

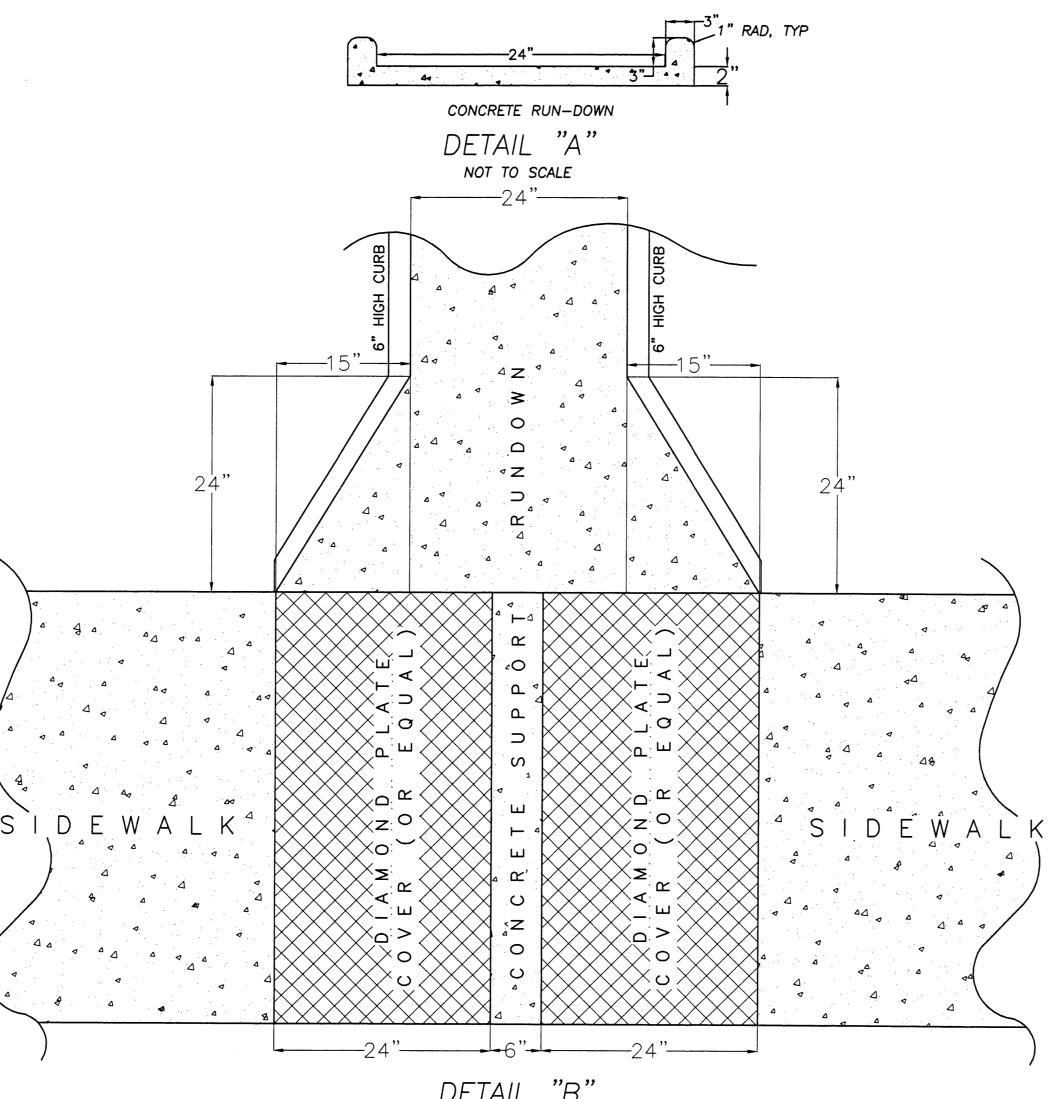
DRAINAGE DA	ATA: HOLII	DAY INN EXF	PRESS				
THIS SITE LIE				2	-		
Condition	Return	Treatment	Area	Precip.	Runoff	Volume	Rate
	Table 4	Туре	(sq. ft.)	(in.)	Table A-9	(cu. Ft.)	(cfs)
	(Years)			•	(cfs/ac)		
EXISTING	100	Α	83,175	0.53	1.56	3,673.6	2.98
		В	9,241	0.78	2.28	600.7	0.48
		С	0	1.13	3.14	0.0	0.00
		D	0	2.12	4.70	0.0	0.00
EXISTING	10	Α	83,175	0.13	0.38	901.1	0.73
		В	9,241	0.28	0.95	215.6	0.20
		С	0	0.52	1.71	0.0	0.00
		D	0	1.34	3.14	0.0	0.00
DEVELOPED	100	Α	0	0.53	1.56	0.0	0.00
		В	13,428	0.78	2.28	872.8	0.70
		C	0	1.13	3.14	0.0	0.00
		D	78,988	2.12	4.70	13,954.5	8.52
DEVELOPED	10	A	0	0.13	0.38	0.0	0.00
		В	13,428	0.28	0.95	313.3	0.29
		C	0	0.52	1.71	0.0	0.00
		D	78,988	1.34	3.14	8,820.3	5.69
TOTAL (EXT)	100					4,274.2	3.5
	10					1,116.7	0.9
TOTAL (DEV)	100					14,827.4	9.2
	10					9,133.6	6.0

PROPOSED CONTOURS AND SPOT ELEVATIONS SHOWN ARE TO FINISH SURFACES AND ARE PROVIDED FOR THE PURPOSE OF SHOWING FLOW ROUTING.

CONTRACTOR IS RESPONSIBLE FOR THE ABATEMENT OF SEDIMENT ONTO ADJOINING PUBLIC RIGHTS-OF-WAY DURING CONSTRUCTION AND FOR THE REMOVAL OF ANY SEDIMENT DEPOSITED IN PUBLIC RIGHT-OF-WAY.

CONTRACTOR SHALL OBTAIN A "TOPSOIL DISTURBANCE PERMIT" PRIOR TO ANY GRADING OR CONSTRUCTION.

BENCH MARK


BENCH MARK IS ACS MONUMENT "SDC 12-1" LOCATED 1500' S. OF THE GIBSON BRIDGE OVER AMAFCA SOUTH DIVERSION CHANNEL. NGVD ELEVATION: 5047.3

OFFSITE FLOW INFORMATION

OFFSITE CONTRIBUTORY FLOW TO THE PROPERTY IS NEGLIGIBLE.

DRAINAGE NOTES:

- ROOF DRAINAGE CONVEYED TO PARKING LOT VIA GUTTERS AND DOWNSPOUTS
- EROSION CONTROL MEASURES SHALL BE TAKEN WHERE SLOPES EXCEED 3:1. EROSION CONTROL MEASURES MAY INCLUDE; SHOTCRETE, CONCRETE, IRRIGATED TURF, RIP-RAP WITH GEOTEXTILE BACKING, TERRACING, OR ANY COMBINATION OF TECHNIQUES THEREOF. EROSION CONTROL MEASURES TAKEN SHALL BE DETERMINED BY LANDSCAPE ARCHITECT.
- SIDEWALK CULVERTS SHALL BE CONSTRUCTED PER COA STD DWG 2236. EACH SIDEWALK CULVERT SHALL BE 24" WIDE. ALIGN EDGES OF RUNDOWN WITH SIDEWALK CULVERT.
- TOPOGRAPHIC MAP PROVIDED BY SURVEYS SOUTHWEST.
- RETAINING WALL DESIGN BY OTHERS.

NOT TO SCALE

CHANNEL CAPACITY CALCULATIONS

- CHANNEL CAPACITY CALCULATIONS

 NORTH SIDEWALK CHANNEL $Q=(1.49/n)*A*Rh^2/3*SQ.RT.(S)$ n = 0.013 (CONCRETE) A = 0.5 SQ.FT. (REC. CHANNEL, MIN CROSS SECTION) Rh = A/P = 0.167 SQ.FT. S = 0.033 FT./FT. (3% TOWARD STREET) $Q = (1.49/0.013)*0.5*(0.167^2/3)*SQ.RT.(0.033)$

- Q = 3.17 cfs per culvert Q (REQUIRED) = 4.6 cfs (1/2 site requirement)
- Q > Q (REQUIRED)
- CHANNEL CAPACITY CALCULATIONS SOUTH SIDEWALK CHANNEL
- $Q=(1.49/n)*A*Rh^2/3*SQ.RT.(S)$ n = 0.013 (CONCRETE)

- A = 0.5 SQ.FT. (REC. CHANNEL, MIN CROSS SECTION)

 Rh = A/P = 0.167 SQ.FT.

 S = 0.033 FT./FT. (3% TOWARD STREET)

 Q = (1.49/0.013)*0.5*(0.167^2/3)*SQ.RT.(0.033)
- Q = 3.17 cfs per culvert Q (REQUIRED) = 4.6 cfs (1/2 site requirement)
- Q > Q (REQUIRED)

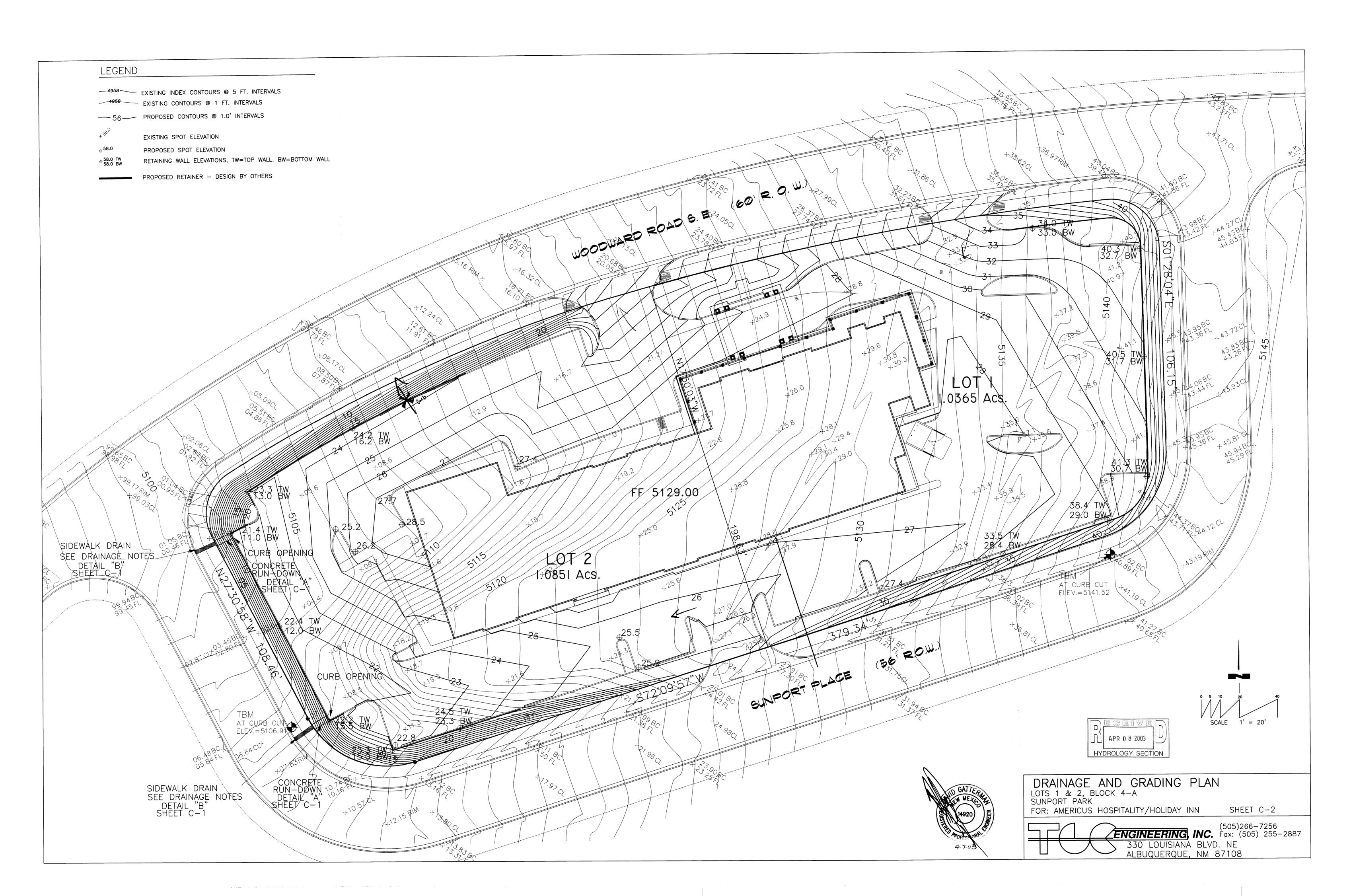
I, DAVID GATTERMAN, NEW MEXICO REGISTERED PROFESSIONAL ENGINEER NO. 14920, DO HEREBY CERTIFY THAT I INSPECTED THIS SITE ON NOVEMBER 1, 2002, AND THAT, AS OF THAT DATE, THERE HAD BEEN NO RECENT ALTERATION OF GRADE OR EVIDENCE OF GRADING OPERATIONS ON THIS SITE.

NOTICE TO CONTRACTORS

- An excavation/barricade permit will be required before beginning any work within the City
 of Albuquerque Right—of—way. An approved copy of these plans must be submitted at
 the time of application for these permits.
- All work detailed on these plans to be done, except as otherwise stated or provided hereon, will be constructed in accordance with "City of Albuquerque Interim Standard Specification for Public Works Construction, 1986", latest revision.
- 3. Two working days prior to any excavation, the contractor must contact Line Locating Service, 260—1990, for location of existing utilities.
- 4. Prior to construction, the contractor will excavate and verify the horizontal and vertical locations of all construction. Should a conflict exist, the contractor will notify the Construction Engineer so that the conflict can be resolved with a minimum amount of delay.
- 5. The contractor will be responsible for performing soil density tests as required by the City of Albuquerque.

APPROVALS FOR	NAME	DATE	TITLE OF PROJECT
DESIGN: CITY HYDROLOGY			FOR: AMERICUS
CONSTRUCTION: CONSTRUCTION ENGINEER			HOSPITALITY/ HOLIDAY INN
ACCEPTANCE: CONSTRUCTION INSPECTOR			PROJECT NO. ZONE ATLAS SHEET 1 OF 2 M-15

DRAINAGE AND GRADING PLAN LOTS 1 & 2, BLOCK 4-A SUNPORT PARK

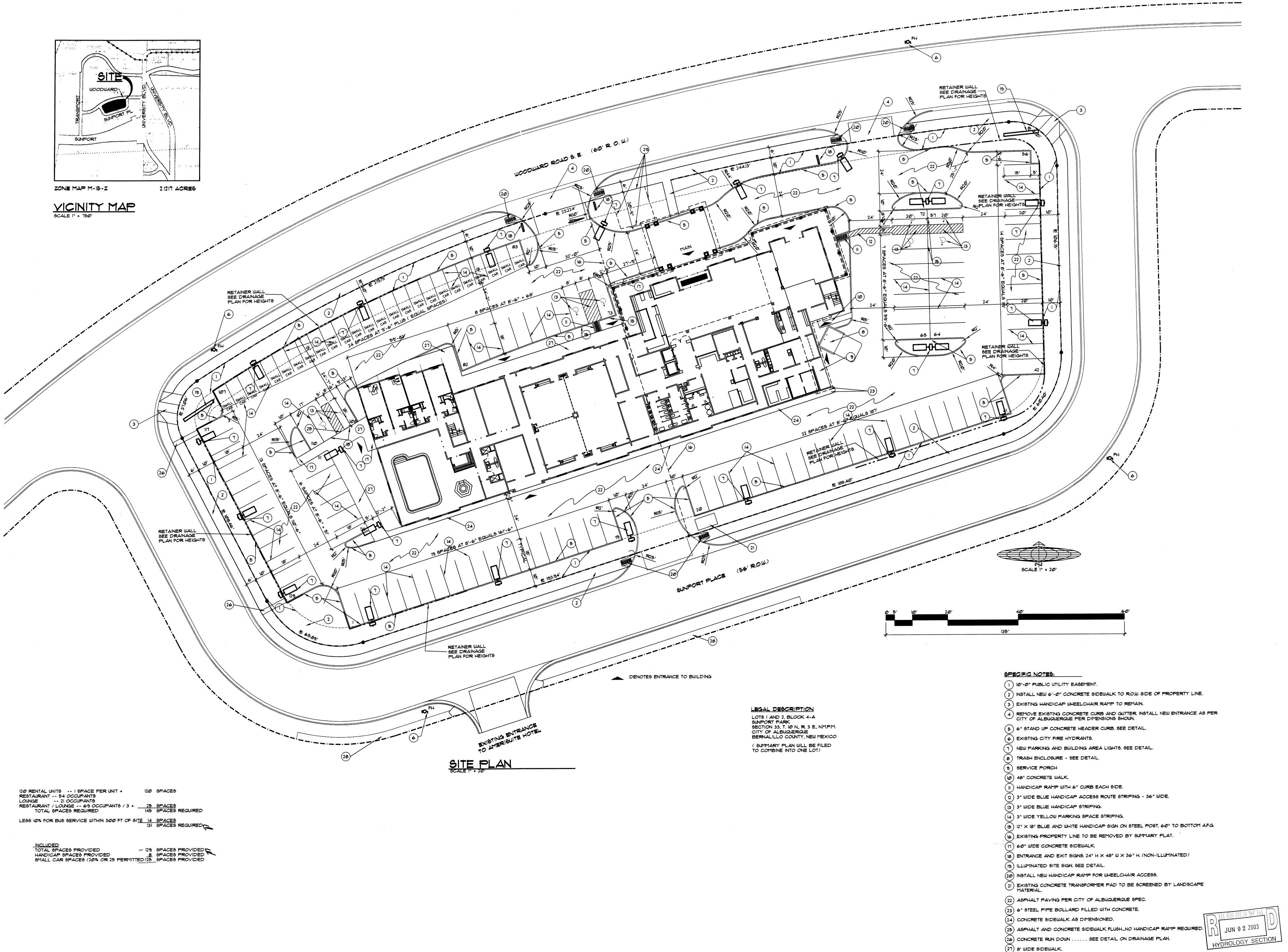

FOR: AMERICUS HOSPITALITY/ DLIDAY INN

SHEET C-1

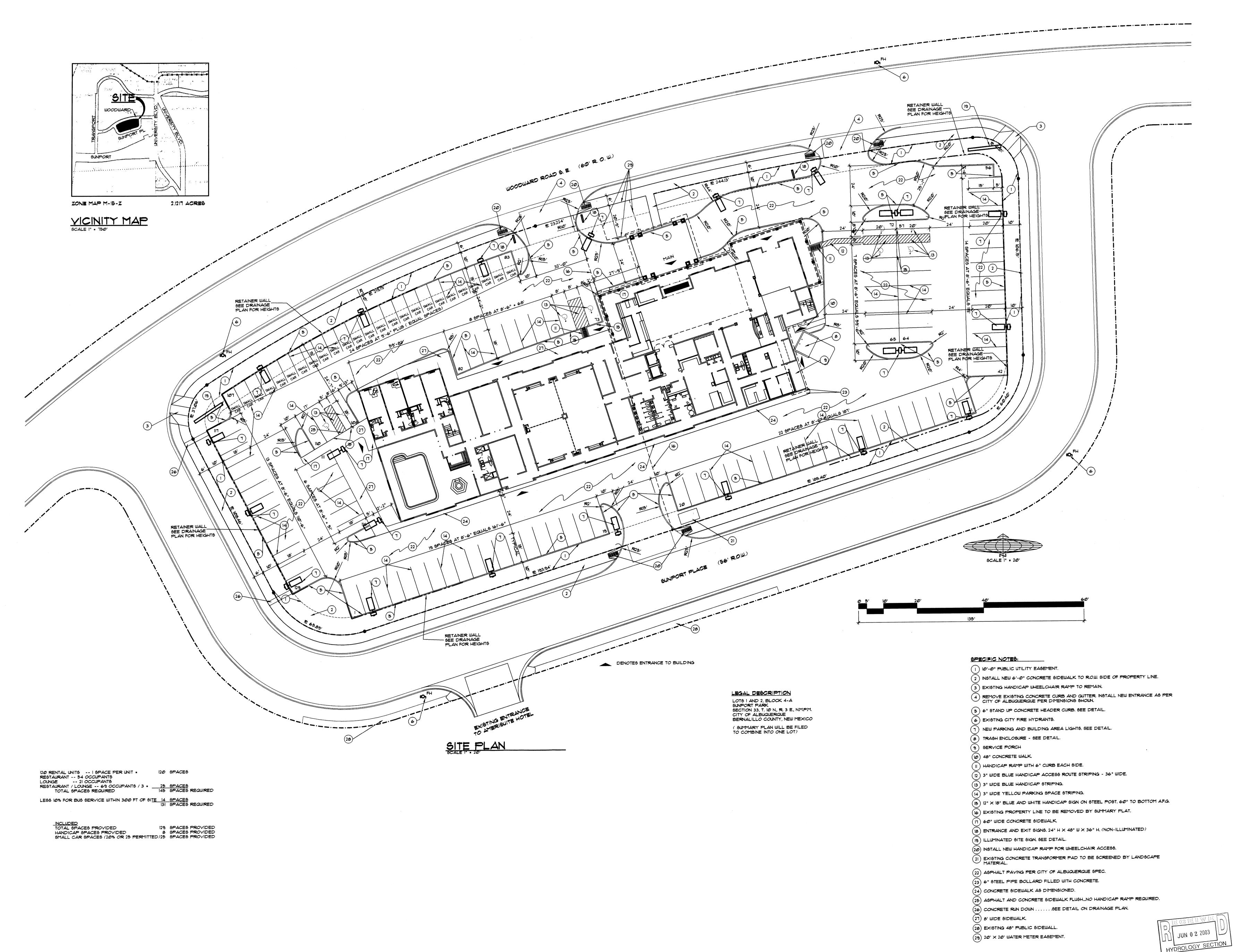
APR 0 8 2003

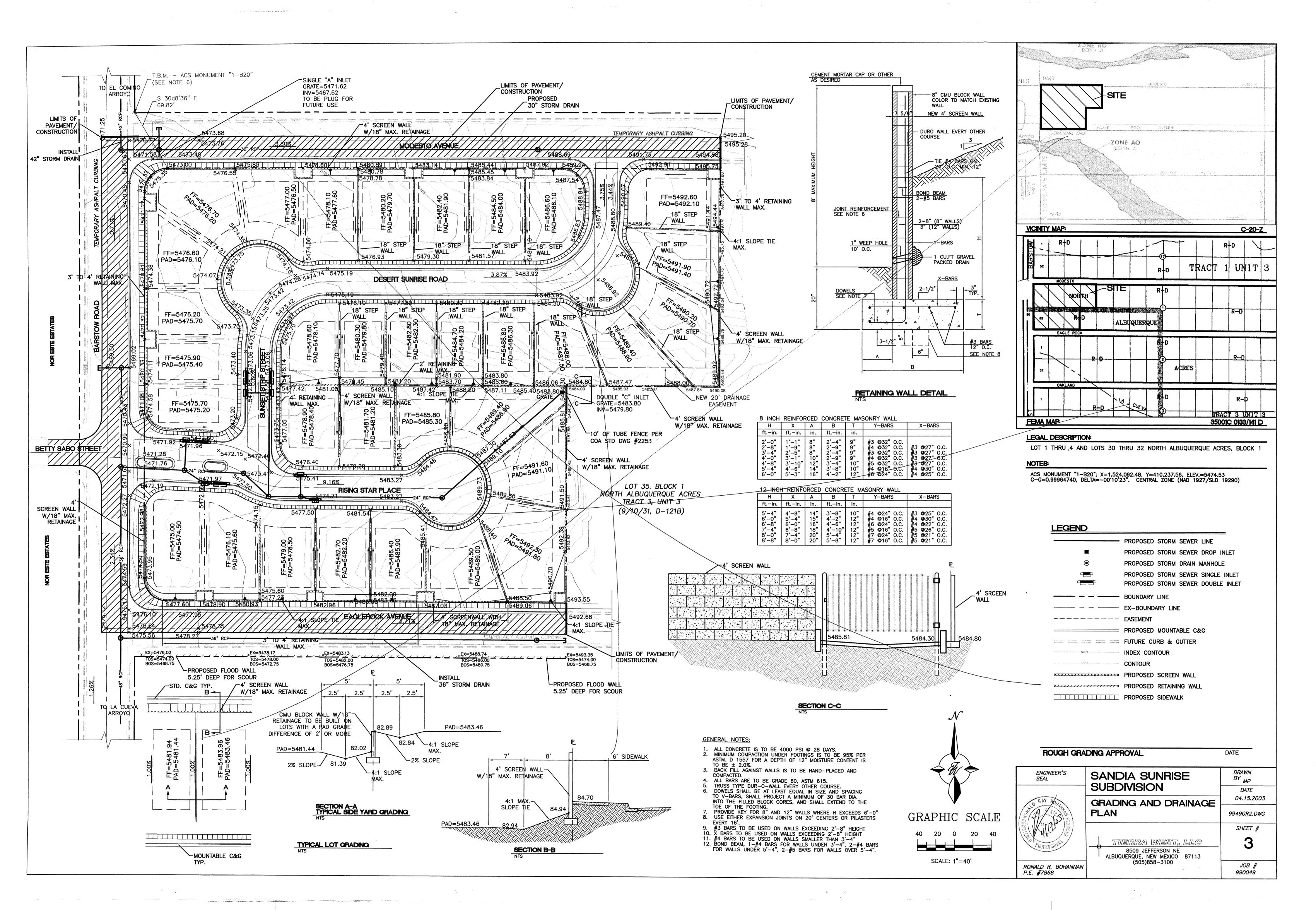
HYDROLOGY SECTION

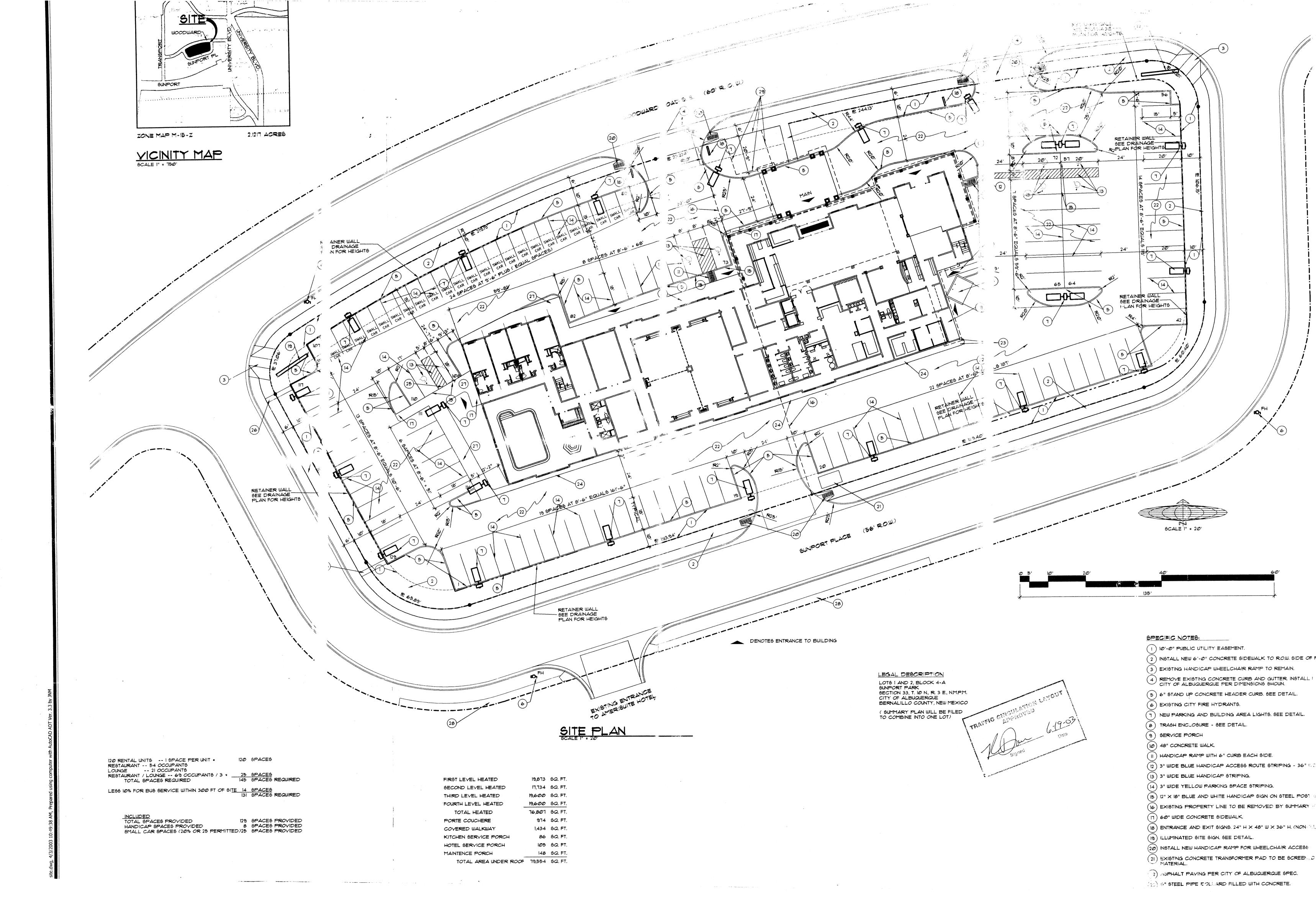
(505)266-7256 **ENGINEERING**, INC. Fax: (505) 255–2887 330 LOUISIANA BLVD. NE ALBUQUERQUE, NM 87108

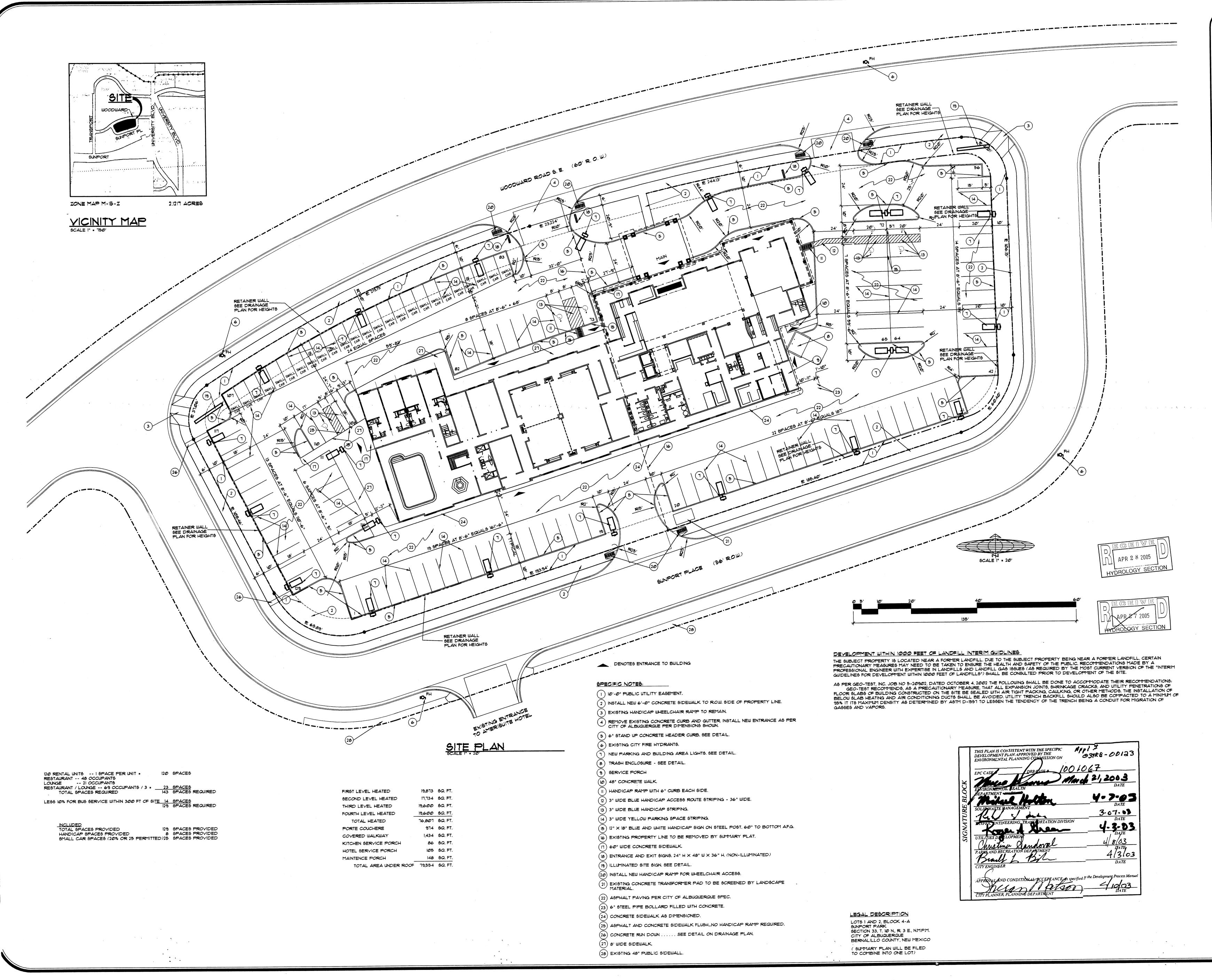


(27) 8' WIDE SIDEWALK.


(28) EXISTING 48" PUBLIC SIDEWALL.

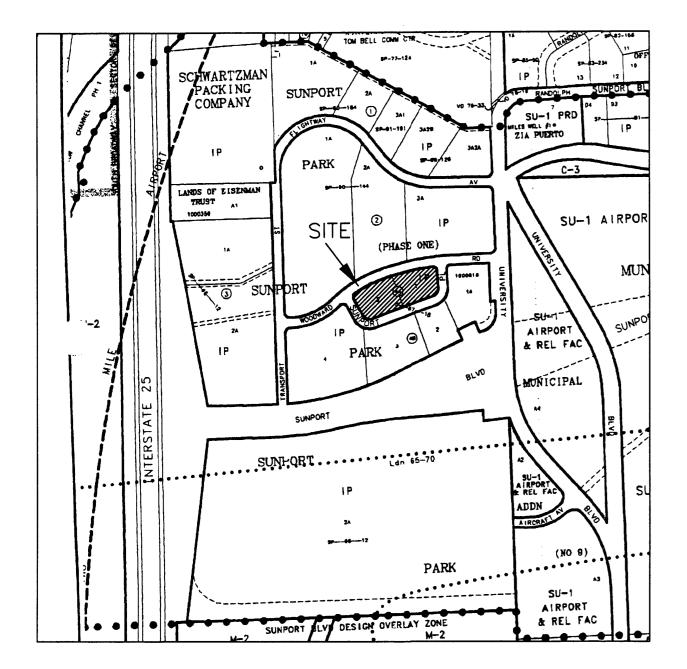

(29) 20' × 20' WATER METER EASEMENT.




(28) EXISTING 48" PUBLIC SIDEWALL.

29) 20' × 20' WATER METER EASEMENT.

JAMES IN JAM


STATES AND STATES AND

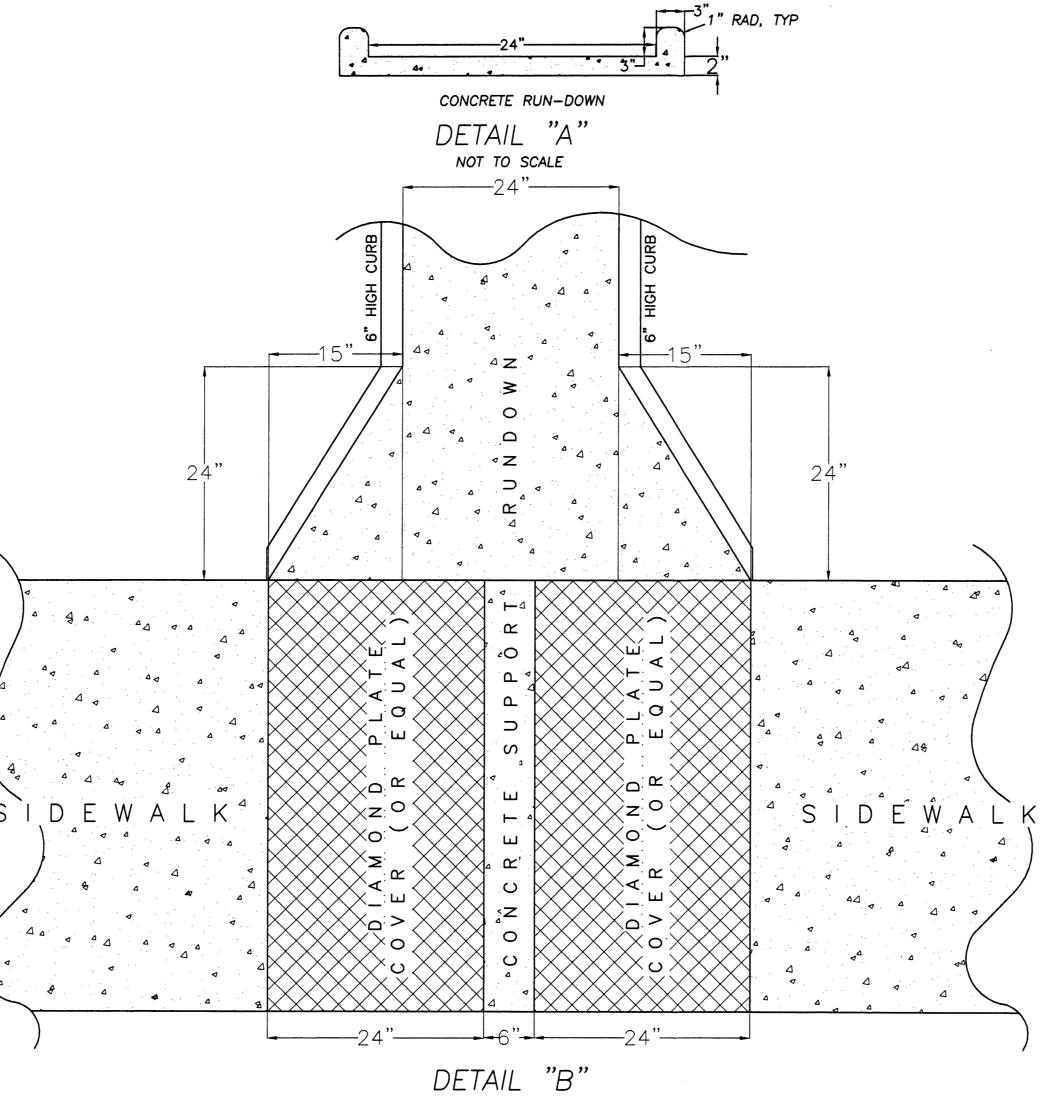
Date:
February '03
Drawn by:
JITES
Checked by:

o. Revision / Issue Date:

SITE PLAN PRELIMINARY

> 1 °f 6

DRAINAGE	DATA: HO	LIDAY INN	FXPRESS


DRAINAGE DA					_		
THIS SITE LIE	S WITHIN	PRECIPITAT	ION ZONE	2			
Condition	Return	Treatment	Area	Precip.	Runoff	Volume	Rate
	Table 4	Туре	(sq. ft.)	(in.)	Table A-9	(cu. Ft.)	(cfs)
	(Years)				(cfs/ac)		
EXISTING	100	Α	83,175	0.53	1.56	3,673.6	2.98
		В	9,241	0.78	2.28	600.7	0.48
		С	0	1.13	3.14	0.0	0.00
		D	0	2.12	4.70	0.0	0.00
EXISTING	10	Α	83,175	0.13	0.38	901.1	0.73
		В	9,241	0.28	0.95	215.6	0.20
		С	. 0	0.52	1.71	0.0	0.00
		D	0	1.34	3.14	0.0	0.00
DEVELOPED	100	Α	0	0.53	1.56	0.0	0.00
		В	13,428	0.78	2.28	872.8	0.70
		С	0	1.13	3.14	0.0	0.00
		D	78,988	2.12	4.70	13,954.5	8.52
DEVELOPED	10	Α	0	0.13	0.38	0.0	0.00
		В	13,428	0.28	0.95	313.3	0.29
		С	0	0.52	1.71	0.0	0.00
		D	78,988	1.34	3.14	8,820.3	5.69
TOTAL (EXT)	100					4,274.2	3.5
IOIAL (EXI)	100					1,116.7	0.9
TOTAL (DEV)	100					14,827.4	9.2
TOTAL (DEV)	100					9,133.6	6.0
	10					ð, 155.0	0.0

PROPOSED CONTOURS AND SPOT ELEVATIONS SHOWN ARE TO FINISH SURFACES AND ARE PROVIDED FOR THE PURPOSE OF SHOWING FLOW ROUTING.

CONTRACTOR IS RESPONSIBLE FOR THE ABATEMENT OF SEDIMENT ONTO ADJOINING PUBLIC RIGHTS-OF-WAY DURING CONSTRUCTION AND FOR THE REMOVAL OF ANY SEDIMENT DEPOSITED IN PUBLIC RIGHT-OF-WAY.

CONTRACTOR SHALL OBTAIN A "TOPSOIL DISTURBANCE PERMIT" PRIOR TO ANY GRADING OR CONSTRUCTION.

CONTRACTOR OR OWNER SHALL BE RESPONSIBLE FOR OBTAINING AN NPDES STORMWATER DISCHARGE PERMIT FOR THE CONSTRUCTION PHASE OF THIS PROJECT.

NOT TO SCALE

CHANNEL CAPACITY CALCULATIONS NORTH SIDEWALK CHANNEL

 $Q=(1.49/n)*A*Rh^2/3*SQ.RT.(S)$ n = 0.013 (CONCRETE)

A = 0.5 SQ.FT. (REC. CHANNEL, MIN CROSS SECTION) Rh = A/P = 0.167 SQ.FT. S = 0.033 FT./FT. (3% TOWARD STREET) $Q = (1.49/0.013)*0.5*(0.167^2/3)*SQ.RT.(0.033)$

Q = 3.17 cfs per culvert Q (REQUIRED) = 4.6 cfs (1/2 site requirement)

Q > Q (REQUIRED)

CHANNEL CAPACITY CALCULATIONS
SOUTH SIDEWALK CHANNEL
Q=(1.49/n)*A*Rh^2/3*SQ.RT.(S)
n = 0.013 (CONCRETE)

A = 0.5 SQ.FT. (REC. CHANNEL, MIN CROSS SECTION)

Rh = A/P = 0.167 SQ.FT. S = 0.033 FT./FT. (3% TOWARD STREET) $Q = (1.49/0.013)*0.5*(0.167^2/3)*SQ.RT.(0.033)$

Q = 3.17 cfs per culvert Q (REQUIRED) = 4.6 cfs (1/2 site requirement)

Q > Q (REQUIRED)

, DAVID GATTERMAN, NEW MEXICO REGISTERED PROFESSIONAL ENGINEER NO. 14920, DO HEREBY CERTIFY THAT I INSPECTED THIS SITE ON NOVEMBER 1, 2002, AND THAT, AS OF THAT DATE, THERE HAD BEEN NO RECENT ALTERATION OF GRADE OR EVIDENCE OF GRADING OPERATIONS ON THIS SITE.

BENCH MARK

BENCH MARK IS ACS MONUMENT "SDC 12-1" LOCATED 1500' S. OF THE GIBSON BRIDGE OVER AMAFCA SOUTH DIVERSION CHANNEL. NGVD ELEVATION: 5047.3

OFFSITE FLOW INFORMATION

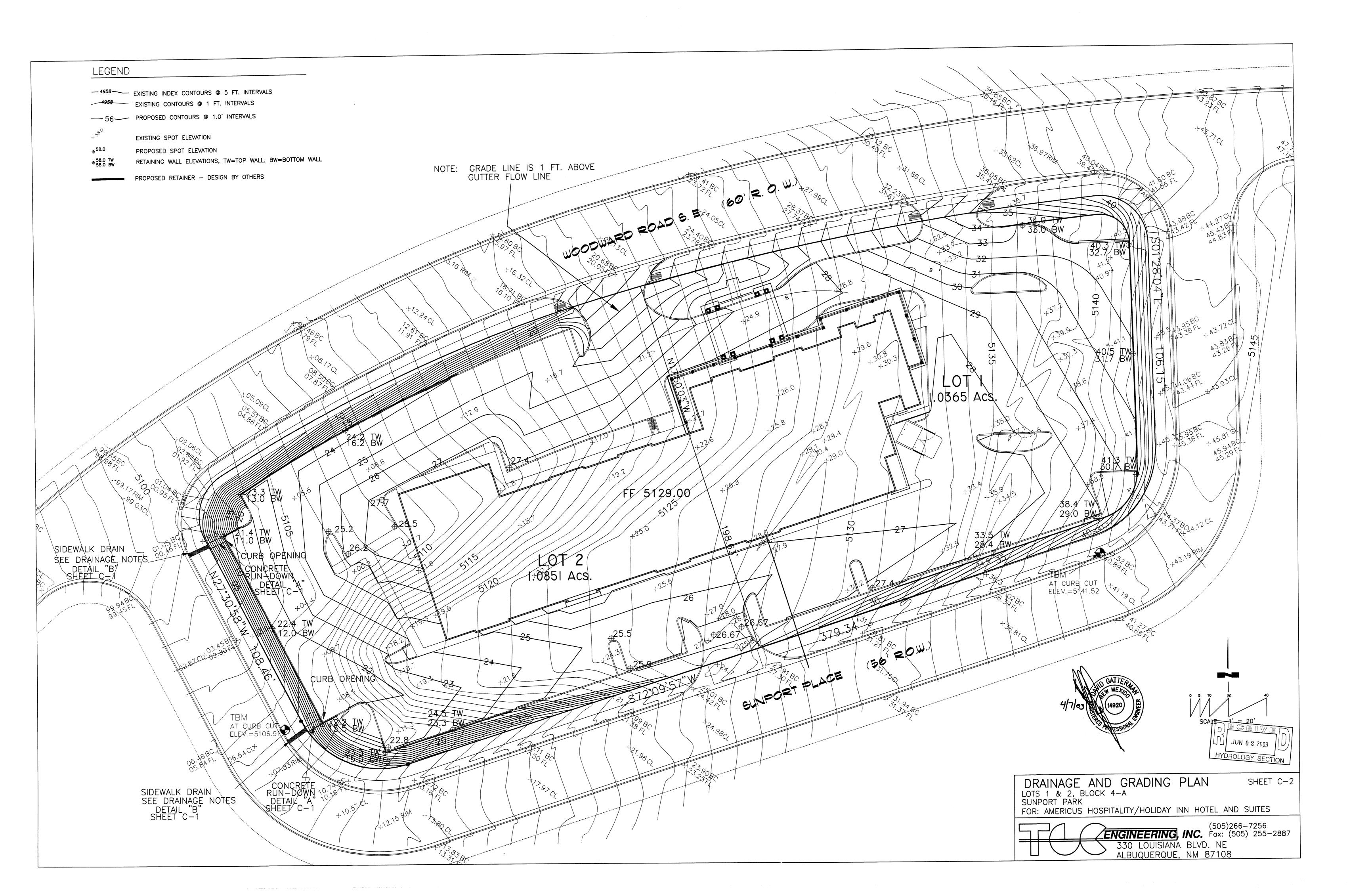
- OFFSITE CONTRIBUTORY FLOW TO THE PROPERTY IS NEGLIGIBLE.
- RUNOFF FROM SITE IS CONVEYED VIA CURB AND GUTTER TO STORM DRAINS LOCATED ON TRANSPORT ST.

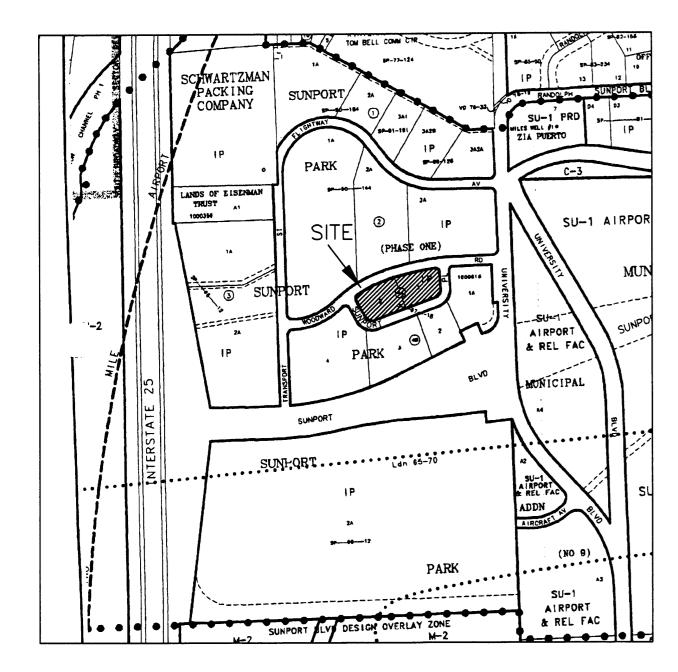
DRAINAGE NOTES:

- ROOF DRAINAGE CONVEYED TO PARKING LOT VIA GUTTERS AND DOWNSPOUTS
- EROSION CONTROL MEASURES SHALL BE TAKEN WHERE SLOPES EXCEED 3:1. EROSION CONTROL MEASURES MAY INCLUDE; SHOTCRETE, CONCRETE, IRRIGATED TURF, RIP-RAP WITH GEOTEXTILE BACKING, TERRACING, OR ANY COMBINATION OF TECHNIQUES THEREOF. EROSION CONTROL MEASURES TAKEN SHALL BE DETERMINED BY LANDSCAPE ARCHITECT.
- SIDEWALK CULVERTS SHALL BE CONSTRUCTED PER COA STD DWG 2236. EACH SIDEWALK CULVERT SHALL BE 24" WIDE. ALIGN EDGES OF RUNDOWN WITH SIDEWALK CULVERT.
- TOPOGRAPHIC MAP PROVIDED BY SURVEYS SOUTHWEST.
- RETAINING WALL DESIGN BY OTHERS.

NOTICE TO CONTRACTORS

- 1. An excavation/barricade permit will be required before beginning any work within the City of Albuquerque Right—of—way. An approved copy of these plans must be submitted at the time of application for these permits.
- All work detailed on these plans to be done, except as otherwise stated or provided hereon, will be constructed in accordance with "City of Albuquerque Interim Standard Specification for Public Works Construction, 1986", latest revision.
- Two working days prior to any excavation, the contractor must contact Line Locating Service, 260—1990, for location of existing utilities.
- 4. Prior to construction, the contractor will excavate and verify the horizontal and vertical locations of all construction. Should a conflict exist, the contractor will notify the Construction Engineer so that the conflict can be resolved with a minimum amount of delay.
- 5. The contractor will be responsible for performing soil density tests as required by the City of Albuquerque.
- 6. Owner shall be responsible for maintenance of sidewalk culverts and shall ensure proper operation of culverts at all times.

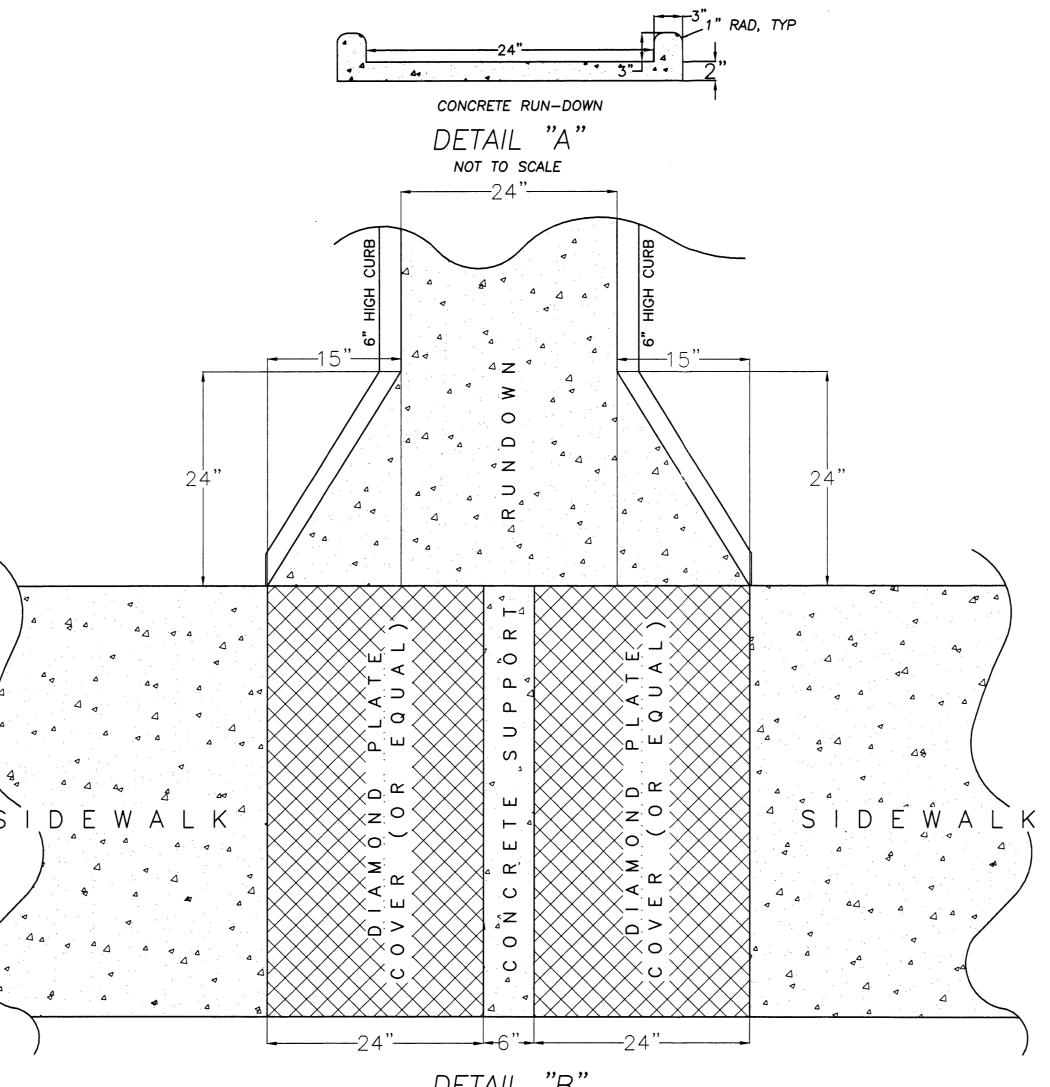

APPROVALS FOR	NAME	DATE	TITLE OF PROJECT
DESIGN: CITY HYDROLOGY			FOR: AMERICUS
CONSTRUCTION: CONSTRUCTION ENGINEER			HOSPITALITY/ HOLIDAY INN
ACCEPTANCE: CONSTRUCTION NSPECTOR			PROJECT NO. ZONE ATLAS SHEET 1 OF 2 M-15


DRAINAGE AND GRADING PLAN LOTS 1 & 2, BLOCK 4-A

SUNPORT PARK

SHEET C-1

DRAINAGE	DATA: HOL	IDAY INN	EXPRESS


DRAINAGE DA	TA: HOLI	DAY INN EXF	PRESS		_		
THIS SITE LIE	S WITHIN	PRECIPITAT	ION ZONE	2			
Condition	Return	Treatment	Area	Precip.	Runoff	Volume	Rate
	Table 4	Туре	(sq. ft.)	(in.)	Table A-9	(cu. Ft.)	(cfs)
	(Years)				(cfs/ac)		
EXISTING	10 0	Α	83,175	0.53	1.56	3,673.6	2.98
		В	9,241	0.78	2.28	600.7	0.48
		С	0	1.13	3.14	0.0	0.00
		D	0	2.12	4.70	0.0	0.00
EXISTING	10	Α	83,175	0.13	0.38	901.1	0.73
		В	9,241	0.28	0.95	215.6	0.20
		С	. 0	0.52	1.71	0.0	0.00
		D	0	1.34	3.14	0.0	0.00
DEVELOPED	100	Α	0	0.53	1.56	0.0	0.00
		В	13,428	0.78	2.28	872.8	0.70
		С	0	1.13	3.14	0.0	0.00
		D	78,988	2.12	4.70	13,954.5	8.52
DEVELOPED	10	Α	0	0.13	0.38	0.0	0.00
		В	13,428	0.28	0.95	313.3	0.29
		С	0	0.52	1.71	0.0	0.00
		D	78,988	1.34	3.14	8,820.3	5.69
TOTAL (EXT)	100					4,274.2	3.5
· - · · · · · · · · · · · · · · · · ·	10					1,116.7	0.9
TOTAL (DEV)	100					14,827.4	9.2
$\zeta = -\gamma f$	10					9,133.6	6.0

PROPOSED CONTOURS AND SPOT ELEVATIONS SHOWN ARE TO FINISH SURFACES AND ARE PROVIDED FOR THE PURPOSE OF SHOWING FLOW ROUTING.

CONTRACTOR IS RESPONSIBLE FOR THE ABATEMENT OF SEDIMENT ONTO ADJOINING PUBLIC RIGHTS-OF-WAY DURING CONSTRUCTION AND FOR THE REMOVAL OF ANY SEDIMENT DEPOSITED IN PUBLIC RIGHT-OF-WAY.

CONTRACTOR SHALL OBTAIN A "TOPSOIL DISTURBANCE PERMIT" PRIOR TO ANY GRADING OR CONSTRUCTION.

CONTRACTOR OR OWNER SHALL BE RESPONSIBLE FOR OBTAINING AN NPDES STORMWATER DISCHARGE PERMIT FOR THE CONSTRUCTION PHASE OF THIS PROJECT.

DETAIL NOT TO SCALE

CHANNEL CAPACITY CALCULATIONS NORTH SIDEWALK CHANNEL Q=(1.49/n)*A*Rh^2/3*SQ.RT.(S) n = 0.013 (CONCRETE) A = 0.5 SQ.FT. (REC. CHANNEL, MIN CROSS SECTION) Rh = A/P = 0.167 SQ.FT.

S = 0.033 FT./FT. (3% TOWARD STREET) $Q = (1.49/0.013)*0.5*(0.167^2/3)*SQ.RT.(0.033)$

Q = 3.17 cfs per culvert

Q (REQUIRED) = 4.6 cfs (1/2 site requirement) Q > Q (REQUIRED)

CHANNEL CAPACITY CALCULATIONS

CHANNEL CAPACITY CALCULATIONS
SOUTH SIDEWALK CHANNEL $Q=(1.49/n)*A*Rh^2/3*SQ.RT.(S)$ n=0.013 (CONCRETE) A=0.5 SQ.FT. (REC. CHANNEL, MIN CROSS SECTION) Rh=A/P=0.167 SQ.FT. S=0.033 FT./FT. (3% TOWARD STREET) $Q=(1.49/0.013)*0.5*(0.167^2/3)*SQ.RT.(0.033)$

Q (REQUIRED) = 4.6 cfs (1/2 site requirement) Q > Q (REQUIRED)

Q = 3.17 cfs per culvert

I, DAVID GATTERMAN, NEW MEXICO REGISTERED PROFESSIONAL ENGINEER NO. 14920, DO HEREBY CERTIFY THAT I INSPECTED THIS SITE ON NOVEMBER 1, 2002, AND THAT, AS OF THAT DATE, THERE HAD BEEN NO RECENT ALTERATION OF GRADE OR EVIDENCE OF GRADING OPERATIONS ON THIS SITE.

BENCH MARK

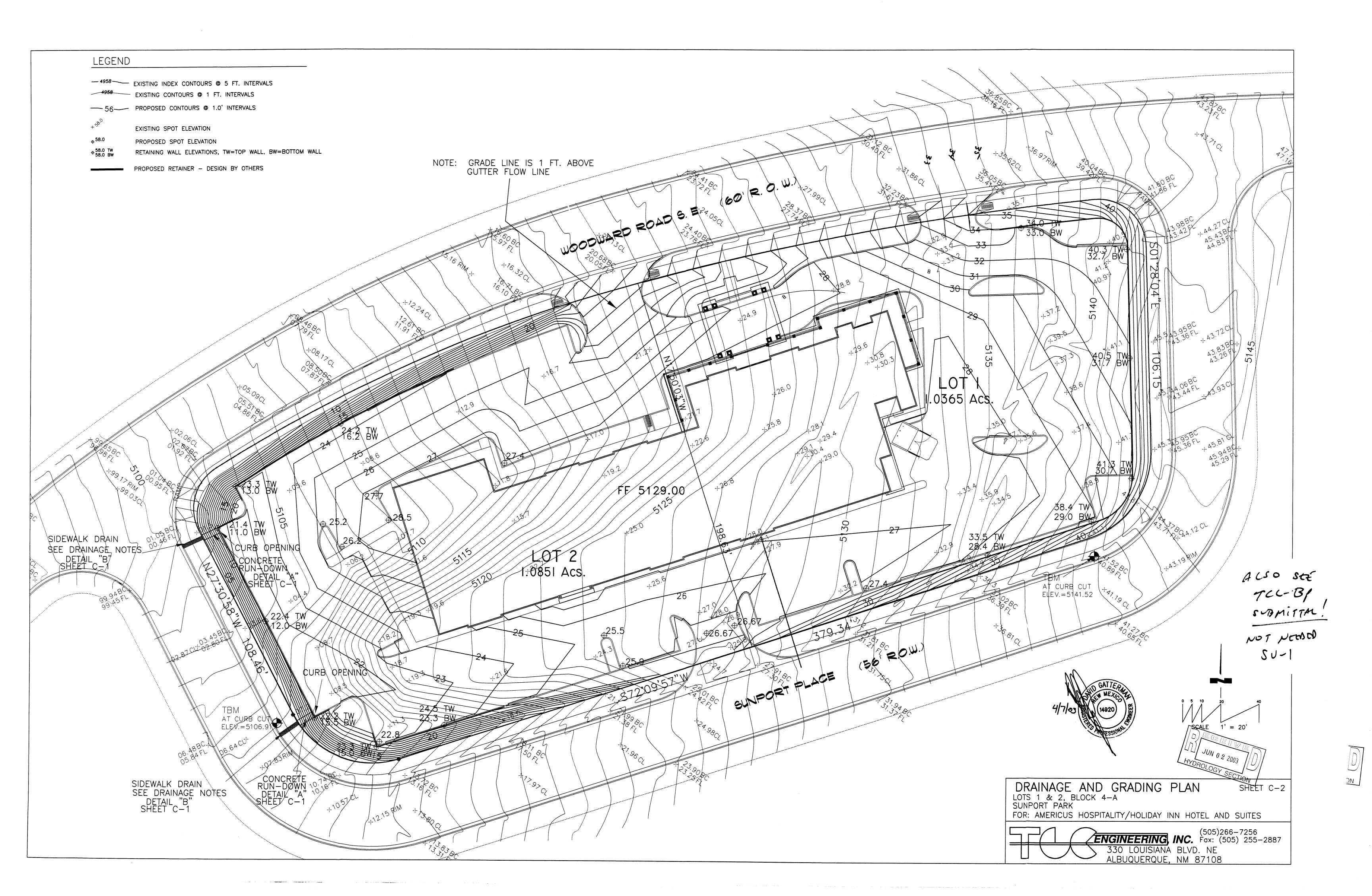
BENCH MARK IS ACS MONUMENT "SDC 12-1" LOCATED 1500' S. OF THE GIBSON BRIDGE OVER AMAFCA SOUTH DIVERSION CHANNEL. NGVD ELEVATION: 5047.3

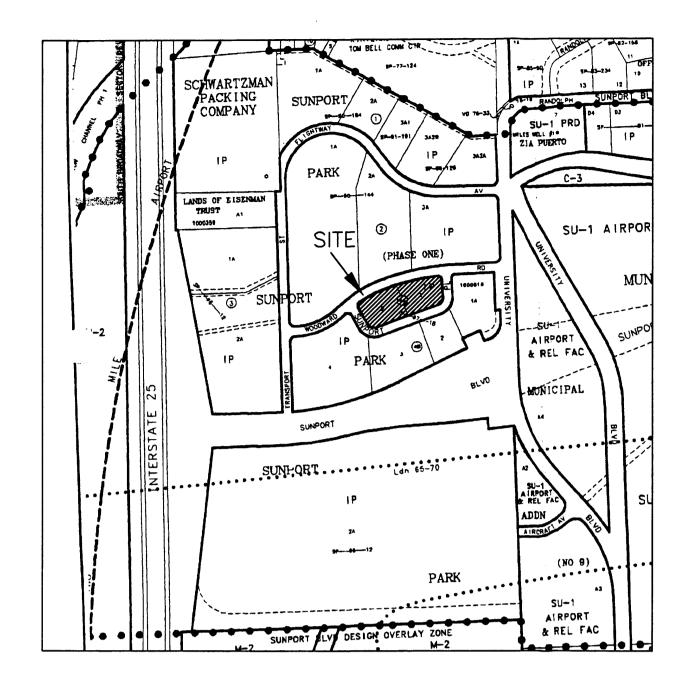
OFFSITE FLOW INFORMATION

- OFFSITE CONTRIBUTORY FLOW TO THE PROPERTY IS NEGLIGIBLE.
- RUNOFF FROM SITE IS CONVEYED VIA CURB AND GUTTER TO STORM DRAINS LOCATED ON TRANSPORT ST.

DRAINAGE NOTES:

- ROOF DRAINAGE CONVEYED TO PARKING LOT VIA GUTTERS AND DOWNSPOUTS
- EROSION CONTROL MEASURES SHALL BE TAKEN WHERE SLOPES EXCEED 3:1. EROSION CONTROL MEASURES MAY INCLUDE; SHOTCRETE, CONCRETE, IRRIGATED TURF, RIP-RAP WITH GEOTEXTILE BACKING, TERRACING, OR ANY COMBINATION OF TECHNIQUES THEREOF. EROSION CONTROL MEASURES TAKEN SHALL BE DETERMINED BY LANDSCAPE ARCHITECT.
- SIDEWALK CULVERTS SHALL BE CONSTRUCTED PER COA STD DWG 2236. EACH SIDEWALK CULVERT SHALL BE 24" WIDE. ALIGN EDGES OF RUNDOWN WITH SIDEWALK CULVERT.
- TOPOGRAPHIC MAP PROVIDED BY SURVEYS SOUTHWEST.
- RETAINING WALL DESIGN BY OTHERS.


NOTICE TO CONTRACTORS


- 1. An excavation/barricade permit will be required before beginning any work within the City of Albuquerque Right-of-way. An approved copy of these plans must be submitted at the time of application for these permits.
- All work detailed on these plans to be done, except as otherwise stated or provided hereon, will be constructed in accordance with "City of Albuquerque Interim Standard Specification for Public Works Construction, 1986", latest revision.
- 3. Two working days prior to any excavation, the contractor must contact Line Locating Service, 260—1990, for location of existing utilities.
- 4. Prior to construction, the contractor will excavate and verify the horizontal and vertical locations of all construction. Should a conflict exist, the contractor will notify the Construction Engineer so that the conflict can be resolved with a minimum amount of delay.
- 5. The contractor will be responsible for performing soil density tests as required by the City of Albuquerque.
- 6. Owner shall be responsible for maintenance of sidewalk culverts and shall ensure proper operation of culverts at all times.

APPROVALS FOR	NAME	DATE	TITLE OF PROJECT		
DESIGN: CITY HYDROLOGY			FOR: AMERICUS		
CONSTRUCTION: CONSTRUCTION ENGINEER			HOSPITALITY/ HOLIDAY INN		
ACCEPTANCE: CONSTRUCTION INSPECTOR			PROJECT NO. ZONE ATLAS SHEET 1 OF 2 M-15		

DRAINAGE AND GRADING PLAN SHEET C-1 LOTS 1 & 2, BLOCK 4-A SUNPORT PARK FOR: AMERICUS HOSPITALITY/HOLIDAY INN HOTEL AND SUITES

DRAINAGE DATA: HOLIDAY INN EYDDESS

ATA: HOLII	DAY INN EXF	PRESS				
S WITHIN	PRECIPITAT	TON ZONE	2			
Return	Treatment	Area	Precip.	Runoff	Volume	Rate
Table 4	Type	(sq. ft.)	(in.)	Table A-9	(cu. Ft.)	(cfs)
(Years)				(cfs/ac)		
100	Α	83,175	0.53	1.56	3,673.6	2.98
	В	9,241	0.78	2.28	600.7	0.48
	С	0	1.13	3.14	0.0	0.00
	D	0	2.12	4.70	0.0	0.00
10	Α	83,175	0.13	0.38	901.1	0.73
	В	9,241	0.28	0.95	215.6	0.20
	С	0	0.52	1.71	0.0	0.00
	D	0	1.34	3.14	0.0	0.00
100	Α	0	0.53	1.56	0.0	0.00
	В	13,428	0.78	2.28	872.8	0.70
	С	0	1.13	3.14	0.0	0.00
	D	78,988	2.12	4.70	13,954.5	8.52
10	Α	0	0.13	0.38	0.0	0.00
	В	13,428	0.28	0.95	313.3	0.29
	С	0	0.52	1.71	0.0	0.00
	D	78,988	1.34	3.14	8,820.3	5.69
100					4,274.2	3.5
10					1,116.7	0.9
100					14,827.4	9.2
10					9,133.6	6.0
	S WITHIN Return Table 4 (Years) 100 10 100 100 100 100 100 100 10	Return Treatment Table 4 Type (Years) 100 A B C D 10 A B C D 100 A B C D 100 B C D 100 B C D 100 A B C D 100 A	Return Table 4 (Years) Treatment Type Area (sq. ft.) 100 A 83,175 B 9,241 C 0 D 0 10 A 83,175 B 9,241 C 0 D 0 100 A 0 B 13,428 C 0 D 78,988 10 A 0 B 13,428 C 0 D 78,988	S WITHIN PRECIPITATION ZONE 2 Return Treatment Area Precip.	S WITHIN PRECIPITATION ZONE 2 Return Treatment Area Are	S WITHIN PRECIPITATION ZONE 2 Return Treatment Area Precip. Runoff Volume Table 4 Type (sq. ft.) (in.) Table A-9 (cu. Ft.) (cfs/ac)

NOTICE TO CONTRACTOR

PROPOSED CONTOURS AND SPOT ELEVATIONS SHOWN ARE TO FINISH SURFACES AND ARE PROVIDED FOR THE PURPOSE OF SHOWING FLOW ROUTING.

CONTRACTOR IS RESPONSIBLE FOR THE ABATEMENT OF SEDIMENT ONTO ADJOINING PUBLIC RIGHTS-OF-WAY DURING CONSTRUCTION AND FOR THE REMOVAL OF ANY SEDIMENT DEPOSITED IN PUBLIC RIGHT-OF-WAY.

CONTRACTOR SHALL OBTAIN A "TOPSOIL DISTURBANCE PERMIT" PRIOR TO ANY GRADING OR CONSTRUCTION.

CONTRACTOR OR OWNER SHALL BE RESPONSIBLE FOR OBTAINING AN NPDES STORMWATER DISCHARGE PERMIT FOR THE CONSTRUCTION PHASE OF THIS PROJECT.

HAS BEEN REPLACED BY EQUIVALENT 12"x12" GRATE WITH 6" PVC PIPE TO DROP TO SIDEWALK CLUSET. 3"1" RAD, TYP CONCRETE RUN-DOWN DETAIL "A" NOT TO SCALE DETAIL "B" NOT TO SCALE

SEE NOTE SHEET CZ - PUNDOWN

CHANNEL CAPACITY CALCULATIONS NORTH SIDEWALK CHANNEL $Q=(1.49/n)*A*Rh^2/3*SQ.RT.(S)$ n = 0.013 (CONCRETE) A = 0.5 SQ.FT. (REC. CHANNEL, MIN CROSS SECTION) Rh = A/P = 0.167 SQ.FT. S = 0.033 FT./FT. (3% TOWARD STREET) $Q = (1.49/0.013)*0.5*(0.167^2/3)*SQ.RT.(0.033)$ Q = 3.17 cfs per culvert Q (REQUIRED) = 4.6 cfs (1/2 site requirement) Q > Q (REQUIRED)

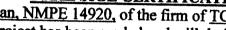
CHANNEL CAPACITY CALCULATIONS CHANNEL CAPACITY CALCULATIONS
SOUTH SIDEWALK CHANNEL $Q=(1.49/n)*A*Rh^2/3*SQ.RT.(S)$ n=0.013 (CONCRETE) A=0.5 SQ.FT. (REC. CHANNEL, MIN CROSS SECTION) Rh=A/P=0.167 SQ.FT. S=0.033 FT./FT. (3% TOWARD STREET) $Q=(1.49/0.013)*0.5*(0.167^2/3)*SQ.RT.(0.033)$

Q (REQUIRED) = 4.6 cfs (1/2 site requirement)

Q = 3.17 cfs per culvert

Q > Q (REQUIRED)

I, DAVID GATTERMAN, NEW MEXICO REGISTERED PROFESSIONAL ENGINEER NO. 14920. DO HEREBY CERTIFY THAT I INSPECTED THIS SITE ON NOVEMBER 1, 2002, AND THAT, AS OF THAT DATE, THERE HAD BEEN NO RECENT ALTERATION OF GRADE OR EVIDENCE OF GRADING OPERATIONS ON THIS SITE.


BENCH MARK IS ACS MONUMENT "SDC 12-1" LOCATED 1500' S. OF THE GIBSON BRIDGE OVER AMAFCA SOUTH DIVERSION CHANNEL. NGVD ELEVATION: 5047.3

OFFSITE FLOW INFORMATION

- OFFSITE CONTRIBUTORY FLOW TO THE PROPERTY IS NEGLIGIBLE.
- RUNOFF FROM SITE IS CONVEYED VIA CURB AND GUTTER TO STORM DRAINS LOCATED ON TRANSPORT ST.

DRAINAGE NOTES:

- ROOF DRAINAGE CONVEYED TO PARKING LOT VIA GUTTERS AND DOWNSPOUTS
- EROSION CONTROL MEASURES SHALL BE TAKEN WHERE SLOPES EXCEED 3:1. EROSION CONTROL MEASURES MAY INCLUDE; SHOTCRETE, CONCRETE, IRRIGATED TURF, RIP-RAP WITH GEOTEXTILE BACKING, TERRACING, OR ANY COMBINATION OF TECHNIQUES THEREOF. EROSION CONTROL MEASURES TAKEN SHALL BE DETERMINED BY LANDSCAPE ARCHITECT.
- SIDEWALK CULVERTS SHALL BE CONSTRUCTED PER COA STD DWG 2236. EACH SIDEWALK CULVERT SHALL BE 24" WIDE. ALIGN EDGES OF RUNDOWN WITH SIDEWALK CULVERT.
- TOPOGRAPHIC MAP PROVIDED BY SURVEYS SOUTHWEST.
- RETAINING WALL DESIGN BY OTHERS.

DRAINAGE CERTIFICATE

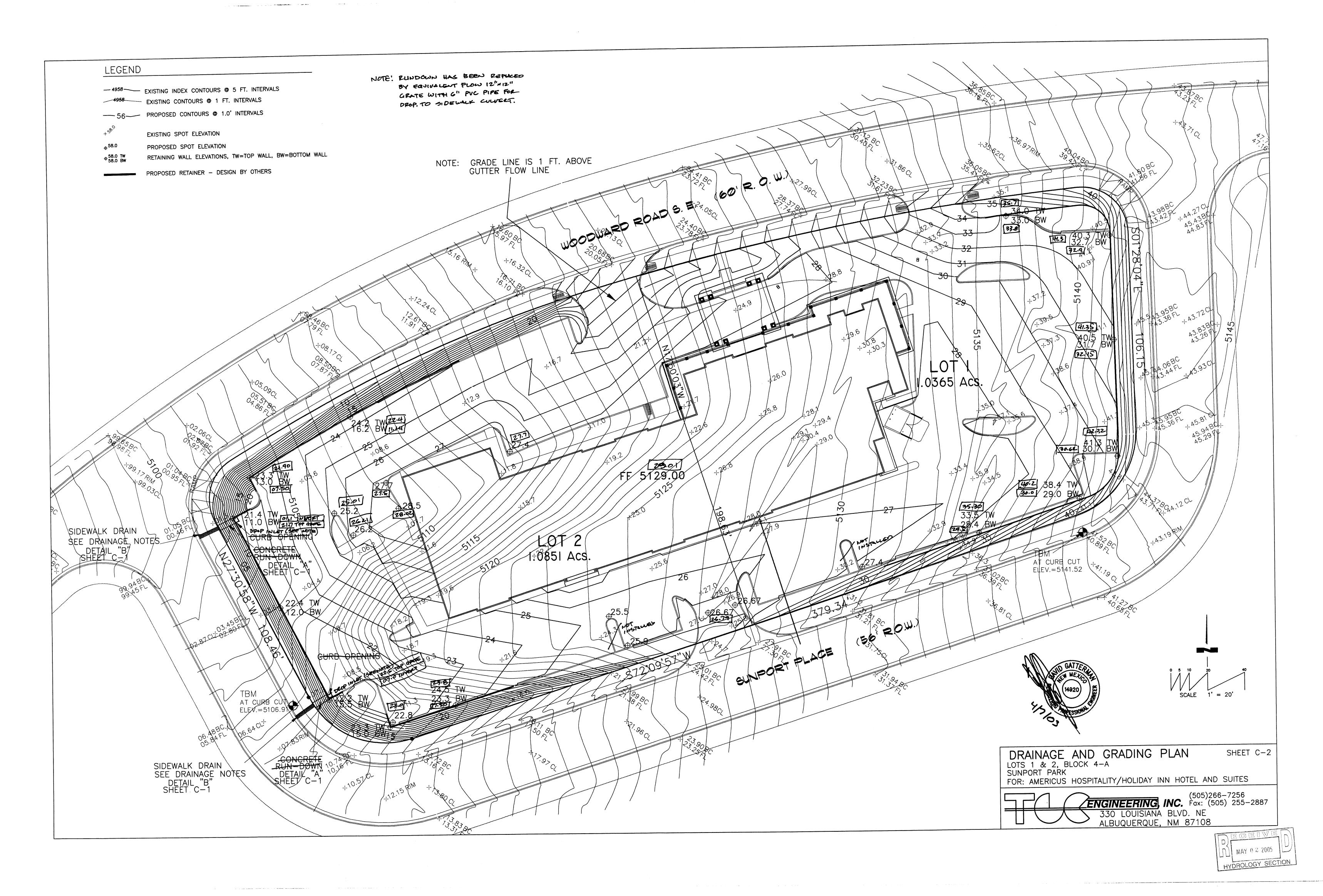
I, David Gatterman, NMPE 14920, of the firm of TGC ENGINEERING INC. hereby certify that this project has been graded and will drain in substantial compliance with and in accordance with the design intent of the approved plan dated April 7, 2003. The record information edited onto the original design document has been obtained by Thomas D. Johnston, NMPS 14269, of the firm of WAYJOHN SURVEYING INC. further certify that I have personally visited the project site on April 30, 2005 and have determined by visual inspection that the survey data provided is representative of actual site conditions and is true and correct to the best of my knowledge and belief. This certification is submitted in support of a request for final Certificate of Occupancy. The record information presented hereon is not necessarily complete and intended only to verify substantial compliance of the grading and drainage aspects of this project. Those relying on this record document are advised to obtain independent verification of its accuracy before using it for any other purpose.

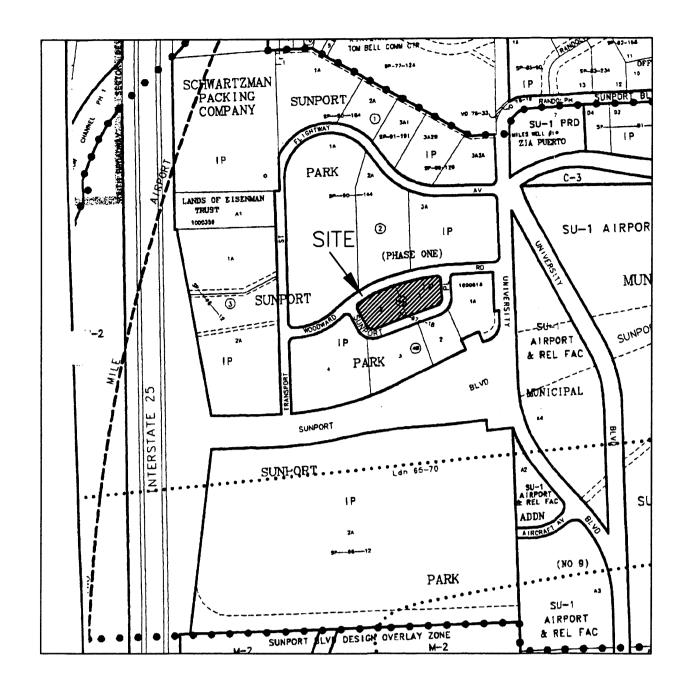
NOTICE TO CONTRACTORS

- 1. An excavation/barricade permit will be required before beginning any work within the City of Albuquerque Right-of-way. An approved copy of these plans must be submitted at the time of application for these permits.
- All work detailed on these plans to be done, except as otherwise stated or provided hereon, will be constructed in accordance with "City of Albuquerque Interim Standard Specification for Public Works Construction, 1986", latest revision.
- 3. Two working days prior to any excavation, the contractor must contact Line Locating Service, 260—1990, for location of existing utilities.
- 4. Prior to construction, the contractor will excavate and verify the horizontal and vertical locations of all construction. Should a conflict exist, the contractor will notify the Construction Engineer so that the conflict can be resolved with a minimum amount of delay.
- 5. The contractor will be responsible for performing soil density tests as required by the City of Albuquerque.
- 6. Owner shall be responsible for maintenance of sidewalk culverts and shall ensure proper operation of culverts at all times.

APPROVALS FOR	NAME	DATE	TITLE OF PROJECT
DESIGN: CITY HYDROLOGY			FOR: AMERICUS
CONSTRUCTION: CONSTRUCTION ENGINEER			HOSPITALITY/ HOLIDAY INN
ACCEPTANCE: CONSTRUCTION INSPECTOR			PROJECT NO. ZONE ATLAS SHEET 1 OF 2 M-15

DRAINAGE AND GRADING PLAN

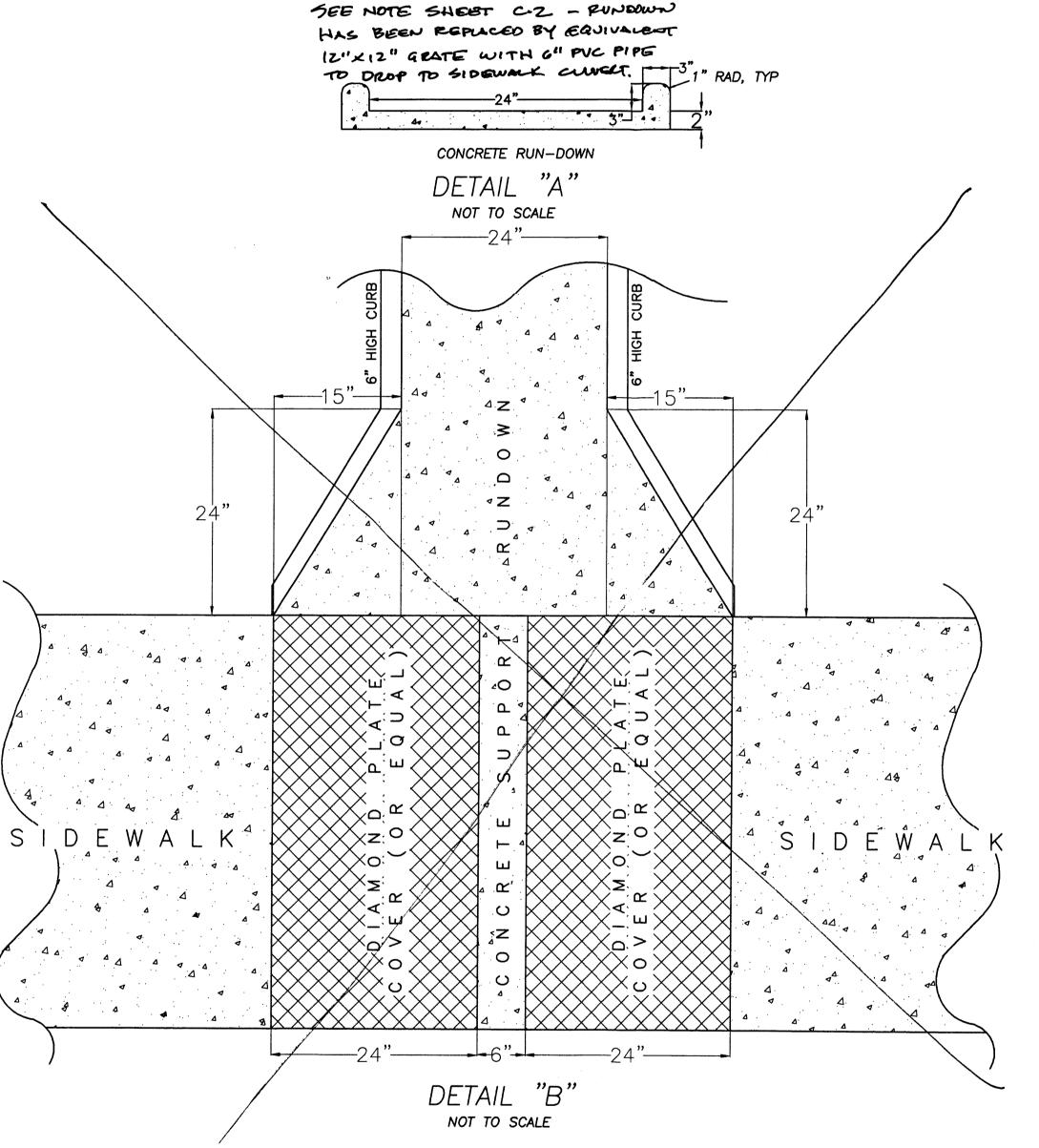

SHEET C-1


LOTS 1 & 2, BLOCK 4-A SUNPORT PARK

FOR: AMERICUS HOSPITALITY/HOLIDAY INN HOTEL AND SUITES

ENGINEERING, INC. Fax: (505) 255-2887 330 LOUISIANA BLVD. NE ALBUQUERQUE, NM 87108

MAY 0 2 2005


	\TA. UOU		DECC.				
DRAINAGE DA				2	-		
Condition	Return	Treatment	Area	Precip.	Runoff	Volume	Rate
	Table 4 (Years)	Type	(sq. ft.)	(in.)	Table A-9 (cfs/ac)	(cu. Ft _.)	(cfs)
EXISTING	100	Α	83,175	0.53	1.56	3,673.6	2.98
		В	9,241	0.78	2.28	600.7	0.48
		С	0	1.13	3.14	0.0	0.00
		D	0	2.12	4.70	0.0	0.00
EXISTING	10	Α	83,175	0.13	0.38	901.1	0.73
		В	9,241	0.28	0.95	215.6	0.20
		С	0	0.52	1.71	0.0	0.00
		D	0	1.34	3.14	0.0	0.00
DEVELOPED	100	Α	0	0.53	1.56	0.0	0.00
		В	13,428	0.78	2.28	872.8	0.70
		С	0	1.13	3.14	0.0	0.00
		D	78,988	2.12	4.70	13,954.5	8.52
DEVELOPED	10	Α	0	0.13	0.38	0.0	0.00
		В	13,428	0.28	0.95	313.3	0.29
		С	0	0.52	1.71	0.0	0.00
		D	78,988	1.34	3.14	8,820.3	5.69
TOTAL (EXT)	100					4,274.2	3.5
	10					1,116.7	0.9
TOTAL (DEV)	100					14,827.4	9.2
	10					9,133.6	6.0

PROPOSED CONTOURS AND SPOT ELEVATIONS SHOWN ARE TO FINISH SURFACES AND ARE PROVIDED FOR THE PURPOSE OF SHOWING FLOW ROUTING.

CONTRACTOR IS RESPONSIBLE FOR THE ABATEMENT OF SEDIMENT ONTO ADJOINING PUBLIC RIGHTS-OF-WAY DURING CONSTRUCTION AND FOR THE REMOVAL OF ANY SEDIMENT DEPOSITED IN PUBLIC RIGHT-OF-WAY.

CONTRACTOR SHALL OBTAIN A "TOPSOIL DISTURBANCE PERMIT" PRIOR TO ANY GRADING OR CONSTRUCTION.

CONTRACTOR OR OWNER SHALL BE RESPONSIBLE FOR OBTAINING AN NPDES STORMWATER DISCHARGE PERMIT FOR THE CONSTRUCTION PHASE OF THIS PROJECT.

CHANNEL CAPACITY CALCULATIONS NORTH SIDEWALK CHANNEL

 $Q=(1.49/n)*A*Rh^2/3*SQ.RT.(S)$

n = 0.013 (CONCRETE)

A = 0.5 SQ.FT. (REC. CHANNEL, MIN CROSS SECTION) Rh = A/P = 0.167 SQ.FT. S = 0.033 FT./FT. (3% TOWARD STREET)

 $Q = (1.49/0.013)*0.5*(0.167^2/3)*SQ.RT.(0.033)$ Q = 3.17 cfs per culvert

Q (REQUIRED) = 4.6 cfs (1/2 site requirement) Q > Q (REQUIRED)

CHANNEL CAPACITY CALCULATIONS SOUTH SIDEWALK CHANNEL

 $Q=(1.49/n)*A*Rh^2/3*SQ.RT.(S)$ n = 0.013 (CONCRETE)

A = 0.5 SQ.FT. (REC. CHANNEL, MIN CROSS SECTION) Rh = A/P = 0.167 SQ.FT. S = 0.033 FT./FT. (3% TOWARD STREET) $Q = (1.49/0.013)*0.5*(0.167^2/3)*SQ.RT.(0.033)$

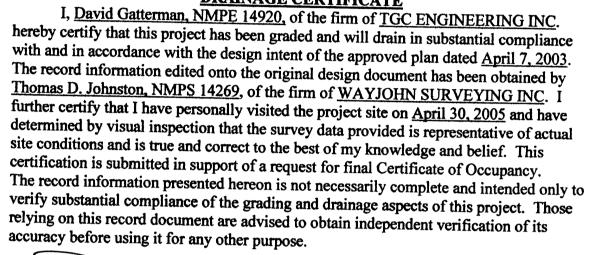
Q = 3.17 cfs per culvert

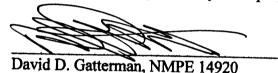
Q (REQUIRED) = 4.6 cfs (1/2 site requirement) Q > Q (REQUIRED)

I, DAVID GATTERMAN, NEW MEXICO REGISTERED PROFESSIONAL ENGINEER NO. 14920. DO HEREBY CERTIFY THAT I INSPECTED THIS SITE ON NOVEMBER 1, 2002, AND THAT, AS OF THAT DATE, THERE HAD BEEN NO RECENT ALTERATION OF GRADE OR EVIDENCE OF GRADING OPERATIONS ON THIS SITE.

BENCH MARK

BENCH MARK IS ACS MONUMENT "SDC 12-1" LOCATED 1500' S. OF THE GIBSON BRIDGE OVER AMAFCA SOUTH DIVERSION CHANNEL. NGVD ELEVATION: 5047.3

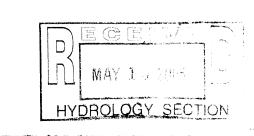

OFFSITE FLOW INFORMATION

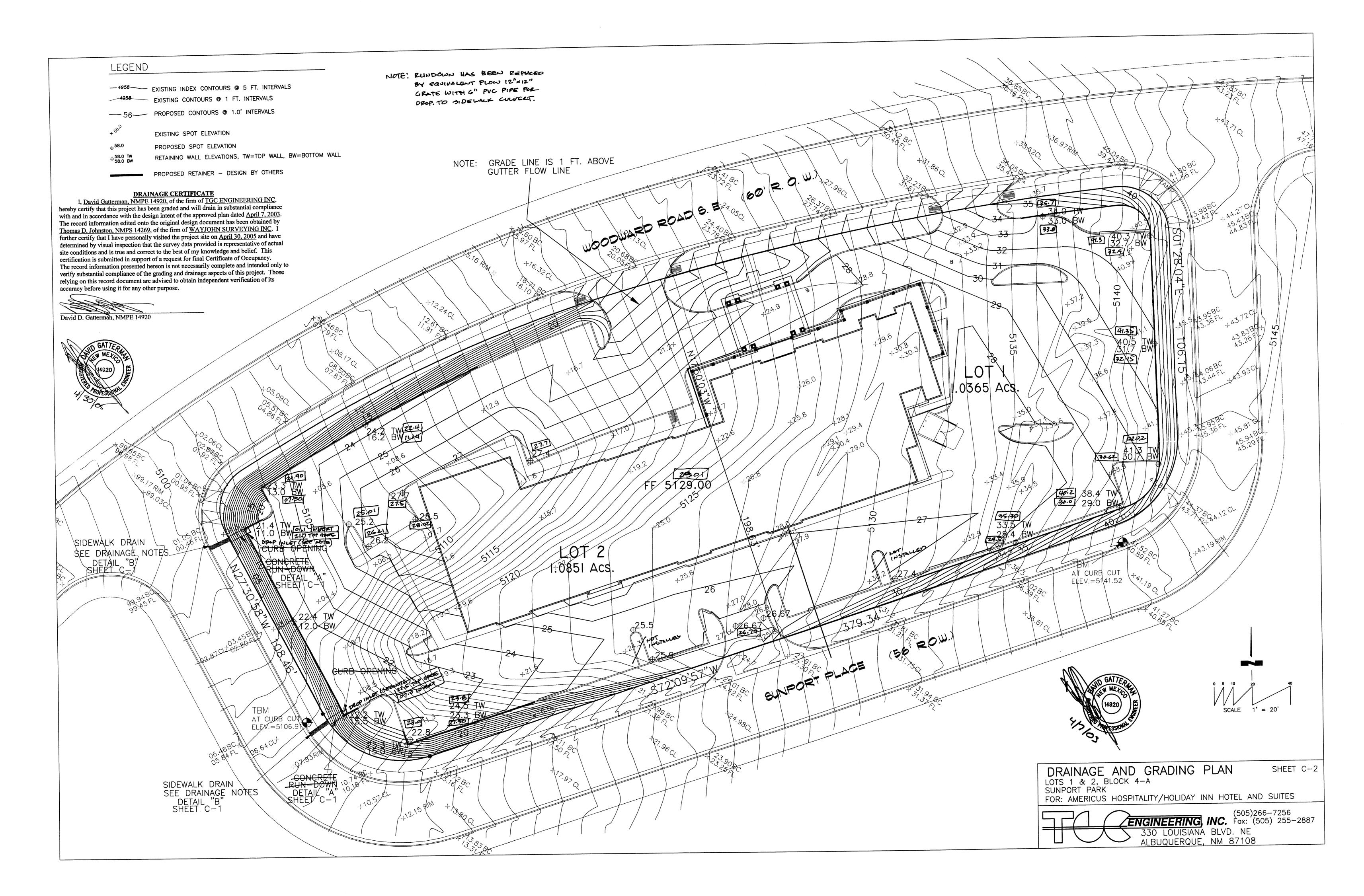

- OFFSITE CONTRIBUTORY FLOW TO THE PROPERTY IS NEGLIGIBLE.
- RUNOFF FROM SITE IS CONVEYED VIA CURB AND GUTTER TO STORM DRAINS LOCATED ON TRANSPORT ST.

DRAINAGE NOTES:

- ROOF DRAINAGE CONVEYED TO PARKING LOT VIA GUTTERS AND DOWNSPOUTS - EROSION CONTROL MEASURES SHALL BE TAKEN WHERE SLOPES EXCEED 3:1. EROSION CONTROL MEASURES MAY INCLUDE; SHOTCRETE, CONCRETE, IRRIGATED TURF, RIP-RAP WITH GEOTEXTILE BACKING, TERRACING, OR ANY COMBINATION OF TECHNIQUES THEREOF. EROSION CONTROL MEASURES TAKEN SHALL BE DETERMINED BY LANDSCAPE ARCHITECT.
- SIDEWALK CULVERTS SHALL BE CONSTRUCTED PER COA STD DWG 2236. EACH SIDEWALK CULVERT SHALL BE 24" WIDE. ALIGN EDGES OF RUNDOWN WITH SIDEWALK CULVERT.
- TOPOGRAPHIC MAP PROVIDED BY SURVEYS SOUTHWEST.
- RETAINING WALL DESIGN BY OTHERS.

DRAINAGE CERTIFICATE




NOTICE TO CONTRACTORS

- An excavation/barricade permit will be required before beginning any work within the City
 of Albuquerque Right-of-way. An approved copy of these plans must be submitted at the time of application for these permits.
- All work detailed on these plans to be done, except as otherwise stated or provided hereon, will be constructed in accordance with "City of Albuquerque Interim Standard Specification for Public Works Construction, 1986", latest revision.
- 3. Two working days prior to any excavation, the contractor must contact Line Locating Service, 260—1990, for location of existing utilities.
- 4. Prior to construction, the contractor will excavate and verify the horizontal and vertical locations of all construction. Should a conflict exist, the contractor will notify the Construction Engineer so that the conflict can be resolved with a minimum amount of delay.
- 5. The contractor will be responsible for performing soil density tests as required by the City of Albuquerque.
- 6. Owner shall be responsible for maintenance of sidewalk culverts and shall ensure proper operation of culverts at all times.

APPROVALS FOR	NAME	DATE	TITLE OF PROJECT
DESIGN: CITY HYDROLOGY			FOR: AMERICUS
CONSTRUCTION: CONSTRUCTION ENGINEER			HOSPITALITY/ HOLIDAY INN
ACCEPTANCE: CONSTRUCTION INSPECTOR			PROJECT NO. ZONE ATLAS SHEET 1 OF 2 M-15

DRAINAGE AND GRADING PLAN SHEET C-LOTS 1 & 2, BLOCK 4-A SUNPORT PARK FOR: AMERICUS HOSPITALITY/HOLIDAY INN HOTEL AND SUITES (505)266 - 7256**ENGINEERING**, **INC.** Fax: (505) 255–2887 330 LOUISIANA BLVD. NE ALBUQUERQUE, NM 87108

