min} =	15.40	

Source: Toolbox On Intersection Safety And Design

By ITE Dated September, 2004

Formula (D/S) - Y

Rio Bravo & 2nd St., NS

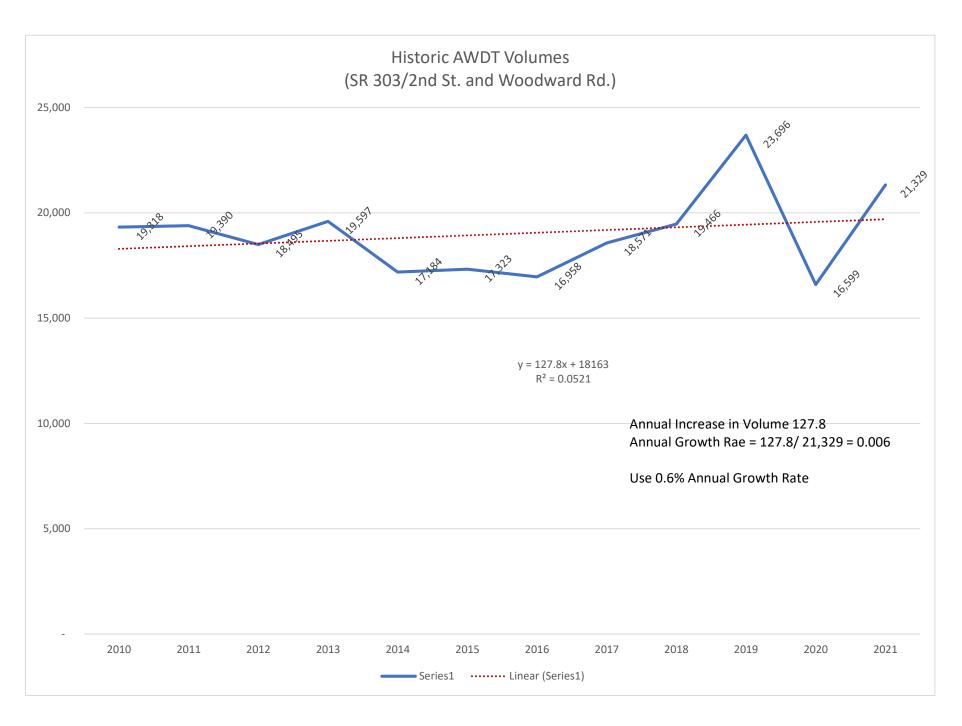
Minimum Pedestr Time @ signalized l		
Input Items In Red Only		
Pedestrian Start off Time (P) Walking Distance (D) Walking Speed (S) Yellow Change Interval (Y)	7 130 3.5 5.6	Seconds Feet Ft/Sec Seconds
G _{min} =	31.54	

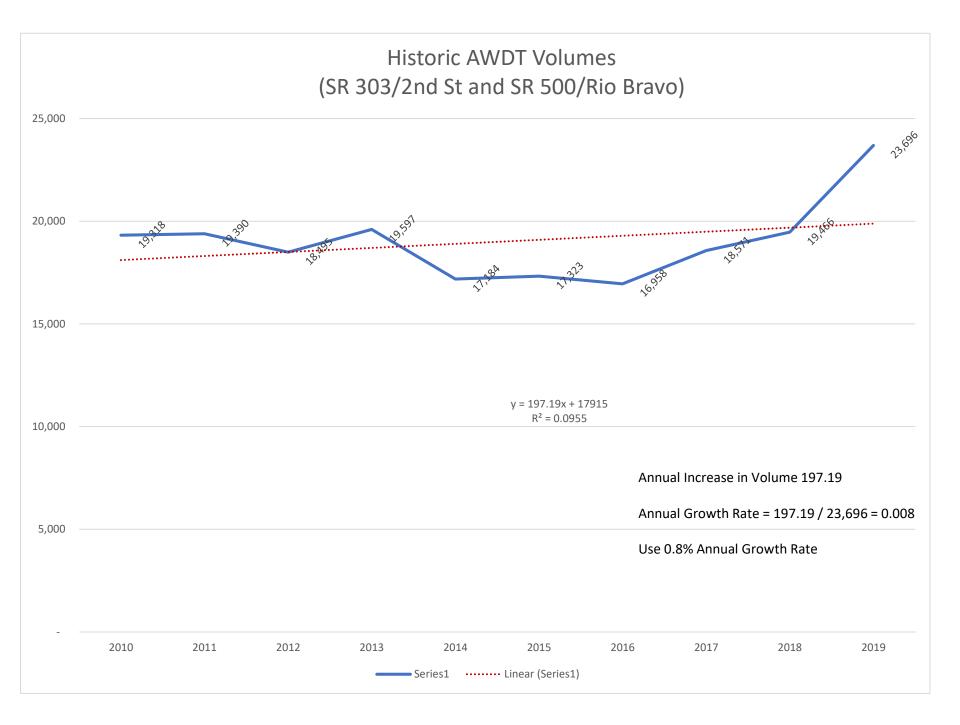
Source: Toolbox On Intersection Safety And Design

By ITE Dated September, 2004

Formula (D/S) - Y

Intersection No.:							System:	
Intersection Name:	Woodward	Rd & 2nd	Street				Address:	
Controller Timing Data								
Phase I.D.:	1	2	3	4	5	6	7	8
Phase Dir.:		EB	S-E	NB I		WB	' ' 	SB
Min Grn			3	12		8	+ +	12
Walk:		7	0	7			†	0
Ped Clr:		15	0	20				0
Veh Ext:			3.0	3.0		3.0	†	3.0
Veh Ext2:								
Max 1:			10	34		30		16
Max 2:			15	40		34		20
Max 3:								
Yellow:		3.5	3.0	4.0		3.5		4.0
Red Clr		2.0	0.5	1.5		2.0		1.5
Controller Recall Data Locking Memory:							1 1	
Vehicle Recall:							+ +	
Ped Recall:							+ +	
Recall To Max:							+ +	
recall to Max.						<u> </u>		
Flash Mode:	ALL RED							
Start Up Mode:	ALL RED							
Time:	8 SEC.							
First Phases:	4 & 8							
Start In:	GREEN							
Overlap Phases:	NONE							
	Г							
	-							
	-							
	-							
NOTES:	L							
	1. Prepared	hv: Sures	h Darvatoia	DE AEC	OM 2 23 2'	<u> </u>		
	т. г терагес	i by. Guies	ii Fai valoja	i, F.L, ALC	OIVI 2-23-22			


Historic Growth Data Table


Coyote Gravel Inc. - Secondary Site

(SR 303/2nd St SW)

Traffic Flows (AWDT) from Mid-Region Council of Governments

COG ID	Location	SR 303/2nd St and Woodward Rd													
Intersection #1:	2ND STREET / WOODWARD														
	Street:	From:	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	
26652	2 2ND STREET	NORTH OF RIO BRAVO - SOUTH OF WOODWARD	8,952	8,738	7,981	7,800	7,722	7,823	9,033	9,166	10,075	11,215	7,856	10,095	
26604	4 2ND STREET	NORTH OF WOODWARD - SOUTH OF AVENIDA CESAR CHAV	4,757	4,643	4,583	5,943	5,884	5,908	4,308	4,371	4,364	7,421	5,198	6,679	
26612	2 WOODWARD	EAST OF 2ND ST WEST OF BROADWAY	5,609	6,009	5,931	5,854	3,578	3,592	3,617	5,034	5,027	5,060	3,545	4,555	
	Total Intersection Traffic Flov	vs	19,318	19,390	18,495	19,597	17,184	17,323	16,958	18,571	19,466	23,696	16,599	21,329	
COG ID	Location	SR 303/2nd St and SR 500/Rio Bravo Blvd													
Intersection #1:	2ND STREET / RIO BRAVO I	RI VD													
		SEVD.													
	Street:	From:	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	
26652	Street: 2 2ND STREET		2010 8,952	2011 8,738	2012 7,981	2013 7,800	2014 7,722	2015 7,823	2016 9,033	2017 9,166	2018 10,075	2019 11,215	2020 7,856	2021 10,095	
		From:													
26698	2 2ND STREET	From: NORTH OF RIO BRAVO - SOUTH OF WOODWARD	8,952	8,738	7,981	7,800	7,722	7,823	9,033	9,166	10,075	11,215	7,856	10,095	
26656 26656	2 2ND STREET B RIO BRAVO BLVD.	From: NORTH OF RIO BRAVO - SOUTH OF WOODWARD EAST OF 2ND ST WEST OF SUNPORT RR FACILITY	8,952 29,429	8,738 22,799	7,981 22,503	7,800 25,776	7,722 25,518	7,823 25,620	9,033 29,474	9,166 29,905	10,075 29,861	11,215 30,436	7,856 13,245	10,095 17,020	

Coyote Gravel Products, Inc. (3053 2nd Street NW)

Trip Generation Data (ITE Trip Generation Manual - 11th Edition)

	USE (ITE CODE)		24 HR VOL	A. M. PE	AK HR.	P. M. PE	AK HR.
COMMENT	DESC	RIPTION	GROSS	ENTER	EXIT	ENTER	EXIT
	Summary Sheet	Units		-		-	
	Specialty Trade Contractor	85.00	792	104	37	52	112

Coyote Gravel Products, Inc. (3053 2nd Street NW) Trip Generation Data (ITE Trip Generation Manual - 11th Edition)

USE (ITE CODE)		24 HOUR TWO-WAY VOLUME		PEAK HOUR	Ø. ₩	PEAK HOUR
		GROSS	ENTER	EXIT	ENTER	EXIT
	Units	-		-	-	
Specialty Trade Contractor	85.00	792	104	37	52	112
	1,000 S.F.	·				

ITE Trip Generation Equations:

Average Vehicle Trip Ends on a Weekday (24 HOUR TWO-WAY VOLUME)

T = 9.32 (X) + 0 50% Enter, 50% Exit

Average Vehicle Trip Ends on a Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7am and 9am (A.M. PEAK HOUR)

T = 1.66 (X) + 0 74% Enter, 26% Exit

Average Vehicle Trip Ends on a Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4pm and 6pm (P.M. PEAK HOUR)

T = 1.93 (X) + 0 32% Enter, 68% Exit

Comments:

Tract No.

Based on ITE Trip Generation Manual - 11th Edition

11/23/2024

	•	*	†	-	ļ				
Lane Group	WBL	WBR	NBT	SBL	SBT				
Lane Configurations		7	13	*	^				
Traffic Volume (vph)	117	60	539	52	117				
Future Volume (vph)	117	60	539	52	117				
Turn Type	Prot	Perm	NA	pm+pt	NA				
Protected Phases	6		4	3	8				
Permitted Phases	6	6		8					
Detector Phase	6	6	4	3	8				
Switch Phase									
Minimum Initial (s)	8.0	8.0	12.0	3.0	12.0				
Minimum Split (s)	27.5	27.5	32.5	9.5	23.5				
Total Split (s)	30.0	30.0	35.0	10.0	45.0				
Total Split (%)	40.0%	40.0%	46.7%	13.3%	60.0%				
Yellow Time (s)	3.5	3.5	4.0	3.0	4.0				
All-Red Time (s)	2.0	2.0	1.5	0.5	1.5				
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0				
Total Lost Time (s)	5.5	5.5	5.5	3.5	5.5				
Lead/Lag			Lag	Lead					
Lead-Lag Optimize?			Yes	Yes					
Recall Mode	Max	Max	Max	Max	Max				
Act Effct Green (s)	24.5	24.5	29.5	41.5	39.5				
Actuated g/C Ratio	0.33	0.33	0.39	0.55	0.53				
v/c Ratio	0.15	0.08	0.87	0.16	0.09				
Control Delay (s/veh)	18.9	6.7	34.4	9.3	9.2				
Queue Delay	0.0	0.0	0.0	0.0	0.0				
Total Delay (s/veh)	18.9	6.7	34.4	9.3	9.2				
LOS	В	Α	С	Α	Α				
Approach Delay (s/veh)	14.8		34.4		9.2				
Approach LOS	В		С		Α				
Intersection Summary									
Cycle Length: 75									
Actuated Cycle Length: 75									
Natural Cycle: 70									
Control Type: Actuated-Unco	ordinated								
Maximum v/c Ratio: 0.87									
Intersection Signal Delay (s/	veh): 28.1			li	ntersection	LOS: C			
Intersection Capacity Utilization 45.3% ICU Level of Service A									
Analysis Period (min) 15									
, , ,	303/2nd S	t & Wood	ward Rd.						
				" Ø	13	Ø4			

A - 2025 AM Peak No Build	Synchro 12 Repor
Implementation Year 2025	2024017_Synchro.syr

	•	*	†	1	1	ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	*	7	13		*		
Traffic Volume (veh/h)	117	60	539	338	52	117	
Future Volume (veh/h)	117	60	539	338	52	117	
Initial Q (Qb), veh	0	0	0	0	0	0	
Lane Width Adi.	1.00	1.00	1.00	1.00	1.00	1.00	
Ped-Bike Adj(A pbT)	1.00	1.00		0.98	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Nork Zone On Approach	No		No			No	
Adi Sat Flow, veh/h/ln	1796	1722	1870	1841	1559	1796	
Adj Flow Rate, veh/h	83	42	380	239	37	83	
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	
Percent Heavy Veh, %	7	12	2	4	23	7	
Cap, veh/h	559	477	418	263	262	946	
Arrive On Green	0.33	0.33	0.39	0.39	0.09	0.53	
Sat Flow, veh/h	1711	1459	1063	668	1485	1796	
Grp Volume(v), veh/h	83	42	0	619	37	83	
Grp Sat Flow(s),veh/h/ln	1711	1459	0	1731	1485	1796	
Q Serve(g_s), s	2.6	1.5	0.0	25.3	0.9	1.7	
Cycle Q Clear(g_c), s	2.6	1.5	0.0	25.3	0.9	1.7	
Prop In Lane	1.00	1.00		0.39	1.00		
Lane Grp Cap(c), veh/h	559	477	0	681	262	946	
V/C Ratio(X)	0.15	0.09	0.00	0.91	0.14	0.09	
Avail Cap(c_a), veh/h	559	477	0	681	262	946	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	17.9	17.5	0.0	21.5	14.6	8.8	
Incr Delay (d2), s/veh	0.6	0.4	0.0	18.3	1.1	0.2	
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	1.1	0.5	0.0	12.6	0.4	0.6	
Unsig. Movement Delay, s/veh							
LnGrp Delay(d), s/veh	18.4	17.9	0.0	39.8	15.8	9.0	
_nGrp LOS	В	В		D	В	Α	
Approach Vol, veh/h	125		619			120	
Approach Delay, s/veh	18.2		39.8			11.1	
Approach LOS	В		D			В	
Timer - Assigned Phs			3	4		6	8
Phs Duration (G+Y+Rc), s			10.0	35.0		30.0	45.0
Change Period (Y+Rc), s			3.5	5.5		5.5	5.5
Max Green Setting (Gmax), s			6.5	29.5		24.5	39.5
Max Q Clear Time (g_c+I1), s			2.9	27.3		4.6	3.7
Green Ext Time (p_c), s			0.0	0.7		0.3	0.2
ntersection Summary							
-ICM 7th Control Delay, s/veh			32.7				
HCM 7th LOS			С				

A - 2025 AM Peak No Build Implementation Year 2025 Synchro 12 Report 2024017_Synchro.syn

Timings 1: SR 303/2nd St & Woodward Rd.

11/23/2024

HCM 7th Signalized Intersection Summary 1: SR 303/2nd St & Woodward Rd.

dward Rd.	11/23/202

	•	•	†	/	-	ļ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	*	7	1>		*	†		
Traffic Volume (veh/h)	185	60	541	362	52	123		
Future Volume (veh/h)	185	60	541	362	52	123		
Initial Q (Qb), veh	0	0	0	0	0	0		
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00		
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00			
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
Work Zone On Approach	No		No			No		
Adj Sat Flow, veh/h/In	1796	1722	1870	1841	1559	1796		
Adj Flow Rate, veh/h	131	42	382	256	37	87		
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85		
Percent Heavy Veh, %	7	12	2	4	23	7		
Cap, veh/h	559	477	472	316	217	946		
Arrive On Green	0.33	0.33	0.45	0.45	0.02	0.53		
Sat Flow, veh/h	1711	1459	1044	700	1485	1796		
Grp Volume(v), veh/h	131	42	0	638	37	87		
Grp Sat Flow(s),veh/h/ln	1711	1459	0	1744	1485	1796		
Q Serve(g_s), s	4.2	1.5	0.0	23.7	1.0	1.8		
Cycle Q Clear(g_c), s	4.2	1.5	0.0	23.7	1.0	1.8		
Prop In Lane	1.00	1.00		0.40	1.00			
Lane Grp Cap(c), veh/h	559	477	0	788	217	946		
V/C Ratio(X)	0.23	0.09	0.00	0.81	0.17	0.09		
Avail Cap(c_a), veh/h	559	477	0	788	304	946		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	1.00		
Uniform Delay (d), s/veh	18.4	17.5	0.0	17.8	14.3	8.8		
Incr Delay (d2), s/veh	1.0	0.4	0.0	8.8	0.4	0.2		
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
%ile BackOfQ(50%),veh/ln	1.7	0.5	0.0	9.8	0.3	0.6		
Unsig. Movement Delay, s/veh								
LnGrp Delay(d), s/veh	19.4	17.9	0.0	26.6	14.7	9.0		
LnGrp LOS	В	В		С	В	Α		
Approach Vol, veh/h	173		638			124		
Approach Delay, s/veh	19.0		26.6			10.7		
Approach LOS	В		С			В		
Timer - Assigned Phs			3	4		6	8	
Phs Duration (G+Y+Rc), s			5.6	39.4		30.0	45.0	
Change Period (Y+Rc), s			4.0	5.5		5.5	5.5	
Max Green Setting (Gmax), s			6.0	29.5		24.5	39.5	
Max Q Clear Time (g_c+I1), s			3.0	25.7		6.2	3.8	
Green Ext Time (p_c), s			0.0	1.4		0.4	0.4	
Intersection Summary								
HCM 7th Control Delay, s/veh			23.1					
HCM 7th LOS			С					

B - 2025 AM Peak Build

Implementation Year 2025

Synchro 12 Report 2024017_Synchro.syn

	1	•	†	-	ļ	
Lane Group	WBL	WBR	NBT	SBL	SBT	
Lane Configurations	7	7	1	7	*	
Traffic Volume (vph)	185	60	541	52	123	
uture Volume (vph)	185	60	541	52	123	
Turn Type	Prot	Perm	NA	pm+pt	NA	
Protected Phases	6		4	3	8	
Permitted Phases	6	6		8		
Detector Phase	6	6	4	3	8	
Switch Phase						
Minimum Initial (s)	8.0	8.0	12.0	3.0	12.0	
Minimum Split (s)	27.5	27.5	32.5	9.5	17.5	
Total Split (s)	30.0	30.0	35.0	10.0	45.0	
Total Split (%)	40.0%	40.0%	46.7%	13.3%	60.0%	
Yellow Time (s)	3.5	3.5	4.0	3.5	4.0	
All-Red Time (s)	2.0	2.0	1.5	0.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.5	5.5	5.5	4.0	5.5	
_ead/Lag	0.0	0.0	Lag	Lead	0.0	
_ead-Lag Optimize?			Yes	Yes		
Recall Mode	Max	Max	Max	None	Max	
Act Effct Green (s)	24.5	24.5	33.5	41.0	39.5	
Actuated g/C Ratio	0.33	0.33	0.45	0.55	0.53	
v/c Ratio	0.24	0.09	0.79	0.15	0.09	
Control Delay (s/veh)	19.9	6.7	27.5	9.5	9.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay (s/veh)	19.9	6.7	27.5	9.5	9.2	
LOS	В	Α.	C	Α.	A	
Approach Delay (s/veh)	16.7	А	27.5	A	9.3	
Approach LOS	В		C		Α.	
••			U		Α	
ntersection Summary						
Cycle Length: 75						
Actuated Cycle Length: 75						
Natural Cycle: 70						
Control Type: Semi Act-Und	coord					
Maximum v/c Ratio: 0.79						
ntersection Signal Delay (sa						on LOS: C
ntersection Capacity Utiliza	ition 46.2%)		10	CU Level	I of Service A
Analysis Period (min) 15						
Splits and Phases: 1: SR	303/2nd S	t & Wood	ward Rd.			
				J		1
			L	• Ø	3	■ Ø4

B - 2025 AM Peak Build Implementation Year 2025 Synchro 12 Report 2024017_Synchro.syn

	1	*	†	-	ļ		
Lane Group	WBL	WBR	NBT	SBL	SBT		
Lane Configurations	ሻ	7	f)	7	^		
Traffic Volume (vph)	366	165	133	133	286		
Future Volume (vph)	366	165	133	133	286		
Turn Type	Prot	Perm	NA	pm+pt	NA		
Protected Phases	6		4	3	8		
Permitted Phases	6	6		8			
Detector Phase	6	6	4	3	8		
Switch Phase							
Minimum Initial (s)	8.0	8.0	12.0	3.0	12.0		
Minimum Split (s)	27.5	27.5	32.5	9.5	23.5		
Total Split (s)	30.0	30.0	35.0	10.0	45.0		
Total Split (%)	40.0%	40.0%	46.7%	13.3%	60.0%		
Yellow Time (s)	3.5	3.5	4.0	3.0	4.0		
All-Red Time (s)	2.0	2.0	1.5	0.5	1.5		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	5.5	5.5	5.5	3.5	5.5		
Lead/Lag			Lag	Lead			
Lead-Lag Optimize?			Yes	Yes			
Recall Mode	Max	Max	Max	Max	Max		
Act Effct Green (s)	24.5	24.5	29.5	41.5	39.5		
Actuated g/C Ratio	0.33	0.33	0.39	0.55	0.53		
v/c Ratio	0.40	0.19	0.19	0.14	0.18		
Control Delay (s/veh)	22.3	5.3	10.0	8.7	10.0		
Queue Delay	0.0	0.0	0.0	0.0	0.0		
Total Delay (s/veh)	22.3	5.3	10.0	8.7	10.0		
LOS	С	Α	В	Α	Α		
Approach Delay (s/veh)	17.0		10.0		9.6		
Approach LOS	В		В		Α		
Intersection Summary							
Cycle Length: 75							
Actuated Cycle Length: 75							
Natural Cycle: 70							
Control Type: Actuated-Unco	ordinated	l					
Maximum v/c Ratio: 0.40							
Intersection Signal Delay (s/v	/eh): 13.0			Ir	ntersection	n LOS: B	
Intersection Capacity Utilizati						of Service A	
Analysis Period (min) 15							
Splits and Phases: 1: Woo	dward Ro	1 & SR 3	03/2nd St				
Opino and i riases. 1. Woo	awaru No	. a or o	JO/2110 OL	τ.	I	†	
				→ ¢	33	Ø4	

C - 2025 PM Peak No Build	Synchro 12 Report
Implementation Year 2025	2024017 Synchro syn

	•	*	†	1	1	ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	*	7	1		7	↑	
Traffic Volume (veh/h)	366	165	133	93	133	286	
Future Volume (veh/h)	366	165	133	93	133	286	
Initial Q (Qb), veh	0	0	0	0	0	0	
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	
Ped-Bike Adj(A_pbT)	1.00	1.00		0.98	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No		No			No	
Adj Sat Flow, veh/h/ i n	1796	1722	1870	1841	1559	1796	
Adj Flow Rate, veh/h	220	99	80	56	80	172	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Percent Heavy Veh, %	7	12	2	4	23	7	
Cap, veh/h	559	477	399	279	581	946	
Arrive On Green	0.33	0.33	0.39	0.39	0.09	0.53	
Sat Flow, veh/h	1711	1459	1013	709	1485	1796	
Grp Volume(v), veh/h	220	99	0	136	80	172	
Grp Sat Flow(s),veh/h/ln	1711	1459	0	1723	1485	1796	
Q Serve(g_s), s	7.5	3.7	0.0	3.9	2.1	3.8	
Cycle Q Clear(g_c), s	7.5	3.7	0.0	3.9	2.1	3.8	
Prop In Lane	1.00	1.00		0.41	1.00		
Lane Grp Cap(c), veh/h	559	477	0	678	581	946	
V/C Ratio(X)	0.39	0.21	0.00	0.20	0.14	0.18	
Avail Cap(c_a), veh/h	559	477	0	678	581	946	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	19.5	18.2	0.0	15.0	9.9	9.3	
Incr Delay (d2), s/veh	2.1	1.0	0.0	0.7	0.5	0.4	
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	3.1	1.3	0.0	1.5	0.7	1.4	
Unsig. Movement Delay, s/veh							
LnGrp Delay(d), s/veh	21.6	19.2	0.0	15.7	10.4	9.7	
LnGrp LOS	С	В		В	В	Α	
Approach Vol, veh/h	319		136			252	
Approach Delay, s/veh	20.9		15.7			9.9	
Approach LOS	С		В			Α	
Timer - Assigned Phs			3	4		6	8
Phs Duration (G+Y+Rc), s			10.0	35.0		30.0	45.0
Change Period (Y+Rc), s			3.5	5.5		5.5	5.5
Max Green Setting (Gmax), s			6.5	29.5		24.5	39.5
Max Q Clear Time (g c+l1), s			4.1	5.9		9.5	5.8
Green Ext Time (p_c), s			0.0	0.4		0.9	0.6
Intersection Summary							
HCM 7th Control Delay, s/veh			16.0				
HCM 7th LOS			В				

Synchro 12 Report 2024017_Synchro.syn C - 2025 PM Peak No Build Implementation Year 2025

Timings
1: SR 303/2nd St & Woodward Rd.

11/23/2024

Movement

	1	*	†	1	Ţ	
Lane Group	WBL	WBR	NBT	SBL	SBT	
Lane Configurations	7	7	13		^	
Traffic Volume (vph)	400	165	140	133	289	
Future Volume (vph)	400	165	140	133	289	
Turn Type	Prot	Perm	NA	pm+pt	NA	
Protected Phases	6		4	3	8	
Permitted Phases	6	6		8		
Detector Phase	6	6	4	3	8	
Switch Phase						
Minimum Initial (s)	8.0	8.0	12.0	3.0	12.0	
Minimum Split (s)	27.5	27.5	32.5	9.5	17.5	
Total Split (s)	30.0	30.0	35.0	10.0	45.0	
Total Split (%)	40.0%	40.0%	46.7%	13.3%	60.0%	
Yellow Time (s)	3.5	3.5	4.0	3.5	4.0	
All-Red Time (s)	2.0	2.0	1.5	0.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.5	5.5	5.5	4.0	5.5	
Lead/Lag			Lag	Lead		
Lead-Lag Optimize?			Yes	Yes		
Recall Mode	Max	Max	Max	None	Max	
Act Effct Green (s)	24.5	24.5	31.5	41.0	39.5	
Actuated g/C Ratio	0.33	0.33	0.42	0.55	0.53	
v/c Ratio	0.44	0.19	0.24	0.15	0.19	
Control Delay (s/veh)	22.9	5.3	8.7	9.0	10.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay (s/veh)	22.9	5.3	8.7	9.0	10.0	
LOS	С	Α	Α	Α	Α	
Approach Delay (s/veh)	17.8		8.7		9.7	
Approach LOS	В		Α		Α	
Intersection Summary						
Cycle Length: 75						
Actuated Cycle Length: 75						
Natural Cycle: 70						
Control Type: Semi Act-Unc	oord					
Maximum v/c Ratio: 0.44	ooru					
Intersection Signal Delay (s/	/vah 12 0			1.	ntersection	LOCUE
Intersection Signal Delay (s/ Intersection Capacity Utiliza						of Service A
Analysis Period (min) 15	111011 52.7%			I	SU Level	or Service A
Analysis Period (min) 15						
Splits and Phases: 1: SR	303/2nd S	t & Wood	ward Rd.			
				7		1
				→ ø	_	Ø4
				10 s	3	5 s

Movement	WBL	WBR	INDI	NBK	OBL	201	
Lane Configurations	7	7	T ₂		*	^	
raffic Volume (veh/h)	400	165	140	166	133	289	
uture Volume (veh/h)	400	165	140	166	133	289	
nitial Q (Qb), veh	0	0	0	0	0	0	
ane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	
Ped-Bike Adj(A pbT)	1.00	1.00		0.98	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No		No			No	
Adi Sat Flow, veh/h/In	1796	1722	1870	1841	1559	1796	
Adj Flow Rate, veh/h	240	99	84	100	80	173	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Percent Heavy Veh, %	7	12	2	4	23	7	
Cap, veh/h	559	477	329	391	520	946	
Arrive On Green	0.33	0.33	0.43	0.43	0.04	0.53	
Sat Flow, veh/h	1711	1459	767	913	1485	1796	
Grp Volume(v), veh/h	240	99	0	184	80	173	
Grp Sat Flow(s), veh/h/ln	1711	1459	0	1680	1485	1796	
Q Serve(g_s), s	8.2	3.7	0.0	5.3	2.1	3.8	
Cycle Q Clear(g_c), s	8.2	3.7	0.0	5.3	2.1	3.8	
Prop In Lane	1.00	1.00	0.0	0.54	1.00	0.0	
Lane Grp Cap(c), veh/h	559	477	0	720	520	946	
V/C Ratio(X)	0.43	0.21	0.00	0.26	0.15	0.18	
Avail Cap(c_a), veh/h	559	477	0	720	572	946	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	19.8	18.2	0.0	13.8	10.3	9.3	
Incr Delay (d2), s/veh	2.4	1.0	0.0	0.9	0.1	0.4	
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	3.5	1.3	0.0	1.9	0.6	1.3	
Unsig, Movement Delay, s/veh							
LnGrp Delay(d), s/veh	22.2	19.2	0.0	14.6	10.4	9.7	
LnGrp LOS	С	В		В	В	A	
Approach Vol. veh/h	339		184			253	
Approach Delay, s/veh	21.3		14.6			9.9	
Approach LOS	C		В			A	
Timer - Assigned Phs			3	4		6	8
Phs Duration (G+Y+Rc), s			7.4	37.6		30.0	45.0
Change Period (Y+Rc), s			4.0	5.5		5.5	5.5
Max Green Setting (Gmax), s			6.0	29.5		24.5	39.5
Max Q Clear Time (g_c+I1), s			4.1	7.3		10.2	5.8
O				0.9		0.9	0.9
reen Ext Time (p_c), s			0.0	0.9		0.5	***
ntersection Summary				0.9		0.0	
Green Ext Time (p_c), s Intersection Summary HCM 7th Control Delay, s/veh HCM 7th LOS			16.0 B	0.9		0.0	

Synchro 12 Report 2024017_Synchro.syn D - 2025 PM Peak Build Implementation Year 2025

D - 2025 PM Peak Build Implementation Year 2025 Synchro 12 Report 2024017_Synchro.syn

Intersection						
Int Delay, s/veh	0					
		WED	NDT	NDD	CDI	CDT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y	0	4	0	0	4
Traffic Vol, veh/h	0	0	857	0	0	229
Future Vol, veh/h	0	0	857	0	0	229
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	-	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	6	0	2	100	100	0
Mvmt Flow	0	0	553	0	0	148
Major/Minor	Minor1		Major1	N	//ajor2	
Conflicting Flow All	701	553	0	0	553	0
Stage 1	553	-	-	-	-	-
Stage 2	148	_	-	_	_	_
Critical Hdwy	6.46	6.2	<u>-</u>	_	5.1	_
Critical Hdwy Stg 1	5.46	0.2	-	_	J. I	_
Critical Hdwy Stg 2	5.46		-	_		-
Follow-up Hdwy	3.554	3.3	-	_	3.1	_
Pot Cap-1 Maneuver	399	537	-	_	667	
Stage 1	568	551	-	_	-	_
	870	-	-	-	-	-
Stage 2	670	-			-	
Platoon blocked, %	200	E27	-	-	667	-
Mov Cap-1 Maneuver	399	537	-	-	667	-
Mov Cap-2 Maneuver	399	-	-	-	-	-
Stage 1	568	-	-	-	-	-
Stage 2	870	-	-	_	-	-
Approach	WB		NB		SB	
HCM Control Delay, sa			0		0	
HCM LOS	A		U		U	
TIOWI LOO	Λ					
Minor Lane/Major Mvn	nt	NBT	NBRWBLn1	SBL	SBT	
Capacity (veh/h)		-		667	-	
HCM Lane V/C Ratio		-		-	-	
HCM Control Delay (s.	/veh)	-	- 0	0	-	
HCM Lane LOS		-	- A	Α	-	
HCM 95th %tile Q(veh	1)	-		0	-	
701110 04(1011	7			•		

Intersection												
Int Delay, s/veh	0.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	4	0	7	0	1	1	27	860	0	0	232	11
Future Vol, veh/h	4	0	7	0	1	1	27	860	0	0	232	11
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	е,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	84	84	84	84	84	84	84	84	84	84	84	84
Heavy Vehicles, %	100	0	100	100	100	100	100	2	100	0	6	100
Mvmt Flow	3	0	5	0	1	1	19	614	0	0	166	8
Major/Minor	Minor		N	Minor1			loier1			laier?		
	Minor2	000			000		//ajor1	^		Major2	0	^
Conflicting Flow All	823	823	170	819	826	614	174	0	0	614	0	0
Stage 1	170	170	-	653	653	-	-	-	-	-	-	-
Stage 2	653	653	-	166	174	-	-	-	-	-	-	-
Critical Hdwy	8.1	6.5	7.2	8.1	7.5	7.2	5.1	-	-	4.1	-	-
Critical Hdwy Stg 1	7.1	5.5	-	7.1	6.5	-	-	-	-	-	-	-
Critical Hdwy Stg 2	7.1	5.5	-	7.1	6.5	-	-	-	-	-	-	-
Follow-up Hdwy	4.4	4	4.2	4.4	4.9	4.2	3.1	-	-	2.2	-	-
Pot Cap-1 Maneuver	204	311	673	205	219	351	978	-	-	975	-	-
Stage 1	648	762	-	328	341	-	-	-	-	-	-	-
Stage 2	328	467	-	652	603	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	197	302	673	198	212	351	978	-	-	975	-	-
Mov Cap-2 Maneuver	197	302	-	198	212	-	-	-	-	-	-	-
Stage 1	648	762	-	318	331	-	-	-	-	-	-	-
Stage 2	316	453	-	647	603	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s/				18.68			0.27			0		
HCM LOS	C C			C			U.L.I			- 0		
TOW LOO	J			U								
Minor Long /Maior M		NDI	NDT	NDD !	TDL 41	MDI 4	CDI	CDT	CDD			
Minor Lane/Major Mvn	nt	NBL	NBT	INRK I	EBLn1V		SBL	SBT	SBR			
Capacity (veh/h)		55	-	-	358	265	975	-	-			
HCM Lane V/C Ratio		0.02	-	-	0.022		-	-	-			
HCM Control Delay (s/	/veh)	8.8	0	-	15.3	18.7	0	-	-			
HCM Lane LOS		Α	Α	-	С	С	Α	-	-			
HCM 95th %tile Q(veh	1)	0.1	-	-	0.1	0	0	-	-			

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		ĵ.			4
Traffic Vol, veh/h	0	4	233	4	0	684
Future Vol, veh/h	0	4	233	4	0	684
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	6	0	2	100	100	0
Mvmt Flow	0	2	140	2	0	410
Major/Minor I	Minor1	N	Major1	N	//ajor2	
Conflicting Flow All	551	141	0	0	142	0
Stage 1	141	-	-	-		-
Stage 2	410	_	_	_	_	_
Critical Hdwy	6.46	6.2	-	_	5.1	-
Critical Hdwy Stg 1	5.46	-	-	_	_	_
Critical Hdwy Stg 2	5.46	-	-	-	-	-
Follow-up Hdwy	3.554	3.3	-	-	3.1	-
Pot Cap-1 Maneuver	488	912	-	-	1009	-
Stage 1	876	-	-	-	-	-
Stage 2	661	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	488	912	-	-	1009	-
Mov Cap-2 Maneuver	488	-	-	-	-	-
Stage 1	876	-	-	-	-	-
Stage 2	661	-	-	-	-	-
Annroach	WB		NB		SB	
Approach						
HCM Control Delay, s/v			0		0	
HCIVI LOS	Α					
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1	SBL	SBT
		-	-	912	1009	-
Capacity (veh/h)						
HCM Lane V/C Ratio		-	-	0.003		-
HCM Lane V/C Ratio HCM Control Delay (s/	veh)	-	-	0.003	0	-
HCM Lane V/C Ratio	,				0 A 0	

Intersection												
Int Delay, s/veh	0.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		1100	4	<u></u>	1100	4	11511	UDL	4	UBIT
Traffic Vol, veh/h	13	1	22	0	0	4	14	235	4	1	694	6
Future Vol, veh/h	13	1	22	0	0	4	14	235	4	1	694	6
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	100	0	100	100	100	100	100	2	100	0	6	100
Mvmt Flow	8	1	13	0	0	2	8	141	2	1	416	4
Major/Minor N	linor2		1	Minor1		N	/lajor1		N	Major2		
Conflicting Flow All	577	580	418	577	580	142	420	0	0	143	0	0
Stage 1	419	419	-	159	159	-	-	-	-	-	-	-
Stage 2	158	160	-	418	421	-	-	-	-	-	-	-
Critical Hdwy	8.1	6.5	7.2	8.1	7.5	7.2	5.1	-	-	4.1	-	-
Critical Hdwy Stg 1	7.1	5.5	-	7.1	6.5	-	-	-	-	-	-	-
Critical Hdwy Stg 2	7.1	5.5	-	7.1	6.5	-	-	-	-	-	-	-
Follow-up Hdwy	4.4	4	4.2	4.4	4.9	4.2	3.1	-	-	2.2	-	-
Pot Cap-1 Maneuver	311	429	469	311	317	700	763	-	-	1452	-	-
Stage 1	457	593	-	658	613	-	-	-	-	-	-	-
Stage 2	659	769	-	458	451	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	306	423	469	298	313	700	763	-	-	1452	-	-
Mov Cap-2 Maneuver	306	423	-	298	313	-	-	-	-	-	-	-
Stage 1	457	593	-	650	606	-	-	-	-	-	-	-
Stage 2	649	760	-	445	451	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s/v	14.7			10.16			0.54			0.01		
HCM LOS	В			В								
Minor Lane/Major Mvmt		NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		99	-	-	393	700	3	-	_			
HCM Lane V/C Ratio		0.011	-	-	0.055		0	-	-			
HCM Control Delay (s/v	eh)	9.8	0	-	14.7	10.2	7.5	0	-			
HCM Lane LOS	,	Α	A	-	В	В	A	A	-			
HCM 95th %tile Q(veh)		0	-	-	0.2	0	0	-	-			

Timings 3: SR 303/2nd St. & SR 505/Rio Bravo Blvd.

11/23/2024

	•	-	*	1	-	*	1	†	1	↓	4	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	7	^	7	7	^	7	7	4	*	^	7	
Traffic Volume (vph)	413	1468	262	40	702	76	226	130	61	79	133	
Future Volume (vph)	413	1468	262	40	702	76	226	130	61	79	133	
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	pm+pt	NA	Perm	
Protected Phases	7	4		3	8		5	2	1	6		
Permitted Phases	4		4	8		8	2		6		6	
Detector Phase	7	4	4	3	8	8	5	2	1	6	6	
Switch Phase												
Minimum Initial (s)	7.0	10.0	10.0	7.0	10.0	10.0	7.0	15.0	7.0	15.0	15.0	
Minimum Split (s)	14.1	46.1	46.1	14.1	17.1	17.1	13.1	29.1	13.1	21.1	21.1	
Total Split (s)	35.0	40.0	40.0	45.0	50.0	50.0	20.0	65.0	20.0	65.0	65.0	
Total Split (%)	20.6%	23.5%	23.5%	26.5%	29.4%	29.4%	11.8%	38.2%	11.8%	38.2%	38.2%	
Yellow Time (s)	5.6	5.6	5.6	5.6	5.6	5.6	4.6	4.6	4.6	4.6	4.6	
A ll- Red Time (s)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.1	7.1	7.1	7.1	7.1	7.1	6.1	6.1	6.1	6.1	6.1	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	Min	Min	None	Min	Min	None	Min	None	None	None	
Act Effct Green (s)	50.4	42.5	42.5	29.1	21.9	21.9	33.7	23.6	23.1	15.5	15.5	
Actuated g/C Ratio	0.51	0.43	0.43	0.30	0.22	0.22	0.34	0.24	0.24	0.16	0.16	
v/c Ratio	0.68	0.81	0.29	0.17	0.75	0.16	0.43	0.37	0.17	0.23	0.29	
Control Delay (s/veh)	22.4	30.4	8.0	17.1	42.6	2.4	29.0	35.5	26.7	42.5	4.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay (s/veh)	22.4	30.4	8.0	17.1	42.6	2.4	29.0	35.5	26.7	42.5	4.3	
LOS	С	С	Α	В	D	Α	С	D	С	D	Α	
Approach Delay (s/veh)		26.1			37.6			31.9		20.4		
Approach LOS		С			D			С		С		
Intersection Summary												
Cycle Length: 170												
Actuated Cycle Length: 98												
Natural Cycle: 105												
Control Type: Actuated-Unc	coordinated	j										
Maximum v/c Ratio: 0.81												
Intersection Signal Delay (s/veh): 28.9 Intersection LOS: C												
Intersection Capacity Utilization 82.8% ICU Level of Service E												
Analysis Period (min) 15												
Splits and Phases: 3: SR 303/2nd St. & SR 505/Rio Bravo Blvd.												
y øı y øı	2				1	- Ø3			4	Ø4		
00					45				10			

A - 2025 AM Peak No Build	Synchro 12 Repor
Implementation Year 2025	2024017 Synchro sy

Ø7

	۶	→	*	1	←	*	4	1	1	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	*	^	7	*	^	7	*	1,		*		7
Traffic Volume (veh/h)	413	1468	262	40	702	76	226	130	56	61	79	133
Future Volume (veh/h)	413	1468	262	40	702	76	226	130	56	61	79	133
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	(
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/In	1885	1856	1841	1826	1856	1693	1856	1811	1826	1737	1826	1870
Adj Flow Rate, veh/h	344	1223	218	33	585	63	188	108	47	51	66	(
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, %	1	3	4	5	3	14	3	6	5	11	5	2
Cap, veh/h	454	1311	580	173	907	369	461	267	116	345	315	
Arrive On Green	0.16	0.37	0.37	0.04	0.26	0.26	0.11	0.22	0.22	0.06	0.17	0.00
Sat Flow, veh/h	1795	3526	1560	1739	3526	1434	1767	1197	521	1654	1826	1585
Grp Volume(v), veh/h	344	1223	218	33	585	63	188	0	155	51	66	C
Grp Sat Flow(s),veh/h/ln	1795	1763	1560	1739	1763	1434	1767	0	1717	1654	1826	1585
Q Serve(g_s), s	11.6	29.0	8.9	1.2	12.8	3.0	7.4	0.0	6.7	2.1	2.7	0.0
Cycle Q Clear(g c), s	11.6	29.0	8.9	1.2	12.8	3.0	7.4	0.0	6.7	2.1	2.7	0.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.30	1.00		1.00
Lane Grp Cap(c), veh/h	454	1311	580	173	907	369	461	0	384	345	315	
V/C Ratio(X)	0.76	0.93	0.38	0.19	0.65	0.17	0.41	0.00	0.40	0.15	0.21	
Avail Cap(c_a), veh/h	745	1334	590	855	1739	708	552	0	1163	515	1237	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	19.1	26.3	19.9	23.9	28.8	25.1	25.0	0.0	28.8	26.7	30.9	0.0
Incr Delay (d2), s/veh	1.0	11.8	0.3	0.5	0.6	0.2	0.2	0.0	0.8	0.1	0.4	0.0
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	4.4	13.0	3.0	0.5	5.1	1.0	2.9	0.0	2.7	0.8	1.2	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d), s/veh	20.1	38.1	20.2	24.4	29.3	25.2	25.2	0.0	29.6	26.7	31.3	0.0
LnGrp LOS	С	D	С	С	С	С	С		С	С	С	
Approach Vol. veh/h		1785			681			343			117	
Approach Delay, s/veh		32.5			28.7			27.2			29.3	
Approach LOS		С			С			С			С	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	11,1	25.5	10.9	39.4	15.5	21.1	20.9	29.5				
Change Period (Y+Rc), s	6.1	6.1	7.1	7.1	6.1	6.1	7.1	7.1 42.9				
Max Green Setting (Gmax), s	13.9	58.9	37.9	32.9	13.9	58.9	27.9					
Max Q Clear Time (g_c+l1), s Green Ext Time (p_c), s	4.1 0.0	8.7 1.1	3.2 0.1	31.0 1.3	9.4 0.1	4.7 0.4	13.6 0.2	14.8 3.2				
	0.0	1.1	0.1	1.0	0.1	0.4	0.2	J.2				
Intersection Summary												
HCM 7th Control Delay, s/veh			30.9									
HCM 7th LOS			С									
Notes												
User approved pedestrian inter	val to be	e less tha	n phase r	nax greei	١.							
Unsignalized Delay for [SBR] is						delay and	intersect	ion delay				

Synchro 12 Report 2024017_Synchro.syn A - 2025 AM Peak No Build Implementation Year 2025

Timings 3: SR 303/2nd St & SR 500/Rio Bravo Blvd.

11/23/2024

	•	-	*	1	+	*	1	†	1	↓	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	7	44	7	7	44	7	ሻ	ĵ,	7	4	7	
Traffic Volume (vph)	413	1468	262	40	702	76	226	130	61	79	133	
Future Volume (vph)	413	1468	262	40	702	76	226	130	61	79	133	
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	pm+pt	NA	Perm	
Protected Phases	7	4		3	8		5	2	1	6		
Permitted Phases	4		4	8		8	2		6		6	
Detector Phase	7	4	4	3	8	8	5	2	1	6	6	
Switch Phase												
Minimum Initial (s)	7.0	10.0	10.0	7.0	10.0	10.0	7.0	15.0	7.0	15.0	15.0	
Minimum Split (s)	14.1	46.1	46.1	14.1	17.1	17.1	13.1	29.1	13.1	21.1	21.1	
Total Split (s)	35.0	40.0	40.0	45.0	50.0	50.0	20.0	65.0	20.0	65.0	65.0	
Total Split (%)	20.6%	23.5%	23.5%	26.5%	29.4%	29.4%	11.8%	38.2%	11.8%	38.2%	38.2%	
Yellow Time (s)	5.6	5.6	5.6	5.6	5.6	5.6	4.6	4.6	4.6	4.6	4.6	
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.1	7.1	7.1	7.1	7.1	7.1	6.1	6.1	6.1	6.1	6.1	
_ead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	Min	Min	None	Min	Min	None	Min	None	None	None	
Act Effct Green (s)	50.4	42.5	42.5	29.1	21.9	21.9	33.7	23.6	23.1	15.5	15.5	
Actuated g/C Ratio	0.51	0.43	0.43	0.30	0.22	0.22	0.34	0.24	0.24	0.16	0.16	
v/c Ratio	0.68	0.81	0.29	0.17	0.75	0.16	0.43	0.37	0.17	0.23	0.29	
Control Delay (s/veh)	22.4	30.4	8.0	17.1	42.6	2.4	29.0	35.5	26.7	42.5	4.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay (s/veh)	22.4	30.4	8.0	17.1	42.6	2.4	29.0	35.5	26.7	42.5	4.3	
LOS	С	С	Α	В	D	Α	С	D	С	D	Α	
Approach Delay (s/veh)		26.1			37.6			31.9		20.4		
Approach LOS		С			D			С		С		
ntersection Summary												
Cycle Length: 170												
Actuated Cycle Length: 98												
Natural Cycle: 105												
Control Type: Actuated-Und	coordinated	1										
Maximum v/c Ratio: 0.81												
ntersection Signal Delay (s	/veh): 28.9			li	ntersectio	n LOS: C						
ntersection Capacity Utiliza	ation 82.8%)		10	CU Level	of Servic	e E					
Analysis Period (min) 15												
Splits and Phases: 3: SR	303/2nd S	st & SR 50	00/Rio Bra	avo Blvd.					1 4			
→ Ø1 → Ø	2				1	- Ø3			1	Ø4		

B - 2025 AM Peak Build	Synchro 12 Report
Implementation Year 2025	2024017_Synchro.syn

Ø7

† ø8

	۶	→	*	1	•	*	4	†	-	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	44	7	*	^	7	*	1		*		7
Traffic Volume (veh/h)	413	1468	262	40	702	76	226	130	56	61	79	133
Future Volume (veh/h)	413	1468	262	40	702	76	226	130	56	61	79	133
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	C
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/In	1885	1856	1841	1826	1856	1693	1856	1811	1826	1737	1826	1870
Adj Flow Rate, veh/h	344	1223	218	33	585	63	188	108	47	51	66	C
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, %	1	3	4	5	3	14	3	6	5	11	5	2
Cap, veh/h	454	1311	580	173	907	369	461	267	116	345	315	
Arrive On Green	0.16	0.37	0.37	0.04	0.26	0.26	0.11	0.22	0.22	0.06	0.17	0.00
Sat Flow, veh/h	1795	3526	1560	1739	3526	1434	1767	1197	521	1654	1826	1585
Grp Volume(v), veh/h	344	1223	218	33	585	63	188	0	155	51	66	0
Grp Sat Flow(s),veh/h/ln	1795	1763	1560	1739	1763	1434	1767	0	1717	1654	1826	1585
Q Serve(q s), s	11.6	29.0	8.9	1.2	12.8	3.0	7.4	0.0	6.7	2.1	2.7	0.0
Cycle Q Clear(g c), s	11.6	29.0	8.9	1.2	12.8	3.0	7.4	0.0	6.7	2.1	2.7	0.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.30	1.00		1.00
Lane Grp Cap(c), veh/h	454	1311	580	173	907	369	461	0	384	345	315	
V/C Ratio(X)	0.76	0.93	0.38	0.19	0.65	0.17	0.41	0.00	0.40	0.15	0.21	
Avail Cap(c_a), veh/h	745	1334	590	855	1739	708	552	0	1163	515	1237	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	19.1	26.3	19.9	23.9	28.8	25.1	25.0	0.0	28.8	26.7	30.9	0.0
Incr Delay (d2), s/veh	1.0	11.8	0.3	0.5	0.6	0.2	0.2	0.0	0.8	0.1	0.4	0.0
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	4.4	13.0	3.0	0.5	5.1	1.0	2.9	0.0	2.7	0.8	1.2	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d), s/veh	20.1	38.1	20.2	24.4	29.3	25.2	25.2	0.0	29.6	26.7	31.3	0.0
LnGrp LOS	С	D	С	С	С	С	С		С	С	С	
Approach Vol, veh/h		1785			681			343			117	
Approach Delay, s/veh		32.5			28.7			27.2			29.3	
Approach LOS		С			С			С			С	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	11.1	25.5	10.9	39.4	15.5	21.1	20.9	29.5				
Change Period (Y+Rc), s	6.1	6.1	7.1	7.1	6.1	6.1	7.1	7.1				
Max Green Setting (Gmax), s	13.9	58.9	37.9	32.9	13.9	58.9	27.9	42.9				
Max Q Clear Time (g c+l1), s	4.1	8.7	3.2	31.0	9.4	4.7	13.6	14.8				
Green Ext Time (p_c), s	0.0	1.1	0.1	1.3	0.1	0.4	0.2	3.2				
	0.0		V.,		•••	•••	V	V.=				
Intersection Summary			30.9									
HCM 7th Control Delay, s/veh HCM 7th LOS			30.9 C									
Notes												
User approved pedestrian inter	val to be	e less that	n phase r	nax greer	٦.							
Unsignalized Delay for [SBR] is						delay and	intersect	ion delay				

Synchro 12 Report 2024017_Synchro.syn B - 2025 AM Peak Build Implementation Year 2025

Lane Group

Turn Type

Lane Configurations

Traffic Volume (vph)

Future Volume (vph)

Protected Phases

Permitted Phases

Minimum Initial (s)

Minimum Split (s)

Detector Phase

Switch Phase

Total Split (s)

Total Split (%)

Yellow Time (s)

All-Red Time (s)

Lost Time Adjust (s)

Total Lost Time (s)

Lead-Lag Optimize?

Act Effct Green (s)

Actuated g/C Ratio

Control Delay (s/veh)

Total Delay (s/veh)

Approach Delay (s/veh)

Intersection Summary Cycle Length: 170

Actuated Cycle Length: 104 Natural Cycle: 105

Analysis Period (min) 15

Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 1.03

Intersection Signal Delay (s/veh): 40.3 Intersection Capacity Utilization 82.9%

Lead/Lag

Recall Mode

v/c Ratio

LOS

Queue Delay

Approach LOS

3: SR 303/2nd St. & SR 505/Rio Bravo Blvd.

EBL

113

113

7.0

14.1

35.0

5.6

1.5

0.0

7.1

Lead

Yes

None

56.4

0.54

0.43

20.4

0.0

20.4

Splits and Phases: 3: SR 303/2nd St. & SR 505/Rio Bravo Blvd.

Ø6

20.6% 23.5%

pm+pt

EBT

^

818

NA

4

4

10.0

46.1

40.0

5.6

1.5

0.0

7.1

Lag

Yes

Min

52.8

0.51

0.37

17.8

0.0

17.8

15.3

EBR

218

218

10.0

46.1

40.0

5.6

1.5

0.0

7.1

Lag Lead

Yes

Min None

52.8

0.51

0.20

3.6

0.0

3.6

23.5%

Perm pm+pt

WBL

28

28 1871

3

7.0

14.1

45.0

26.5%

5.6

0.0

7.1

Yes

50.0

0.48

0.05

11.5

0.0

11.5

WBT

^

8

8

10.0

17.1

50.0

5.6

0.0

7.1

Lag

Yes

Min

43.0

0.41

1.03

64.2

0.0

64.2

62.5

Intersection LOS: D

ICU Level of Service E

€ Ø3

Ø7

29.4%

WBR

28

28 181

8

10.0

17.1

50.0

5.6

0.0

7.1

Lag Lead

Yes

Min None

43.0

0.41

0.03

0.1 30.1

0.1

29.4%

44

2

2

15.0

29.1

65.0

38.2%

4.6

0.0

6.1

Lag

Yes

Min None

24.6

0.24

0.19

20.7

0.0

20.7

26.7

С

5

5

7.0

13.1

20.0

11.8%

4.6

0.0

6.1

Yes

32.1

0.31

0.38

0.0

30.1

52

1

7.0

13.1

20.0

11.8%

4.6

0.0

6.1

Lead

Yes

22.2

0.21

0.15

27.3

0.0

27.3

11/23/2024

SBR

351

351

6

15.0

21.1

65.0

4.6

1.5

0.0

6.1

Lag

Yes

None

15.0

0.14

0.60

11.0

0.0

11.0

В

Synchro 12 Report

2024017_Synchro.syn

38.2%

105

105

NA Perm

6

6

15.0

21.1

65.0

4.6

0.0

6.1

Lag

Yes

None

15.0

0.14

0.32

44.7

0.0

44.7

19.6

♣ Ø4

Ø8

38.2%

HCM 7th Signalized Intersection Summary 3: SR 303/2nd St. & SR 505/Rio Bravo Blvd.

	123	

	•	-	*	1	←	*	1	†	1	1	†	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	S
Lane Configurations	*	^	7	7	^	7	7	1		7	^	
Traffic Volume (veh/h)	113	818	218	28	1871	28	181	44	56	52	105	
Future Volume (veh/h)	113	818	218	28	1871	28	181	44	56	52	105	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		0.98	1.00		1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/In	1885	1856	1841	1826	1856	1693	1856	1811	1826	1737	1826	1
Adj Flow Rate, veh/h	90	654	174	22	1497	22	145	35	45	42	84	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Percent Heavy Veh, %	1	3	4	5	3	14	3	6	5	11	5	
Cap, veh/h	193	1637	723	349	1522	606	370	136	175	333	275	
Arrive On Green	0.06	0.46	0.46	0.03	0.43	0.43	0.09	0.19	0.19	0.05	0.15	(
Sat Flow, veh/h	1795	3526	1557	1739	3526	1403	1767	718	923	1654	1826	1
Grp Volume(v), veh/h	90	654	174	22	1497	22	145	0	80	42	84	
Grp Sat Flow(s), veh/h/ln	1795	1763	1557	1739	1763	1403	1767	0	1641	1654	1826	1
Q Serve(g_s), s	2.6	12.1	6.7	0.7	41.7	0.9	6.8	0.0	4.1	2.1	4.1	
Cycle Q Clear(g_c), s	2.6	12.1	6.7	0.7	41.7	0.9	6.8	0.0	4.1	2.1	4.1	
Prop In Lane	1.00	12.1	1.00	1.00	71.7	1.00	1.00	0.0	0.56	1.00	7.1	
Lane Grp Cap(c), veh/h	193	1637	723	349	1522	606	370	0	311	333	275	
V/C Ratio(X)	0.47	0.40	0.24	0.06	0.98	0.04	0.39	0.00	0.26	0.13	0.31	
Avail Cap(c_a), veh/h	581	1637	723	957	1522	606	462	0.00	973	484	1083	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	22.5	17.5	16.0	14.9	27.9	16.3	31.5	0.0	34.3	32.7	37.6	- '
Incr Delay (d2), s/veh	0.7	0.1	0.1	0.1	19.1	0.0	0.3	0.0	0.5	0.1	0.8	
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	1.0	4.5	2.2	0.0	19.8	0.0	2.8	0.0	1.6	0.0	1.8	
Unsig. Movement Delay, s/veh		4.0	۷.۷	0.3	19.0	0.3	2.0	0.0	1.0	0.0	1.0	
	23.1	17.6	16.2	14.9	47.0	16.3	31.8	0.0	34.8	32.8	38.3	
LnGrp Delay(d), s/veh	23.1 C		10.2 B	14.9 B	47.0 D	10.3 B	31.0 C	0.0	34.0 C	32.0 C	30.3 D	
LnGrp LOS	C	В	В	В		В	U	005	C	U		
Approach Vol, veh/h		918			1541			225			126	
Approach Delay, s/veh		17.9			46.1			32.9			36.5	
Approach LOS		В			D			С			D	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	10.9	24.9	10.3	53.2	14.8	21.0	13.5	50.0				
Change Period (Y+Rc), s	6.1	6.1	7.1	7.1	6.1	6.1	7.1	7.1				
Max Green Setting (Gmax), s	13.9	58.9	37.9	32.9	13.9	58.9	27.9	42.9				
Max Q Clear Time (g_c+I1), s	4.1	6.1	2.7	14.1	8.8	6.1	4.6	43.7				
Green Ext Time (p_c), s	0.0	0.5	0.0	3.6	0.1	0.5	0.1	0.0				
Intersection Summary												
HCM 7th Control Delay, s/veh			35.4									
HCM 7th LOS			D									

User approved pedestrian interval to be less than phase max green.

Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay.

C - 2025 PM Peak No Build Implementation Year 2025

C - 2025 PM Peak No Build Implementation Year 2025

Synchro 12 Report

2024017_Synchro.syn

Timings
3: SR 303/2nd St & SR 500/Rio Bravo Blvd.

11/23/2024

	•	→	*	1	•	*	1	†	1	ļ	4	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	7	^	7	7	^	7	7	ħ	*	^	7	
Traffic Volume (vph)	124	818	218	28	1871	30	181	47	55	111	375	
Future Volume (vph)	124	818	218	28	1871	30	181	47	55	111	375	
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	pm+pt	NA	Perm	
Protected Phases	7	4		3	8		5	2	1	6		
Permitted Phases	4		4	8		8	2		6		6	
Detector Phase	7	4	4	3	8	8	5	2	1	6	6	
Switch Phase												
Minimum Initial (s)	7.0	10.0	10.0	7.0	10.0	10.0	7.0	15.0	7.0	15.0	15.0	
Minimum Split (s)	14.1	46.1	46.1	14.1	17.1	17.1	13.1	29.1	13.1	21.1	21.1	
Total Split (s)	35.0	40.0	40.0	45.0	50.0	50.0	20.0	65.0	20.0	65.0	65.0	
Total Split (%)	20.6%	23.5%	23.5%	26.5%	29.4%	29.4%	11.8%	38.2%	11.8%	38.2%	38.2%	
Yellow Time (s)	5.6	5.6	5.6	5.6	5.6	5.6	4.6	4.6	4.6	4.6	4.6	
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.1	7.1	7.1	7.1	7.1	7.1	6.1	6.1	6.1	6.1	6.1	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	Min	Min	None	Min	Min	None	Min	None	None	None	
Act Effct Green (s)	57.1	53.2	53.2	50.0	43.0	43.0	31.4	21.9	22.4	15.1	15.1	
Actuated g/C Ratio	0.55	0.51	0.51	0.48	0.41	0.41	0.30	0.21	0.21	0.14	0.14	
v/c Ratio	0.47	0.37	0.20	0.05	1.04	0.04	0.39	0.22	0.15	0.34	0.62	
Control Delay (s/veh)	22.0	17.7	3.6	11.5	65.5	0.1	30.4	23.4	27.6	45.2	11.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay (s/veh)	22.0	17.7	3.6	11.5	65.5	0.1	30.4	23.4	27.6	45.2	11.1	
LOS	С	В	Α	В	Е	Α	С	С	С	D	В	
Approach Delay (s/veh)		15.5			63.8			27.9		19.8		
Approach LOS		В			Е			С		В		
Intersection Summary Cycle Length: 170												
Actuated Cycle Length: 104	.4											
Natural Cycle: 105												
Control Type: Actuated-Und	oordinated	l										
Maximum v/c Ratio: 1.04												
Intersection Signal Delay (s.					ntersectio							
Intersection Capacity Utiliza	tion 84.1%)		10	CU Level	of Service	Ε					
Analysis Period (min) 15												
Splits and Phases: 3: SR	303/2nd S	t & SR 50	00/Rio Bra	avo Blvd.								
↓ _{Ø1}	2				1	• Ø3			1	ø4		

D - 2025 PM Peak Build	Synchro 12 Repor
Implementation Year 2025	2024017 Synchro.syn

ر و

	۶	-	*	1	•	*	1	†	1	1	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	19	^	7	7	^	7	*	ĵ.		*	^	7
Traffic Volume (veh/h)	124	818	218	28	1871	30	181	47	56	55	111	375
Future Volume (veh/h)	124	818	218	28	1871	30	181	47	56	55	111	375
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		0.98	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/In	1885	1856	1841	1826	1856	1693	1856	1811	1826	1737	1826	1870
Adj Flow Rate, veh/h	99	654	174	22	1497	24	145	38	45	44	89	0
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Percent Heavy Veh, %	1	3	4	5	3	14	3	6	5	11	5	2
Cap, veh/h	194	1639	724	350	1520	605	365	142	168	331	275	
Arrive On Green	0.07	0.46	0.46	0.03	0.43	0.43	0.09	0.19	0.19	0.05	0.15	0.00
Sat Flow, veh/h	1795	3526	1557	1739	3526	1403	1767	754	893	1654	1826	1585
Grp Volume(v), veh/h	99	654	174	22	1497	24	145	0	83	44	89	0
Grp Sat Flow(s),veh/h/ln	1795	1763	1557	1739	1763	1403	1767	0	1647	1654	1826	1585
Q Serve(g_s), s	2.9	12.1	6.7	0.7	41.8	1.0	6.8	0.0	4.3	2.2	4.3	0.0
Cycle Q Clear(g c), s	2.9	12.1	6.7	0.7	41.8	1.0	6.8	0.0	4.3	2.2	4.3	0.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.54	1.00		1.00
Lane Grp Cap(c), veh/h	194	1639	724	350	1520	605	365	0	310	331	275	
V/C Ratio(X)	0.51	0.40	0.24	0.06	0.98	0.04	0.40	0.00	0.27	0.13	0.32	
Avail Cap(c_a), veh/h	580	1639	724	956	1520	605	458	0	975	480	1081	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	22.6	17.5	16.0	14.9	28.0	16.4	31.6	0.0	34.5	32.7	37.8	0.0
Incr Delay (d2), s/veh	0.8	0.1	0.1	0.1	19.5	0.0	0.3	0.0	0.6	0.1	0.8	0.0
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.1	4.5	2.2	0.3	20.0	0.3	2.8	0.0	1.7	0.8	1.9	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d), s/veh	23.3	17.6	16.2	15.0	47.4	16.4	31.9	0.0	35.1	32.8	38.6	0.0
LnGrp LOS	С	В	В	В	D	В	С		D	С	D	
Approach Vol. veh/h		927			1543			228			133	
Approach Delay, s/veh		17.9			46.5			33.0			36.7	
Approach LOS		В			D			С			D	
Timer - Assigned Phs	1	2	3	4	5	6	7	8			_	
Phs Duration (G+Y+Rc), s	11.0	24.8	10.3	53.4	14.8	21.1	13.6	50.0				
Change Period (Y+Rc), s	6.1	6.1	7.1	7.1	6.1	6.1	7.1	7.1				
Max Green Setting (Gmax), s	13.9	58.9	37.9	32.9	13.9	58.9	27.9	42.9				
Max Q Clear Time (g_c+l1), s	4.2	6.3	2.7	14.1	8.8	6.3	4.9	43.8				
Green Ext Time (p_c), s	0.0	0.6	0.0	3.6	0.1	0.6	0.1	0.0				
Intersection Summary												
HCM 7th Control Delay, s/veh			35.6									
HCM 7th LOS			D									
Notes												
User approved pedestrian inter	val to be	e less that	n phase r	nax greer	1.							

Synchro 12 Report 2024017_Synchro.syn D - 2025 PM Peak Build Implementation Year 2025

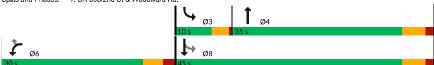
Intersection						
Int Delay, s/veh	0.4					
		EDD	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	₩	4		4	\$	00
Traffic Vol, veh/h	22	4	4	861	240	62
Future Vol, veh/h	22	4	4	861	240	62
Conflicting Peds, #/hr	0	0	_ 0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	100	100	100	4	7	100
Mvmt Flow	14	3	3	555	155	40
Major/Minor	Minor		laior1		/aiar?	
	Minor2		Major1		/lajor2	
Conflicting Flow All	735	175	195	0	-	0
Stage 1	175	-	-	-	-	-
Stage 2	561	-		-	-	-
Critical Hdwy	7.4	7.2	5.1	-	-	-
Critical Hdwy Stg 1	6.4	-	-	-	-	-
Critical Hdwy Stg 2	6.4	-	-	-	-	-
Follow-up Hdwy	4.4	4.2	3.1	-	-	-
Pot Cap-1 Maneuver	273	668	957	-	-	-
Stage 1	666	-	-	-	-	-
Stage 2	417	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	272	668	957	-	-	-
Mov Cap-2 Maneuver	272	-	-	-	-	-
Stage 1	663	-	-	-	-	-
Stage 2	417	-	-	_	_	_
5 13 gt _						
Approach	EB		NB		SB	
HCM Control Delay, s/v			0.04		0	
HCM LOS	С					
Minor Lane/Major Mvm	nt	NBL	NRT	EBLn1	SBT	SBR
Capacity (veh/h)		8	-			
HCM Lane V/C Ratio		0.003		0.056	-	-
HCM Control Delay (s/	voh)	8.8	0	17.7	-	
HCM Lane LOS	veii)					-
HCM 95th %tile Q(veh)	\	A 0	Α	C	-	-
HOW 95th %the Q(ven))	U	-	0.2	-	-

Intersection						
Int Delay, s/veh	1.2					
		EDD	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	**	4.4	0	4	♣	04
Traffic Vol, veh/h	67	11	2	246	690	31
Future Vol, veh/h	67	11	2	246	690	31
Conflicting Peds, #/hr	0	0	_ 0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,	-	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	100	100	100	4	7	100
Mvmt Flow	40	7	1	148	414	19
Major/Minor N	/linor2	N	/lajor1	N	/lajor2	
Conflicting Flow All	573	423	433	0	- najoiz	0
Stage 1	423	423	433	-	-	-
	150	_	-	_	_	_
Stage 2		7.2	- - 1			-
Critical Hdwy	7.4		5.1	-	-	-
Critical Hdwy Stg 1	6.4	-	-	-	-	-
Critical Hdwy Stg 2	6.4	-	-	-	-	-
Follow-up Hdwy	4.4	4.2	3.1	-	-	-
Pot Cap-1 Maneuver	350	466	754	-	-	-
Stage 1	494	-	-	-	-	-
Stage 2	686	-	-	-	-	-
Platoon blocked, %	_			-	-	-
Mov Cap-1 Maneuver	350	466	754	-	-	-
Mov Cap-2 Maneuver	350	-	-	-	-	-
Stage 1	493	-	-	-	-	-
Stage 2	686	-	-	-	-	-
Approach	EB		NB		SB	
HCM LOS			0.08		0	
HCM LOS	С					
Minor Lane/Major Mvm	t	NBL	NBT I	EBLn1	SBT	SBR
Capacity (veh/h)		15	_		_	-
HCM Lane V/C Ratio		0.002	_	0.129	_	_
HCM Control Delay (s/v	/eh)	9.8	0	16.4	_	-
HCM Lane LOS	<i>,</i>	A	A	С	_	_
HCM 95th %tile Q(veh)		0	-	0.4	_	_
				J. 1		

11/23/2024	024	20	/23/	11	1
------------	-----	----	------	----	---

	1	*	†	1	↓	
Lane Group	WBL	WBR	NBT	SBL	SBT	
Lane Configurations	*	7	f)	*	^	
Traffic Volume (vph)	124	64	571	55	124	
Future Volume (vph)	124	64	571	55	124	
Turn Type	Prot	Perm	NA	pm+pt	NA	
Protected Phases	6		4	3	8	
Permitted Phases	6	6		8		
Detector Phase	6	6	4	3	8	
Switch Phase						
Minimum Initial (s)	8.0	8.0	12.0	3.0	12.0	
Minimum Split (s)	27.5	27.5	32.5	9.5	23.5	
Total Split (s)	30.0	30.0	35.0	10.0	45.0	
Total Split (%)	40.0%	40.0%	46.7%	13.3%	60.0%	
Yellow Time (s)	3.5	3.5	4.0	3.0	4.0	
All-Red Time (s)	2.0	2.0	1.5	0.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.5	5.5	5.5	3.5	5.5	
Lead/Lag			Lag	Lead		
Lead-Lag Optimize?			Yes	Yes		
Recall Mode	Max	Max	Max	Max	Max	
Act Effct Green (s)	24.5	24.5	29.5	41.5	39.5	
Actuated g/C Ratio	0.33	0.33	0.39	0.55	0.53	
v/c Ratio	0.16	0.09	0.92	0.18	0.09	
Control Delay (s/veh)	19.0	6.5	41.1	9.7	9.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay (s/veh)	19.0	6.5	41.1	9.7	9.2	
LOS	В	Α	D	Α	Α	
Approach Delay (s/veh)	14.8		41.1		9.4	
Approach LOS	В		D		Α	
Intersection Summary						
Cycle Length: 75						
Actuated Cycle Length: 75						
Natural Cycle: 75						
Control Type: Actuated-Und	coordinated	i				
Maximum v/c Ratio: 0.92		_				
Intersection Signal Delay (s	/veh): 32.9			J.	ntersection	LOS: C
Intersection Capacity Utiliza						of Service A
Analysis Period (min) 15						

Synchro 12 Report 2035.syn A - 2035 AM Peak No Build Horizon Year 2035


	1	•	†	1	1	ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	*	7	1		*	^	
Traffic Volume (veh/h)	124	64	571	358	55	124	
Future Volume (veh/h)	124	64	571	358	55	124	
nitial Q (Qb), veh	0	0	0	0	0	0	
ane Width Adi.	1.00	1.00	1.00	1.00	1.00	1.00	
Ped-Bike Adi(A pbT)	1.00	1.00		0.98	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No		No			No	
Adi Sat Flow, veh/h/ln	1796	1722	1870	1841	1559	1796	
Adj Flow Rate, veh/h	88	45	403	253	39	88	
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	
Percent Heavy Veh. %	7	12	2	4	23	7	
Cap, veh/h	559	477	418	263	240	946	
Arrive On Green	0.33	0.33	0.39	0.39	0.09	0.53	
Sat Flow, veh/h	1711	1459	1064	668	1485	1796	
Grp Volume(v), veh/h	88	45	0	656	39	88	
Grp Sat Flow(s), veh/h/ln	1711	1459	0	1731	1485	1796	
Q Serve(g_s), s	2.7	1.6	0.0	27.8	1.0	1.8	
Cycle Q Clear(g c), s	2.7	1.6	0.0	27.8	1.0	1.8	
Prop In Lane	1.00	1.00	0.0	0.39	1.00	1.0	
Lane Grp Cap(c), veh/h	559	477	0	681	240	946	
V/C Ratio(X)	0.16	0.09	0.00	0.96	0.16	0.09	
Avail Cap(c a), veh/h	559	477	0	681	240	946	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	17.9	17.5	0.0	22.2	15.7	8.8	
Incr Delay (d2), s/veh	0.6	0.4	0.0	26.6	1.5	0.2	
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	1.1	0.6	0.0	15.1	0.4	0.7	
Jnsig, Movement Delay, s/veh		0.0	0.0	10.7	0.7	· · · ·	
LnGrp Delay(d), s/veh	18.5	17.9	0.0	48.8	17.1	9.0	
_nGrp LOS	В	В	0.0	D	В	Α.	
Approach Vol. veh/h	133		656			127	
Approach Delay, s/veh	18.3		48.8			11.5	
Approach LOS	В		70.0 D			В	
Timer - Assigned Phs			3	4		6	8
Phs Duration (G+Y+Rc), s			10.0	35.0		30.0	45.0
Change Period (Y+Rc), s			3.5	5.5		5.5	5.5
Max Green Setting (Gmax), s			6.5	29.5		24.5	39.5
Max Q Clear Time (g_c+I1), s			3.0	29.8		4.7	3.8
Green Ext Time (p_c), s			0.0	0.0		0.3	0.3
ntersection Summary							
ICM 7th Control Delay, s/veh			39.2				
HCM 7th LOS			D				

Synchro 12 Report 2035.syn A - 2035 AM Peak No Build Horizon Year 2035

11/23/2024	
------------	--

	1	•	1	1	Ţ		
Lane Group	WBL	WBR	NBT	SBL	SBT		
Lane Configurations	7	7	13	*	^		
Traffic Volume (vph)	192	64	573	55	130		
Future Volume (vph)	192	64	573	55	130		
Turn Type	Prot	Perm	NA	pm+pt	NA		
Protected Phases	6		4	3	8		
Permitted Phases	6	6		8			
Detector Phase	6	6	4	3	8		
Switch Phase							
Minimum Initial (s)	8.0	8.0	12.0	3.0	12.0		
Minimum Split (s)	27.5	27.5	32.5	9.5	23.5		
Total Split (s)	30.0	30.0	35.0	10.0	45.0		
Total Split (%)	40.0%	40.0%	46.7%	13.3%	60.0%		
Yellow Time (s)	3.5	3.5	4.0	3.0	4.0		
A ll- Red Time (s)	2.0	2.0	1.5	0.5	1.5		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	5.5	5.5	5.5	3.5	5.5		
Lead/Lag			Lag	Lead			
Lead-Lag Optimize?			Yes	Yes			
Recall Mode	Max	Max	Max	Max	Max		
Act Effct Green (s)	24.5	24.5	29.5	41.5	39.5		
Actuated g/C Ratio	0.33	0.33	0.39	0.55	0.53		
v/c Ratio	0.25	0.09	0.95	0.18	0.10		
Control Delay (s/veh)	20.0	6.6	45.2	9.7	9.3		
Queue Delay	0.0	0.0	0.0	0.0	0.0		
Total Delay (s/veh)	20.0	6.6	45.2	9.7	9.3		
LOS	С	Α	D	Α	Α		
Approach Delay (s/veh)	16.7		45.2		9.4		
Approach LOS	В		D		Α		
Intersection Summary							
Cycle Length: 75							
Actuated Cycle Length: 75							
Natural Cycle: 75							
Control Type: Actuated-Unco	ordinated						
Maximum v/c Ratio: 0.95							
Intersection Signal Delay (s/v	veh): 35.2			li	ntersectio	n LOS: D	
Intersection Capacity Utilizat	ion 48.0%	ı		10	CU Level	of Service A	
Analysis Period (min) 15							
Splits and Phases: 1: SR 3	303/2nd S	t & Wood	ward Rd.	, _@	₃	1 ø4	

Synchro 12 Report 2035.syn B - 2035 AM Peak Build Horizon Year 2035

	1	-	T		-	¥		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	*	7	1		7	↑		
Traffic Volume (veh/h)	192	64	573	382	55	130		
Future Volume (veh/h)	192	64	573	382	55	130		
Initial Q (Qb), veh	0	0	0	0	0	0		
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00		
Ped-Bike Adj(A_pbT)	1.00	1.00		1.00	1.00			
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
Work Zone On Approach	No		No			No		
Adj Sat Flow, veh/h/ i n	1796	1722	1870	1841	1559	1796		
Adj Flow Rate, veh/h	136	45	404	270	39	92		
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85		
Percent Heavy Veh, %	7	12	2	4	23	7		
Cap, veh/h	559	477	411	275	232	946		
Arrive On Green	0.33	0.33	0.39	0.39	0.09	0.53		
Sat Flow, veh/h	1711	1459	1045	698	1485	1796		
Grp Volume(v), veh/h	136	45	0	674	39	92		
Grp Sat Flow(s),veh/h/ln	1711	1459	0	1744	1485	1796		
Q Serve(g_s), s	4.4	1.6	0.0	28.7	1.0	1.9		
Cycle Q Clear(g_c), s	4.4	1.6	0.0	28.7	1.0	1.9		
Prop In Lane	1.00	1.00		0.40	1.00			
Lane Grp Cap(c), veh/h	559	477	0	686	232	946		
V/C Ratio(X)	0.24	0.09	0.00	0.98	0.17	0.10		
Avail Cap(c_a), veh/h	559	477	0	686	232	946		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	1.00		
Uniform Delay (d), s/veh	18.5	17.5	0.0	22.5	15.9	8.9		
Incr Delay (d2), s/veh	1.0	0.4	0.0	30.4	1.6	0.2		
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
%ile BackOfQ(50%),veh/ln	1.8	0.6	0.0	15.8	0.4	0.7		
Unsig. Movement Delay, s/veh								
LnGrp Delay(d), s/veh	19.5	17.9	0.0	52.9	17.5	9.1		
LnGrp LOS	В	В		D	В	Α		
Approach Vol, veh/h	181		674			131		
Approach Delay, s/veh	19.1		52.9			11.6		
Approach LOS	В		D			В		
Timer - Assigned Phs			3	4		6	8	
Phs Duration (G+Y+Rc), s			10.0	35.0		30.0	45.0	
Change Period (Y+Rc), s			3.5	5.5		5.5	5.5	
Max Green Setting (Gmax), s			6.5	29.5		24.5	39.5	
Max Q Clear Time (g_c+I1), s			3.0	30.7		6.4	3.9	
Green Ext Time (p_c), s			0.0	0.0		0.5	0.4	
Intersection Summary								
HCM 7th Control Delay, s/veh			41.2					
HCM 7th LOS			D					

B - 2035 AM Peak Build Synchro 12 Report Horizon Year 2035 2035.syn

C - 2035 PM Peak No Build

Horizon Year 2035

388

388

1.00

1.00

1.00

No

1796

274

0.85

559

0.33

1711

274

1711

9.6

9.6

1.00

559

0.49

559

1.00

1.00

20.2

3.1

0.0

4.1

23.3

С

398

22.2

С

Movement
Lane Configurations
Traffic Volume (veh/h)

Future Volume (veh/h)

Ped-Bike Adj(A_pbT)

Adj Sat Flow, veh/h/In

Adj Flow Rate, veh/h

Percent Heavy Veh, %

Grp Volume(v), veh/h

Grp Sat Flow(s), veh/h/ln

Cycle Q Clear(g_c), s

Lane Grp Cap(c), veh/h

Avail Cap(c_a), veh/h

Uniform Delay (d), s/veh

Initial Q Delay(d3), s/veh

%ile BackOfQ(50%),veh/ln

Unsig. Movement Delay, s/veh LnGrp Delay(d), s/veh

Incr Delay (d2), s/veh

Approach Vol, veh/h

Approach Delay, s/veh

Timer - Assigned Phs
Phs Duration (G+Y+Rc), s

Change Period (Y+Rc), s

Green Ext Time (p_c), s

Intersection Summary HCM 7th Control Delay, s/veh

HCM 7th LOS

Max Green Setting (Gmax), s

Max Q Clear Time (g_c+I1), s

HCM Platoon Ratio

Upstream Filter(I)

Peak Hour Factor

Arrive On Green

Sat Flow, veh/h

Q Serve(g_s), s

Prop In Lane

V/C Ratio(X)

LnGrp LOS

Approach LOS

Cap, veh/h

Work Zone On Approach

Initial Q (Qb), veh Lane Width Adj.

Parking Bus, Adj

NBT

141

141

1.00

1.00

1870

100

0.85

401

0.39

1020

0

0.0

0.0

0 678

0 678

0.00

1.00

0.00

0.0

0.0

0.0

0.0

0.0

169

16.2

В

10.0

3.5

6.5 29.5

4.7

0.0

16.8

No

175

175

1.00

1.00

1.00

1722

124

0.85

12

477

0.33

1459

124

1459

4.7

4.7

1.00

477

0.26

477

1.00

1.00

18.6

1.3

0.0

1.7

19.9

NBR

98 141

1.00

0.98

1.00

1841

69

0.85

277

0.39

704

169

1724

4.9

4.9

0.41

0.25

1.00

1.00

15.3

0.9

0.0

1.9

16.2

35.0

5.5

6.9

0.5

SBL

1.00

1.00

1.00

1559

100

0.85

23

556

0.09

1485

100

1485

2.7

2.7

1.00

556

0.18

556

1.00

1.00

10.1

0.7

0.0

0.9

10.9

SBT

303

1.00

1.00

1796

0.85

946

0.53

1796

1796

4.8

4.8

946

0.23

946

1.00

1.00

9.5

0.6

0.0

1.8

10.1

314

10.3

30.0

5.5

24.5

11.6

1.1

45.0

5.5

39.5

6.8

0.7

В

214

214

No

	•	*	†	1	ļ	
Lane Group	WBL	WBR	NBT	SBL	SBT	
Lane Configurations	ሻ	7	f)	ሻ	^	
Traffic Volume (vph)	388	175	141	141	303	
Future Volume (vph)	388	175	141	141	303	
Turn Type	Prot	Perm	NA	pm+pt	NA	
Protected Phases	6		4	3	8	
Permitted Phases	6	6		8		
Detector Phase	6	6	4	3	8	
Switch Phase						
Minimum Initial (s)	8.0	8.0	12.0	3.0	12.0	
Minimum Split (s)	27.5	27.5	32.5	9.5	23.5	
Total Split (s)	30.0	30.0	35.0	10.0	45.0	
Total Split (%)	40.0%	40.0%	46.7%	13.3%	60.0%	
Yellow Time (s)	3.5	3.5	4.0	3.0	4.0	
All-Red Time (s)	2.0	2.0	1.5	0.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.5	5.5	5.5	3.5	5.5	
Lead/Lag			Lag	Lead		
Lead-Lag Optimize?			Yes	Yes		
Recall Mode	Max	Max	Max	Max	Max	
Act Effct Green (s)	24.5	24.5	29.5	41.5	39.5	
Actuated g/C Ratio	0.33	0.33	0.39	0.55	0.53	
v/c Ratio	0.50	0.23	0.24	0.18	0.23	
Control Delay (s/veh)	24.1	5.1	11.2	9.0	10.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay (s/veh)	24.1	5.1	11.2	9.0	10.4	
LOS	С	Α	В	Α	В	
Approach Delay (s/veh)	18.2		11.2		9.9	
Approach LOS	В		В		Α	
Intersection Summary						
Cycle Length: 75						
Actuated Cycle Length: 75						
Natural Cycle: 70						
Control Type: Actuated-Unco	ordinated	j				
Maximum v/c Ratio: 0.50						
Intersection Signal Delay (s/\					ntersection	
Intersection Capacity Utilizati	ion 52.6%			10	CU Level of	of Service A
Analysis Period (min) 15						
Splits and Phases: 1: Woo	dward Ro	d. & SR 30	03/2nd St			
				τ.		†

	↓ _{Ø3}	
	10 s 35 s	
≯ ∞6	▶ ø8	
30 s	45 s	

 C - 2035 PM Peak No Build
 Synchro 12 Report

 Horizon Year 2035
 2035.syn

Synchro 12 Report 2035.syn

11/23/2024

1	1/	23	/20	124	l .
	11	20	, 20	-2	

	1	•	Ť	-	↓		
Lane Group	WBL	WBR	NBT	SBL	SBT		
Lane Configurations	7	7	13	*			
Traffic Volume (vph)	422	175	148	141	306		
Future Volume (vph)	422	175	148	141	306		
Turn Type	Prot	Perm	NA	pm+pt	NA		
Protected Phases	6		4	3	8		
Permitted Phases	6	6		8			
Detector Phase	6	6	4	3	8		
Switch Phase							
Minimum Initial (s)	8.0	8.0	12.0	3.0	12.0		
Minimum Split (s)	27.5	27.5	32.5	9.5	17.5		
Total Split (s)	30.0	30.0	35.0	10.0	45.0		
Total Split (%)	40.0%	40.0%	46.7%	13.3%	60.0%		
Yellow Time (s)	3.5	3.5	4.0	3.5	4.0		
A ll- Red Time (s)	2.0	2.0	1.5	0.5	1.5		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	5.5	5.5	5.5	4.0	5.5		
Lead/Lag			Lag	Lead			
Lead-Lag Optimize?			Yes	Yes			
Recall Mode	Max	Max	Max	None	Max		
Act Effct Green (s)	24.5	24.5	31.5	41.0	39.5		
Actuated g/C Ratio	0.33	0.33	0.42	0.55	0.53		
v/c Ratio	0.54	0.23	0.30	0.20	0.23		
Control Delay (s/veh)	25.1	5.1	10.3	9.4	10.4		
Queue Delay	0.0	0.0	0.0	0.0	0.0		
Total Delay (s/veh)	25.1	5.1	10.3	9.4	10.4		
LOS	С	Α	В	Α	В		
Approach Delay (s/veh)	19.2		10.3		10.1		
Approach LOS	В		В		В		
Intersection Summary							
Cycle Length: 75							
Actuated Cycle Length: 75							
Natural Cycle: 70							
Control Type: Semi Act-Unco	oord						
Maximum v/c Ratio: 0.54							
Intersection Signal Delay (s/	veh): 14.1			İr	ntersection	ı LOS: B	
Intersection Capacity Utilizat				I	CU Level o	of Service A	
Analysis Period (min) 15							
Splits and Phases: 1: SR	303/2nd S	t & Wood	ward Rd.	, ,		1 Ø4	

Synchro 12 Report 2035.syn D - 2035 PM Peak Build Horizon Year 2035

	1	•	†	-	-	ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	7	7	1		*	^	
Traffic Volume (veh/h)	422	175	148	171	141	306	
Future Volume (veh/h)	422	175	148	171	141	306	
Initial Q (Qb), veh	0	0	0	0	0	0	
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	
Ped-Bike Adj(A_pbT)	1.00	1.00		0.98	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No		No			No	
Adj Sat Flow, veh/h/In	1796	1722	1870	1841	1559	1796	
Adj Flow Rate, veh/h	298	124	104	121	100	216	
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	
Percent Heavy Veh, %	7	12	2	4	23	7	
Cap, veh/h	559	477	325	378	494	946	
Arrive On Green	0.33	0.33	0.42	0.42	0.06	0.53	
Sat Flow, veh/h	1711	1459	778	905	1485	1796	
Grp Volume(v), veh/h	298	124	0	225	100	216	
Grp Sat Flow(s), veh/h/ln	1711	1459	0	1682	1485	1796	
Q Serve(q s), s	10.7	4.7	0.0	6.7	2.7	4.9	
Cycle Q Clear(q c), s	10.7	4.7	0.0	6.7	2.7	4.9	
Prop In Lane	1.00	1.00		0.54	1.00		
Lane Grp Cap(c), veh/h	559	477	0	703	494	946	
V/C Ratio(X)	0.53	0.26	0.00	0.32	0.20	0.23	
Avail Cap(c a), veh/h	559	477	0	703	531	946	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	20.6	18.6	0.0	14.7	10.6	9.6	
Incr Delay (d2), s/veh	3.6	1.3	0.0	1.2	0.2	0.6	
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	4.6	1.7	0.0	2.5	0.8	1.7	
Unsig. Movement Delay, s/veh		1.1	0.0	2.0	0.0	1.7	
LnGrp Delay(d), s/veh	24.2	19.9	0.0	15.9	10.8	10.1	
LnGrp LOS	Z4.2	В	0.0	13.9 B	В	В	
Approach Vol. veh/h	422	ט	225	ט	ט	316	
Approach Vol. ven/n Approach Delay, s/veh	22.9		15.9			10.3	
Approach Delay, s/ven Approach LOS	22.9 C		15.9 B			10.3 B	
Approach LOS							
Timer - Assigned Phs			3	4		6	8
Phs Duration (G+Y+Rc), s			8.1	36.9		30.0	45.0
Change Period (Y+Rc), s			4.0	5.5		5.5	5.5
Max Green Setting (Gmax), s			6.0	29.5		24.5	39.5
Max Q Clear Time (g_c+l1), s			4.7	8.7		12.7	6.9
Green Ext Time (p_c), s			0.0	1.1		1.1	1.1
ntersection Summary							
HCM 7th Control Delay, s/veh			17.1				
HCM 7th LOS			В				

Synchro 12 Report 2035.syn D - 2035 PM Peak Build Horizon Year 2035

Internaction						
Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		ĵ.			र्स
Traffic Vol, veh/h	0	0	908	0	0	243
Future Vol, veh/h	0	0	908	0	0	243
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	_	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	6	0	2	100	100	0
Mymt Flow	0	0	586	0	0	157
WWW.CT IOW	- 0	J	000	- 0	- 0	101
	Minor1		Major1		/lajor2	
Conflicting Flow All	743	586	0	0	586	0
Stage 1	586	-	-	-	-	-
Stage 2	157	-	-	-	-	-
Critical Hdwy	6.46	6.2	-	-	5.1	-
Critical Hdwy Stg 1	5.46	-	-	-	-	-
Critical Hdwy Stg 2	5.46	-	-	-	-	-
Follow-up Hdwy	3.554	3.3	-	-	3.1	-
Pot Cap-1 Maneuver	377	514	_	_	645	_
Stage 1	549	-	_	_	-	_
Stage 2	862	_	_	_	_	_
Platoon blocked, %	002		_	<u>-</u>		_
Mov Cap-1 Maneuver	377	514	_	-	645	-
Mov Cap-1 Maneuver	377				045	
•		-	-	-	-	-
Stage 1	549	-	-	-	-	-
Stage 2	862	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s/	'v 0		0		0	
HCM LOS	A					
NA' 1 /NA - ' NA	. 1	NDT	NDDV	MDL .4	ODI	ODT
Minor Lane/Major Mvn	nt	NBT	NRKA	VBLn1	SBL	SBT
					645	-
Capacity (veh/h)		-	-	_	0-10	
HCM Lane V/C Ratio		-	-	-	-	-
HCM Lane V/C Ratio HCM Control Delay (s/	veh)	- - -	- - -	0	0	-
HCM Lane V/C Ratio	,				-	

A - 2035 AM Peak No Build
Horizon Year 2035
Synchro 12 Report
2035.syn

Intersection												
Int Delay, s/veh	0.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	LJIK	1,52	4	1,51	1100	4	71511	UDL	4	UDIT
Traffic Vol, veh/h	4	0	7	0	1	1	27	911	0	0	246	11
Future Vol, veh/h	4	0	7	0	1	1	27	911	0	0	246	11
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	84	84	84	84	84	84	84	84	84	84	84	84
Heavy Vehicles, %	100	0	100	100	100	100	100	2	100	0	6	100
Mvmt Flow	3	0	5	0	1	1	19	651	0	0	176	8
Major/Minor N	Minor2		ľ	Minor1		N	//ajor1		N	Major2		
Conflicting Flow All	869	869	180	865	873	651	184	0	0	651	0	0
Stage 1	180	180	-	689	689	-	-	-	-	-	-	-
Stage 2	690	689	-	176	184	-	-	-	-	-	-	-
Critical Hdwy	8.1	6.5	7.2	8.1	7.5	7.2	5.1	-	-	4.1	-	-
Critical Hdwy Stg 1	7.1	5.5	-	7.1	6.5	-	-	-	-	-	-	-
Critical Hdwy Stg 2	7.1	5.5	-	7.1	6.5	-	-	-	-	-	-	-
Follow-up Hdwy	4.4	4	4.2	4.4	4.9	4.2	3.1	-	-	2.2	-	-
Pot Cap-1 Maneuver	188	292	663	189	204	333	968	-	-	945	-	-
Stage 1	639	755	-	311	326	-	-	-	-	-	-	-
Stage 2	311	449	-	643	596	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	181	283	663	182	197	333	968	-	-	945	-	-
Mov Cap-2 Maneuver	181	283	-	182	197	-	-	-	-	-	-	-
Stage 1	639	755	-	301	316	-	-	-	-	-	-	-
Stage 2	300	435	-	638	596	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s/v	/15.94			19.61			0.25			0		
HCM LOS	С			С								
Minor Lane/Major Mvm	t	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		52	-	-		248	945	-	_			
HCM Lane V/C Ratio		0.02	_		0.023		-	_	_			
HCM Control Delay (s/\	veh)	8.8	0	_	15.9	19.6	0	-	-			
HCM Lane LOS		Α	A	-	С	С	A	_	-			
HCM 95th %tile Q(veh)		0.1	-	-	0.1	0	0	-	-			

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		1			सी
Traffic Vol, veh/h	0	4	247	4	0	725
Future Vol, veh/h	0	4	247	4	0	725
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	_	None	_	None
Storage Length	0	-	-	-	_	-
Veh in Median Storage		_	0	_	_	0
Grade, %	0	_	0	_	_	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	6	0	2	100	100	0
			159			
Mvmt Flow	0	3	159	3	0	468
Major/Minor I	Minor1	N	//ajor1	N	/lajor2	
Conflicting Flow All	628	161	0	0	162	0
Stage 1	161	-	_	_	-	_
Stage 2	468	_	_	_	_	_
Critical Hdwy	6.46	6.2	_	_	5.1	_
Critical Hdwy Stg 1	5.46	0.2			J. I -	_
			-	-		-
Critical Hdwy Stg 2	5.46	-	-	-	-	
Follow-up Hdwy	3.554	3.3	-	-	3.1	-
Pot Cap-1 Maneuver	440	890	-	-	989	-
Stage 1	859	-	-	-	-	-
Stage 2	622	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	440	890	-	-	989	-
Mov Cap-2 Maneuver	440	-	-	-	-	-
Stage 1	859	-	_	-	_	-
Stage 2	622	_	_	_	_	_
o tago 2	V					
Approach	WB		NB		SB	
Approach HCM Control Delay, s/v			NB 0		SB 0	
HCM Control Delay, s/v	9.06					
HCM Control Delay, s/v HCM LOS	v 9.06 A	NDT	0	Λ/D1 → 4	0	CDT
HCM Control Delay, s/v HCM LOS Minor Lane/Major Mvm	v 9.06 A	NBT	0	VBLn1	0 SBL	SBT
HCM Control Delay, s/NHCM LOS Minor Lane/Major Mvm Capacity (veh/h)	v 9.06 A	NBT -	0 NBRV	890	0 SBL 989	SBT_
HCM Control Delay, s/NHCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	v 9.06 A	NBT - -	0 NBRV	890 0.003	0 SBL 989	SBT -
Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s/v	v 9.06 A	-	0 NBRV	890	989 - 0	-
HCM Control Delay, s/NHCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	v 9.06 A	-	0 NBRV -	890 0.003	0 SBL 989	-

Intersection												
Int Delay, s/veh	0.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		,,,,,,	4	11.511	,,,,,,,	4	11511	UDL	4	UDIT
Traffic Vol, veh/h	13	1	22	0	0	4	14	249	4	1	735	6
Future Vol, veh/h	13	1	22	0	0	4	14	249	4	1	735	6
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	84	84	84	84	84	84	84	84	84	84	84	84
Heavy Vehicles, %	100	0	100	100	100	100	100	2	100	0	6	100
Mvmt Flow	9	1	16	0	0	3	10	178	3	1	525	4
Major/Minor N	/linor2			Minor1			Major1		N	Major2		
Conflicting Flow All	726	729	527	726	730	179	529	0	0	181	0	0
Stage 1	529	529	-	199	199	-	-	-	-	-	_	-
Stage 2	198	201	-	527	531	-	-	-	-	-	-	-
Critical Hdwy	8.1	6.5	7.2	8.1	7.5	7.2	5.1	-	-	4.1	-	-
Critical Hdwy Stg 1	7.1	5.5	-	7.1	6.5	-	-	-	-	-	-	-
Critical Hdwy Stg 2	7.1	5.5	-	7.1	6.5	-	-	-	-	-	-	-
Follow-up Hdwy	4.4	4	4.2	4.4	4.9	4.2	3.1	-	-	2.2	-	-
Pot Cap-1 Maneuver	241	352	400	241	253	664	683	-	-	1407	-	-
Stage 1	392	531	-	622	585	-	-	-	-	-	-	-
Stage 2	623	739	-	393	396	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	236	346	400	227	249	664	683	-	-	1407	-	-
Mov Cap-2 Maneuver	236	346	-	227	249	-	-	-	-	-	-	-
Stage 1	391	530	-	612	576	-	-	-	-	-	-	-
Stage 2	611	727	-	376	395	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s/v	17.3			10.45			0.54			0.01		
HCM LOS	С			В								
Minor Lane/Major Mvmt		NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		94	-	-		664	2	-	-			
HCM Lane V/C Ratio		0.015	-	-		0.004		-	-			
HCM Control Delay (s/v	eh)	10.3	0	-	17.3	10.4	7.6	0	-			
HCM Lane LOS	,	В	A	-	С	В	A	A	-			
HCM 95th %tile Q(veh)		0	-	-	0.3	0	0	-	-			

3: SR 303/2nd St. & SR 505/Rio Bravo Blvd.

HCM 7th Signalized Intersection Summary 3: SR 303/2nd St. & SR 505/Rio Bravo Blvd.

11/23/2024

	•	-	*	1	-	•	1	1	1	¥	4	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	ሻ	44	7	7	44	7	ሻ	f)	7	†	7	
Traffic Volume (vph)	422	1584	283	44	757	78	244	135	65	83	135	
Future Volume (vph)	422	1584	283	44	757	78	244	135	65	83	135	
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	pm+pt	NA	Perm	
Protected Phases	7	4		3	8		5	2	1	6		
Permitted Phases	4		4	8		8	2		6		6	
Detector Phase	7	4	4	3	8	8	5	2	1	6	6	
Switch Phase												
Minimum Initial (s)	7.0	10.0	10.0	7.0	10.0	10.0	7.0	15.0	7.0	15.0	15.0	
Minimum Split (s)	14.1	46.1	46.1	14.1	17.1	17.1	13.1	29.1	13.1	21.1	21.1	
Total Split (s)	35.0	40.0	40.0	45.0	50.0	50.0	20.0	65.0	20.0	65.0	65.0	
Total Split (%)	20.6%	23.5%	23.5%	26.5%	29.4%	29.4%	11.8%	38.2%	11.8%	38.2%	38.2%	
Yellow Time (s)	5.6	5.6	5.6	5.6	5.6	5.6	4.6	4.6	4.6	4.6	4.6	
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.1	7.1	7.1	7.1	7.1	7.1	6.1	6.1	6.1	6.1	6.1	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	Min	Min	None	Min	Min	None	Min	None	None	None	
Act Effct Green (s)	55.2	47.1	47.1	31.4	24.2	24.2	34.7	24.3	23.5	15.8	15.8	
Actuated g/C Ratio	0.53	0.45	0.45	0.30	0.23	0.23	0.33	0.23	0.23	0.15	0.15	
v/c Ratio	0.68	0.83	0.30	0.20	0.77	0.16	0.48	0.40	0.19	0.25	0.30	
Control Delay (s/veh)	23.8	31.5	8.6	18.0	44.6	2.5	31.9	37.8	28.6	44.8	4.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay (s/veh)	23.8	31.5	8.6	18.0	44.6	2.5	31.9	37.8	28.6	44.8	4.5	
LOS	С	С	Α	В	D	Α	С	D	С	D	Α	
Approach Delay (s/veh)		27.2			39.5			34.6		21.8		
Approach LOS		С			D			С		С		
Intersection Summary												
Cycle Length: 170												
Actuated Cycle Length: 103	.6											
Natural Cycle: 105												
Control Type: Actuated-Und	coordinated	i										
Maximum v/c Ratio: 0.83												
Intersection Signal Delay (s	/veh): 30.4			li	ntersectio	n LOS: C						
Intersection Capacity Utiliza	ition 86.2%)		10	CU Level	of Servic	e E					
Analysis Period (min) 15												
Splits and Phases: 3: SR	303/2nd S	t. & SR 5	05/Rio Br	avo Blvd								
V 4						-			Ĵ			

↓ ø₁	↑ Ø2	€ ø3	♣ Ø4
20 s	65 s	45 s	40 s
↑ ø₅	♦ Ø6	→ Ø7	Ø8

A - 2035 AM Peak No Build Synchro 12 Report Horizon Year 2035 2035.syn

	۶	→	*	1	•		1	†	-	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	*	^	7	*	^	7	7	13		*	^	ī
Traffic Volume (veh/h)	422	1584	283	44	757	78	244	135	61	65	83	13
Future Volume (veh/h)	422	1584	283	44	757	78	244	135	61	65	83	13
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.0
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/In	1885	1856	1841	1826	1856	1693	1856	1811	1826	1737	1826	187
Adj Flow Rate, veh/h	352	1320	236	37	631	65	203	112	51	54	69	
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.9
Percent Heavy Veh, %	1	3	4	5	3	14	3	6	5	11	5	
Cap, veh/h	443	1309	579	163	905	368	464	266	121	341	309	
Arrive On Green	0.16	0.37	0.37	0.05	0.26	0.26	0.11	0.23	0.23	0.06	0.17	0.0
Sat Flow, veh/h	1795	3526	1560	1739	3526	1434	1767	1178	536	1654	1826	158
Grp Volume(v), veh/h	352	1320	236	37	631	65	203	0	163	54	69	
Grp Sat Flow(s), veh/h/ln	1795	1763	1560	1739	1763	1434	1767	0	1715	1654	1826	158
Q Serve(q s), s	12.1	32.9	9.9	1.3	14.4	3.1	8.1	0.0	7.2	2.3	2.9	0.0
Cycle Q Clear(g c), s	12.1	32.9	9.9	1.3	14.4	3.1	8.1	0.0	7.2	2.3	2.9	0.
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.31	1.00		1.0
Lane Grp Cap(c), veh/h	443	1309	579	163	905	368	464	0	387	341	309	
V/C Ratio(X)	0.79	1.01	0.41	0.23	0.70	0.18	0.44	0.00	0.42	0.16	0.22	
Avail Cap(c_a), veh/h	718	1309	579	825	1707	694	539	0	1140	504	1214	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.0
Uniform Delay (d), s/veh	19.8	27.9	20.6	24.9	29.8	25.6	25.1	0.0	29.4	27.4	31.8	0.
Incr Delay (d2), s/veh	1.2	27.0	0.3	0.7	0.7	0.2	0.2	0.0	0.9	0.1	0.4	0.
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
%ile BackOfQ(50%),veh/ln	4.6	17.3	3.4	0.5	5.7	1.0	3.2	0.0	2.9	0.9	1.2	0.
Unsig. Movement Delay, s/veh												
LnGrp Delay(d), s/veh	21.1	54.8	21.0	25.5	30.5	25.8	25.3	0.0	30.2	27.5	32.2	0.
LnGrp LOS	С	F	С	С	С	С	С		С	С	С	
Approach Vol., veh/h		1908			733			366			123	
Approach Delay, s/veh		44.4			29.9			27.5			30.1	
Approach LOS		D			С			С			С	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	11.2	26.1	11.3	40.0	16.2	21.1	21.4	29.9				
Change Period (Y+Rc), s	6.1	6.1	7.1	7.1	6.1	6.1	7.1	7.1				
Max Green Setting (Gmax), s	13.9	58.9	37.9	32.9	13.9	58.9	27.9	42.9				
Max Q Clear Time (g c+l1), s	4.3	9.2	3.3	34.9	10.1	4.9	14.1	16.4				
Green Ext Time (p_c), s	0.0	1.1	0.1	0.0	0.1	0.4	0.2	3.4				
Intersection Summary												
HCM 7th Control Delay, s/veh			38.5									
HCM 7th LOS			D									
Notes												
User approved pedestrian inter	val to he	e less tha	n phase r	nax greei	٦.							
Unsignalized Delay for [SBR] is						delay and	d intersect	ion delay				
					• •							

A - 2035 AM Peak No Build Synchro 12 Report Horizon Year 2035 2035.syn Timings 3: SR 303/2nd St & SR 500/Rio Bravo Blvd.

11/23/2024

	•	→	•	•	←	*	1	†	1	ļ	4	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	*	44	7	7	^	7	*	1	7	^	7	
Traffic Volume (vph)	444	1584	283	44	757	81	244	140	66	85	143	
Future Volume (vph)	444	1584	283	44	757	81	244	140	66	85	143	
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	pm+pt	NA	Perm	
Protected Phases	7	4		3	8		5	2	1	6		
Permitted Phases	4		4	8		8	2		6		6	
Detector Phase	7	4	4	3	8	8	5	2	1	6	6	
Switch Phase												
Minimum Initial (s)	7.0	10.0	10.0	7.0	10.0	10.0	7.0	15.0	7.0	15.0	15.0	
Minimum Split (s)	14.1	46.1	46.1	14.1	17.1	17.1	13.1	29.1	13.1	21.1	21.1	
Total Split (s)	35.0	40.0	40.0	45.0	50.0	50.0	20.0	65.0	20.0	65.0	65.0	
Total Split (%)	20.6%	23.5%	23.5%	26.5%	29.4%	29.4%	11.8%	38.2%	11.8%	38.2%	38.2%	
Yellow Time (s)	5.6	5.6	5.6	5.6	5.6	5.6	4.6	4.6	4.6	4.6	4.6	
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.1	7.1	7.1	7.1	7.1	7.1	6.1	6.1	6.1	6.1	6.1	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	Min	Min	None	Min	Min	None	Min	None	None	None	
Act Effct Green (s)	57.9	49.7	49.7	31.7	24.5	24.5	34.8	24.4	23.6	15.9	15.9	
Actuated g/C Ratio	0.54	0.47	0.47	0.30	0.23	0.23	0.33	0.23	0.22	0.15	0.15	
v/c Ratio	0.68	0.81	0.29	0.21	0.78	0.17	0.49	0.42	0.19	0.26	0.32	
Control Delay (s/veh)	24.6	30.4	8.6	18.4	46.3	2.9	33.1	39.3	29.2	45.5	5.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay (s/veh)	24.6	30.4	8.6	18.4	46.3	2.9	33.1	39.3	29.2	45.5	5.2	
LOS	С	С	Α	В	D	Α	С	D	С	D	Α	
Approach Delay (s/veh)		26.6			40.9			35.9		22.3		
Approach LOS		С			D			D		С		
Intersection Summary Cycle Length: 170												
Actuated Cycle Length: 106	6.4											
Natural Cycle: 105												
Control Type: Actuated-Und	coordinated	1										
Maximum v/c Ratio: 0.81												
Intersection Signal Delay (s						n LOS: C	_					
Intersection Capacity Utiliza	ation 86.2%)		I	CU Level	of Service	θĖ					
Analysis Period (min) 15												
Splits and Phases: 3: SR	303/2nd S	t & SR 50	00/Rio Bra	avo Blvd.					1 4			
	2				£	- Ø3			4	ø4		

B - 2035 AM Peak Build	Synchro 12 Repor
Horizon Year 2035	2035.syr

و م

廿 ø8

EDI							Ť	-	935	▼	-
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
*	44	7	*	^	7	*	1		*	*	
444	1584	283	44	757	81	244	140	61	66	85	14
444	1584	283	44	757	81	244	140	61	66	85	14
0	0	0	0	0	0	0	0	0	0	0	
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.0
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
	No			No			No			No	
1885	1856	1841	1826	1856	1693	1856	1811	1826	1737	1826	187
370	1320	236	37	631	68	203	117	51	55	71	
0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.9
1	3	4	5	3	14	3	6	5	11	5	
451	1309	579	163	874	356	462	269	117	338	309	
0.17	0.37	0.37	0.05	0.25	0.25	0.11	0.23	0.23	0.06	0.17	0.0
1795	3526	1560	1739	3526	1434	1767	1196	521	1654	1826	158
370	1320	236	37	631	68	203	0	168	55	71	
1795	1763	1560	1739	1763	1434	1767	0	1717	1654	1826	158
12.9	32.9	9.9	1.4	14.5	3.3	8.1	0.0	7.4	2.4	3.0	0.
											0.
	02.0										1.0
	1309			874		462	0			309	
						0.44	0.00				
											1.0
											0.0
20.0	27.9	20.6	25.2	30.5	26.3	25.1	0.0	29.5	27.4	31.8	0.0
2.1	27.0	0.3	0.7	0.9	0.2	0.2	0.0	0.9	0.1	0.5	0.
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
5.0	17.3	3.4	0.6	5.8	1.1	3.2	0.0	3.0	0.9	1.3	0.
22.2	54.9	21.0	25.9	31.4	26.5	25.3	0.0	30.4	27.5	32.3	0.
С	F	С	С	С	С	С		С	С	С	
	1926			736			371			126	
1		2			•	7					
0.0	1.2	0.1	0.0	0.1	0.4	0.3	3.4				
		38.7									
		D									
val to be	e less that	n phase n	nax greer	١.							
	444 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00	444 1584 444 1584 444 1584 0 0 0 1.0	444 1584 283 444 1584 283 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00 1	444 1584 283 44 444 1584 283 44 0 0 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00	444 1584 283 44 757 444 1584 283 44 757 0 0 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.30 2.36 37 631 856 3.0 0.96 1.38 874 0.17 0.37 0.05 0.25 1793 3526 1560 1739 3526 1560 1739 3526 1703 1631	444 1584 283 44 757 81 444 1584 283 44 757 81 444 1584 283 44 757 81 0 0 0 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.88 1856 1841 1826 1856 1693 37 631 68 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 1.03 4 5 3 14 451 1309 579 163 874 356 1.01 1.01 0.05 0	444 1584 283 44 757 81 244 444 1584 283 44 757 81 244 0 0 0 0 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.885 1886 1841 1826 1856 1693 1856 370 1320 236 37 631 68 203 0.96 0.96 0.96 0.96 0.96 0.96 0.96 1.1 3 4 5 3 14 3 4	444 1584 283 44 757 81 244 140 444 1584 283 44 757 81 244 140 0 0 0 0 0 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1885 1865 1841 1826 1856 1831 383 1856 1811 370 1320 236 37 631 68 203 117 193 156 <t< td=""><td> 1</td><td>444 1584 283 44 757 81 244 140 61 66 444 1884 283 44 757 81 244 140 61 66 0</td><td>444 1584 283 44 757 81 244 140 61 66 85 4444 1584 283 44 757 81 244 140 61 66 85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 1.00</td></t<>	1	444 1584 283 44 757 81 244 140 61 66 444 1884 283 44 757 81 244 140 61 66 0	444 1584 283 44 757 81 244 140 61 66 85 4444 1584 283 44 757 81 244 140 61 66 85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 1.00

B - 2035 AM Peak Build Synchro 12 Report Horizon Year 2035 2035.syn 11/23/2024

	•	-	*	1	-	*	1	†	1	↓	4	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Configurations	*	^	7	*	^	7	7	1	*	†	7	
Traffic Volume (vph)	122	883	235	30	2019	30	196	48	57	113	379	
Future Volume (vph)	122	883	235	30	2019	30	196	48	57	113	379	
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	pm+pt	NA	Perm	
Protected Phases	7	4		3	8		5	2	1	6		
Permitted Phases	4		4	8		8	2		6		6	
Detector Phase	7	4	4	3	8	8	5	2	1	6	6	
Switch Phase												
Minimum Initial (s)	7.0	10.0	10.0	7.0	10.0	10.0	7.0	15.0	7.0	15.0	15.0	
Minimum Split (s)	14.1	46.1	46.1	14.1	17.1	17.1	13.1	29.1	13.1	21.1	21.1	
Total Split (s)	35.0	40.0	40.0	45.0	50.0	50.0	20.0	65.0	20.0	65.0	65.0	
Total Split (%)	20.6%	23.5%	23.5%	26.5%	29.4%	29.4%	11.8%	38.2%	11.8%	38.2%	38.2%	
Yellow Time (s)	5.6	5.6	5.6	5.6	5.6	5.6	4.6	4.6	4.6	4.6	4.6	
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.1	7.1	7.1	7.1	7.1	7.1	6.1	6.1	6.1	6.1	6.1	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	Min	Min	None	Min	Min	None	Min	None	None	None	
Act Effct Green (s)	55.4	50.1	50.1	50.0	42.9	42.9	32.5	22.6	22.5	15.2	15.2	
Actuated g/C Ratio	0.53	0.48	0.48	0.48	0.41	0.41	0.31	0.22	0.21	0.15	0.15	
v/c Ratio	0.49	0.44	0.24	0.07	1.17	0.04	0.43	0.24	0.17	0.36	0.63	
Control Delay (s/veh)	22.7	20.7	4.8	11.9	115.3	0.1	30.9	23.3	27.6	45.6	11.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay (s/veh)	22.7	20.7	4.8	11.9	115.3	0.1	30.9	23.3	27.6	45.6	11.1	
LOS	С	С	Α	В	F	Α	С	С	С	D	В	
Approach Delay (s/veh)		17.9			112.2			28.2		19.9		
Approach LOS		В			F			С		В		
Intersection Summary												
Cycle Length: 170												
Actuated Cycle Length: 104	4.8											
Natural Cycle: 115												
Control Type: Actuated-Un-	coordinated	i										
Maximum v/c Ratio: 1.17												
Intersection Signal Delay (s	s/veh): 65.9			li	ntersectio	n LOS: E						
Intersection Capacity Utiliza					CU Level		e E					
Analysis Period (min) 15												
Splits and Phases: 3: SF	R 303/2nd S	st. & SR 5	05/Rio Br	avo B l vd					1 🔺			
	i2				1	• Ø3			4	ø4		
20 s 65 s					45 s				40 5			

↓ ø₁	♥ Ø2	€ ø₃	♣ ø4
20 s	65 s	45 s	40 s
5 ø5	♣ Ø6	≯ _{Ø7} †	Ø8
20 s	65 s	35 s 50 s	

C - 2035 PM Peak No Build Synchro 12 Report Horizon Year 2035 2035.syn

*		←	•	4	†	1	-	ļ	4
EBR		WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
7	П	44	7	7	T ₂		7	4	7
235		2019	30	196	48	61	57	113	379
235		2019	30	196	48	61	57	113	379
0		0	0	0	0	0	0	0	0
1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1.00			0.98	1.00		1.00	1.00		1.00
1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		No			No			No	
1841		1856	1693	1856	1811	1826	1737	1826	1870
196		1682	25	163	40	51	48	94	0
0.96		0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
4		3	14	3	6	5	11	5	2
712		1505	599	374	140	178	333	272	
0.46		0.43	0.43	0.10	0.19	0.19	0.05	0.15	0.00
1557		3526	1403	1767	722	920	1654	1826	1585
196		1682	25	163	0	91	48	94	C
1557		1763	1403	1767	0	1642	1654	1826	1585
7.9		42.9	1.0	7.7	0.0	4.8	2.4	4.6	0.0
7.9		42.9	1.0	7.7	0.0	4.8	2.4	4.6	0.0
1.00			1.00	1.00		0.56	1.00		1.00
712		1505	599	374	0	318	333	272	
0.28		1.12	0.04	0.44	0.00	0.29	0.14	0.35	
712		1505	599	449	0	962	477	1070	
1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1.00		1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00
16.9		28.8	16.8	31.4	0.0	34.6	33.1	38.4	0.0
0.2		62.6	0.0	0.3	0.0	0.6	0.1	0.9	0.0
0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.6		29.4	0.3	3.2	0.0	1.9	0.9	2.1	0.0
17.1		91.5	16.8	31.7	0.0	35.2	33.2	39.3	0.0
В		F	В	С		D	С	D	
	Т	1732			254			142	
		89.3			32.9			37.2	
		F			С			D	
3		5	6	7	8				
10.6		15.7	21.1	13.7	50.0				
7.1		6.1	6.1	7.1	7.1				
37.9		13.9	58.9	27.9	42.9				
2.8		9.7	6.6	5.1	44.9				
0.0		0.1	0.6	0.1	0.0				
59.4									
59.4 E									
ohase n	en								
			delay and	intersect	ion delav				
			hase max green. ulations of the approach of				hase max green. ulations of the approach delay and intersection delay.		

C - 2035 PM Peak No Build Synchro 12 Report Horizon Year 2035 2035.syn

HCM 7th LOS

119

119

1.00

1.00

1826

0.96

272

0.15

1826

1826

4.9

4.9

272

0.36

1069

1.00

1.00

38.5

1.0

0.0

2.2

39.5

D

149

D

37.4

No

403

1.00

1.00

1.00

1870

0.96 5

1585

1585

0.0

0.0

0.00

0.0

0.0

0.0

0.0

0.0

60

60

1.00

1.00

1.00

1737

50

0.96

332

0.05

1654

50

2.5

2.5

1.00

332

0.15

474

1.00

1.00

33.1

0.1

0.0

1.0

33.2

1654

32 196

1.00

1.00

1693

0.96

598

1403

1403

1.1

1.1

598

0.05

598

1.00

1.00

16.9

0.0

0.3

16.9

21.1

58.9

0.6

1.00

1.00

163

0.96

370

1767

1767

7.7 7.7

370

0.44

444

1.00

1.00

31.5

0.3

0.0

3.2

31.8

13.8

27.9

5.4 44.9

0.1

С

51

1.00

1.00 No

1811

0.96

143

0.19

743

0 1645

0.0

0.0

0 317

0 963

0.00

1.00

0.00

0.0

0.0

0.0

0.0

0.0

256

33.1

50.0

42.9

0.0

С

42

61

1.00

1.00

1.00

1826

0.96

174

0.19

902

93

4.9

4.9

0.55

0.29

1.00

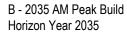
1.00

34.8

0.6

0.0

1.9


35.4

	•	-	*	1	+	•	1	Ť	1	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR
Lane Configurations	*	↑↑ 883	7	7	^	7	75	ĵ.	7	*	7
Traffic Volume (vph)	133	883	235	30	2019	32	196	51	60	119	403
Future Volume (vph)	133	883	235	30	2019	32	196	51	60	119	403
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	pm+pt	NA	Perm
Protected Phases	7	4		3	8		5	2	1	6	
Permitted Phases	4		4	8		8	2		6		6
Detector Phase	7	4	4	3	8	8	5	2	1	6	6
Switch Phase											
Minimum Initial (s)	7.0	10.0	10.0	7.0	10.0	10.0	7.0	15.0	7.0	15.0	15.0
Minimum Split (s)	14.1	46.1	46.1	14.1	17.1	17.1	13.1	29.1	13.1	21.1	21.1
Total Split (s)	35.0	40.0	40.0	45.0	50.0	50.0	20.0	65.0	20.0	65.0	65.0
Total Split (%)	20.6%	23.5%	23.5%	26.5%	29.4%	29.4%	11.8%	38.2%	11.8%	38.2%	38.2%
Yellow Time (s)	5.6	5.6	5.6	5.6	5.6	5.6	4.6	4.6	4.6	4.6	4.6
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	7.1	7.1	7.1	7.1	7.1	7.1	6.1	6.1	6.1	6.1	6.1
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lead	Lag	Lag
ead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	Min	Min	None	Min	Min	None	Min	None	None	None
Act Effct Green (s)	56.1	50.4	50.4	50.0	42.9	42.9	32.6	22.7	22.7	15.3	15.3
ctuated g/C Ratio	0.53	0.48	0.48	0.47	0.41	0.41	0.31	0.22	0.22	0.15	0.15
/c Ratio	0.52	0.44	0.24	0.07	1.18	0.04	0.43	0.25	0.17	0.38	0.65
Control Delay (s/veh)	24.5	20.7	4.8	12.0	117.9	0.1	31.1	24.9	27.8	46.3	11.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay (s/veh)	24.5	20.7	4.8	12.0	117.9	0.1	31.1	24.9	27.8	46.3	11.2
LOS	C	C	A	В	F	A	С	C	C	D	В
Approach Delay (s/veh)		18.1			114.6			28.8		20.1	
Approach LOS		В			F			C		C	
Intersection Summary											
Cycle Length: 170											
Actuated Cycle Length: 105	5.3										
Natural Cycle: 115											
Control Type: Actuated-Und	coordinated										
Maximum v/c Ratio: 1.18											
Intersection Signal Delay (s				li	ntersectio	n LOS: E					
Intersection Capacity Utiliza	ation 89.4%			10	CU Level	of Service	e E				
Analysis Period (min) 15											
Splits and Phases: 3: SR	303/2nd S	t & SR 50	00/Rio Bra	avo Blvd.							
\					Τ.	_			1		
y øı y ø	2				<i>(</i>	– Ø3			4	Ø4	
20 s 65 s	_				45 s	,50			40.5	, , , , , , , , , , , , , , , , , , ,	
					1			144	70.3		
↑ ø ₅ ♦ ø	,				リブ	Ø7		17	– Ø8		
Ø5 V Ø	0			_	0.0	Ø7	_	-	90		

11/23/2024

D - 2035 PM Peak Build Synchro 12 Report Horizon Year 2035 2035.syn User approved pedestrian interval to be less than phase max green.
Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay. D - 2035 PM Peak Build Synchro 12 Report 2035.syn Horizon Year 2035

Intersection						
Int Delay, s/veh	0.4					
		EDD	NS	NET	057	000
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	A			4	1	
Traffic Vol, veh/h	22	4	4	912	254	62
Future Vol, veh/h	22	4	4	912	254	62
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	100	100	100	4	7	100
Mvmt Flow	14	3	3	588	164	40
Miller 1011	• •			000		10
Major/Minor I	Minor2	Λ	/lajor1	Λ	/lajor2	
Conflicting Flow All	777	184	204	0	-	0
Stage 1	184	-	-	-	-	-
Stage 2	594	-	-	-	-	-
Critical Hdwy	7.4	7.2	5.1	-	-	-
Critical Hdwy Stg 1	6.4	_	-	_	_	_
Critical Hdwy Stg 2	6.4	_	_	_	_	_
Follow-up Hdwy	4.4	4.2	3.1	_	_	_
Pot Cap-1 Maneuver	256	659	949	_	_	_
Stage 1	659	-	-	<u>_</u>	_	_
Stage 2	401	_			_	_
Platoon blocked, %	401	_	_	_	_	_
	255	6E0	949	-	-	_
Mov Cap-1 Maneuver	255	659		-	-	-
Mov Cap-2 Maneuver	255	-	-		-	-
Stage 1	656	-	-	-	-	-
Stage 2	401	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s/v			0.04		0	
HCM LOS	V 10.37		0.04		U	
I IOIVI LOO	U					
Minor Lane/Major Mvm	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		8	-		_	-
HCM Lane V/C Ratio		0.003		0.059	_	_
HCM Control Delay (s/	veh)	8.8	0	18.6	_	_
HCM Lane LOS	. 011)	Α	A	C	_	_
HCM 95th %tile Q(veh)	\	0	-	0.2	_	_
Holvi Jour 70the W(Veri)	U		0.2		_

Intersection						
Int Delay, s/veh	1.3					
	EDI	FDD	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y		_	4	4	
Traffic Vol, veh/h	67	11	2	260	731	31
Future Vol, veh/h	67	11	2	260	731	31
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	_	-	-
Veh in Median Storage	, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	100	100	100	4	7	100
Mvmt Flow	43	7	1	168	472	20
	Minor2		//ajor1	N	/lajor2	
Conflicting Flow All	652	482	492	0	-	0
Stage 1	482	-	-	-	-	-
Stage 2	170	-	-	-	-	-
Critical Hdwy	7.4	7.2	5.1	-	-	-
Critical Hdwy Stg 1	6.4	-	-	-	-	-
Critical Hdwy Stg 2	6.4	-	-	-	-	-
Follow-up Hdwy	4.4	4.2	3.1	-	-	-
Pot Cap-1 Maneuver	311	428	710	-	-	-
Stage 1	460	-	-	-	_	_
Stage 2	670	_	_	_	_	_
Platoon blocked, %	310			_	<u>-</u>	_
Mov Cap-1 Maneuver	310	428	710	_	-	-
	310					
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	459	-	-	-	-	-
Stage 2	670	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s/v			0.08		0	
HCM LOS	C		0.00		U	
TIOWI LOO	U					
Minor Lane/Major Mvm	ıt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		14	-	323	-	-
HCM Lane V/C Ratio		0.002	_	0.156	_	-
HCM Control Delay (s/	veh)	10.1	0	18.2	_	-
HCM Lane LOS		В	A	C	_	_
HCM 95th %tile Q(veh)		0	-	0.5	_	_
HOW JOHN JOHN GUIC W(VEIL)		U		0.0		