Capacity of a Single 'C' Storm Drop Inlet Inlet 'CI-5'

Capacity of the grate:

- L = $40^{\circ} 2(2^{\circ}_{ends}) 7(\frac{1}{2}^{\circ}_{middle bars})$ = $32 \frac{1}{2}^{\circ}$ = 2.7083° W = $25^{\circ} - 13(\frac{1}{2}^{\circ}_{middle bars})$ = 18.5° = 1.54°
- Area = $2.7083' \times 1.54'$ = 4.18 ft^2

Effective Area = $4.18 \cdot 4.18 \cdot 0.5$ (_{clogging factor}) = 2.09 ft² at the grate

Orifice Equation

Q = CA sqrt(2gH) Q = 0.6*2.09*sqrt(2*32.2*0.72) Q = 8.54 cfs

Capacity of the Throat:

L = 2.95'

H = $10 \frac{3}{4}$ " - $4 \frac{1}{2}$ " = $6 \frac{1}{4}$ " = 0.5208'

Area = $2.95' \times 0.5208'$ = 1.54 ft^2 at the throat

Weir Equation

Q = CLH^(3/2) Q = 2.95 * 1.54 * 0.90^(3/2) Q = 3.87 cfs

Total Capacity:

 $\begin{array}{l} Q_{cap} = 8.54_{grate} + 3.87_{throat} \\ Q_{cap} = 12.41 \ cfs \end{array}$

 $Q_{req} = \frac{10.68 \text{ cfs}}{10.68 \text{ cfs}}$ (Revised 11/20/13)

Inlet Checks OK