GRADING AND DRAINAGE PLAN

MOUNTAIN BELL ON ALAMO AVE. S.E.

AUGUST 26, 1988

LOCATION AND DESCRIPTION:

THE SITE IS LOCATED AT 2327 ALAMO AVE. SE WITHIN THE AIRPORT INDUSTRIAL PARK SUBDIVISION IN ALBUQUERQUE, NEW MEXICO. THE SITE, CONTAINING APPROXIMATELY 0.620 ACRES, IS PRESENTLY PARTIALLY DEVELOPED. EXISTING SLOPES ARE FROM THE NORTH TO THE SOUTH WITH AN AVERAGE SLOPE OF 4 PERCENT. THE SITE IS NOT LOCATED WITHIN A FLOOD PLAIN.

EXISTING CONDITIONS:

PRESENTLY, RUNOFF FROM THE SITE DISCHARGES AT A CONTROLLED RATE ONTO ALAMO AVE. THE RUNOFF IS THEN INTERCEPTED APPROXIMATELY 100 YARDS DOWN STREAM WHERE THERE IS AN EXISTING CATCH BASIN. PRESENTLY, THERE IS AN EXISTING DETENTION POND AT THE NORTH END OF THE SITE. THIS POND WITH AN APPROXIMATE VOLUME OF 100 CUBIC FEET DRAINS THRU A 4" PVC LINE. OFF-SITE RUNOFF ENTERS THE SITE DUE TO EXISTING ELEVATIONS FROM THE UNDEVELOPED PROPERTY TO THE EAST. IT IS FELT THAT WHEN THE PROPERTY TO THE EAST IS DEVELOPED THIS CONDITION WILL BE CORRECTED.

PROPOSED CONDITIONS:

PROPOSED DEVELOPMENT OF THE SITE INCLUDES NEW PAVED PARKING LOT OF 9,750 SQUARE FEET TO BE CONSTRUCTED IN THE FUTURE, THE CONSTRUCTION BERM AND ELIMINATING THE PRESENT POND AND RELATED CONSTRUCTION. IT IS FELT THAT WITH THE CONSTRUCTION OF THE 60" RCP WHICH ACCEPTS RUNOFF FROM THIS SITE, THE POND IS NO LONGER REQUIRED. FURTHERMORE, OTHER CONSTRUCTION WITHIN THE SUBDIVISION HAS FREE DISCHARGE TO ALAMO AVE.

EXISTING FLOWS FROM THE PROPERTY TO THE EAST WILL BE ALLOWED TO DRAIN ONTO TRACT 2-B-1. THIS FLOW WILL DRAIN TO THE DRAINAGE EASEMENT AND THEN DISCHARGING THRU THE EXISTING DRIVE PAD ONTO ALAMO AVE.

BLOCK 2 AND FROM TRACT 2-B-2 TO TRACT 2-B-1 THESE PLOW WITH CROSS THE PROPERTY LINES AND A "BLANKET DRAINAGE,

CALCULATIONS: (BASED ON CITY OF ALBUQUERQUE DEVELOPMENT PROCESS

CALCULATIONS:

Area = 0.620 acres

I = 2.2 in./hr. Plate 22.2 D-2
6-hour, 100-year rainfall = 2.3 in. Plate 22.2 D-1
i = (2.2)(2.3) = 5.06 in./hr.

EXISTING ON-SITE CONDITIONS:

		and the state of t		COMPOSIT
SURFACE TYPE	"C" VALUE	A (ACRES)	"C"X A	"C"=CXA/
Streets, Drives, Walks	0.95	0.076	0.072	
Roofs	0.90	0.018	0.016	
Lawns & Landscaping	0.25	0.085	0.021	4
Undeveloped	0.40	0.441	0.176	
TOTAL		0.620	0.285	0.460
Q(100) = (0.460)(5.06)(0	0.620) = 1.4	43 cfs		
Q(10) = (0.657)(1.443) =				
CN = 73 Plate 22.2 C-	-2			
Direct Runoff = 0.50 in.	Plate 2	2.2 C-4		
V(100) = (0.50)(0.620)(4	(3560)/12 =	1,125 cu.	ft.	
V(10) = (0.657)(1,125) =	739 cu. ft			

PROPOSED ON-SITE CONDITIONS:

				COMPOSIT
SURFACE TYPE	"C" VALUE	A (ACRES)	"C"X A	"C"=CXA/
Streets, Drives, Walks	0.95	0.300	0.285	
Roofs	0.90	0.018	0.016	
Lawns & Landscaping	0.25	0.085	0.021	
Undeveloped	0.40	0.217	0.087	
TOTAL		0.620	0.409	0.660
Q(100) = (0.660)(5.06)(0	(0.620) = 2.0	71 cfs		
Q(10) = (0.657)(2.071) =	1.361 cfs			
CN = 82 Plate 22.2	C-3			
Direct Runoff = 0.85 in.		2.2 C-4		
V(100) = (0.85)(0.62)(43)				
V(10) = (0.657)(1,913) =	1,257 cu.	ft.		

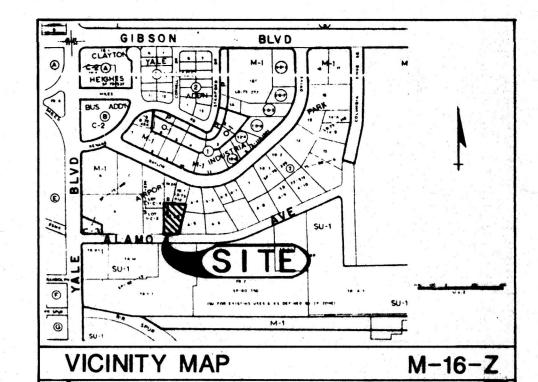
EXISTING OFF-SITE CONDITIONS WHICH FLOW ONTO TRACTS 2-B-1 AND 2-B-2

Area = 0.1010 acres

		. (1.0000)	HOHY A	COME
SURFACE TYPE	"C" VALUE	A (ACRES)	"C"X A	"C"=C
Streets, Drives, Walks	0.95			3.3
Roofs	0.90			
Lawns & Landscaping	0.25			
Undeveloped	0.40	0.1010	0.0404	
TOTAL		0.1010	0.0404	0.4
Q(100) = (0.4)(5.06)(0.1	(010) = 0.20	044 cfs		
Q(10) = (0.657)(0.2044)	= 0.1343 C	fs		
CN = 68 Plate 22.2 C-				

Direct Runoff = 0.4 in. Plate 22.2 C-4 V(100) = (0.4)(0.1010)(43560)/12 = 146.65 cu. ft. V(10) = (0.657)(146.65) = 96.35 cu. ft.

FLOWS FROM TRACT 2-B-2 TO LOT 1-C-3, BLOCK 2


Area = 0.0367 acres

			a contract to	
SURFACE TYPE	"C" VALUE	A (ACRES)	"C"X A	"C"=C
Streets, Drives, Walks	0.95			
Roofs	0.90	27, 45 (4.11)		
Lawns & Landscaping	0.25			
Undeveloped	0.40	0.0367	0.0147	in the second
TOTAL		0.0367	0.0147	0.4
Q(100) = (0.4) (5.06) (0.6	0367) = 0.07	43 cfs		
Q(10) = (0.657)(0.0743)				
CN = 68 Plate 22.2				
Direct Runoff = 0.4 in.		2.2 C-4		
V(100) = (0.0367)(0.4)(4			t.	
V(10) = (0.657)(53.29)				

FLOWS FROM TRACT 2-B-2 TO TRACT 2-B-1

Area = 0.0161 acres

THE CTOTOL GOLDS				~~~~
SURFACE TYPE	"C" VALUE	A (ACRES)	"C"X A	"C"=CXA
Streets, Drives, Walks	0.95	()		
Roofs	0.90			
Lawns & Landscaping	0.25			
Undeveloped	0.40	0.0161	0.0064	
TOTAL		0.0161	0.0064	0.4
Q(100) = (0.4)(5.06)(0.0	(161) = 0.03	326 cfs		
Q(10) = (0.657)(0.0326)	= 0.0214 C	s		*
CN = 68 Plate 22.2 C-	-2			
Direct Runoff = 0.4 in.	Plate 22	2.2 C-4		
V(100) = (0.4)(0.0161)(4				
V(10) = (0.657)(23.38) =	15.36 cu.	ft.		

LEGAL DESCRIPTION

FLOOD HAZARD BDY, MAP

TRACTS "2-B-1" & "2-B-2", BLOCK 2, AIRPORT INDUSTRIAL PARK

PANEL No.35

BENCHMARK ACS & PROJECT

THE STATION IS A STANDARD 3 1/4" ALUMINUM TABLET STAMPED "ACS, 1-M 16, 1984" LOCATED IN THE INTERSECTION OF YALE BLVD. & GIBSON BLVD. N.E. **ELEVATION** = 5189.847

PROJECT BM IS A BRASS CAP STAMPED "MST&T" LOCATED AT THE SOUTHEAST PROPERTY CORNER ELEVATION = 5224.60

SURVEY DATA

TOPOGRAPHIC DATA PROVIDED BY V.E.HALL, N.M.P.S. NO.3241 ALBUQUERQUE, N.M.

KEYED NOTES

- REMOVE EXISTING CONC. & 4" PVC.
- FUTURE ASPHALTIC PARKING LIMITS APPROX. ONLY (N.T.C.BY OTHERS.)
- EXISTING CONCRETE.
- EXISTING LANDSCAPING.
- EXISTING 6" HEADER CURB.
- EXISTING CONCRETE RUNDOWN.
- EXISTING SIDEWALK CULVERT.
- EXISTING 5' PUBLIC UTILITY
- EASEMENT. EXISTING 5'X30' ANCHOR EASEMENT.
- 10 EXISTING 20' PRIVATE ACCESS & DRAINAGE EASEMENT.
- 11 EXISTING CHAIN LINK FENCE ON PROPERTY LINE.
- 12 EXISTING CATCH BASIN.
- 13 EXISTING ASPHALTIC PAVING.
- 14 EXISTING DIRT DRIVE.

PROPERTY LINE	
CONTOUR (EXISTING)	30
CONTOUR (NEW)	
SPOT ELEVATION (EXISTING)	30.5
SPOT ELEVATION (NEW)	30.5
DIRECTION OF FLOW	

NORTH

DRAINAGE PLAN

MOUNTAIN BELL ON ALAMO AVE. S.E.
AUGUST 26, 1988

LOCATION AND DESCRIPTION:

THE SITE IS LOCATED AT 2327 ALAMO AVE. SE WITHIN THE AIRPORT INDUSTRIAL PARK SUBDIVISION IN ALBUQUERQUE, NEW MEXICO. THE SITE, CONTAINING APPROXIMATELY 0.620 ACRES, IS PRESENTLY PARTIALLY DEVELOPED. EXISTING SLOPES ARE FROM THE NORTH TO THE SOUTH WITH AN AVERAGE SLOPE OF 4 PERCENT. THE SITE IS NOT LOCATED WITHIN A FLOOD PLAIN.

EXISTING CONDITIONS:

PRESENTLY, RUNOFF FROM THE SITE DISCHARGES AT A CONTROLLED RATE ONTO ALAMO AVE. THE RUNOFF IS THEN INTERCEPTED APPROXIMATELY 100 YARDS DOWN STREAM WHERE THERE IS AN EXISTING CATCH BASIN. PRESENTLY, THERE IS AN EXISTING DETENTION POND AT THE NORTH END OF THE SITE. THIS POND WITH AN APPROXIMATE VOLUME OF 100 CUBIC FEET DRAINS THRU A 4" PVC LINE. OFF-SITE RUNOFF ENTERS THE SITE DUE TO EXISTING ELEVATIONS FROM THE UNDEVELOPED PROPERTY TO THE EAST. IT IS FELT THAT WHEN THE PROPERTY TO THE EAST IS DEVELOPED THIS CONDITION WILL BE CORRECTED.

PROPOSED CONDITIONS:

PROPOSED DEVELOPMENT OF THE SITE INCLUDES NEW PAVED PARKING LOT OF 9,750 SQUARE FEET TO BE CONSTRUCTED IN THE FUTURE, THE CONSTRUCTION BERM AND ELIMINATING THE PRESENT POND AND RELATED CONSTRUCTION. IT IS FELT THAT WITH THE CONSTRUCTION OF THE 60" RCP WHICH ACCEPTS RUNOFF FROM THIS SITE, THE POND IS NO LONGER REQUIRED. FURTHERMORE, OTHER CONSTRUCTION WITHIN THE SUBDIVISION HAS FREE DISCHARGE TO ALAMO AVE.

EXISTING FLOWS FROM THE PROPERTY TO THE EAST WILL BE ALLOWED TO DRAIN ONTO TRACT 2-B-1. THIS FLOW WILL DRAIN TO THE DRAINAGE EASEMENT AND THEN DISCHARGING THRU THE EXISTING DRIVE PAD ONTO ALAMO AVE.

A PORTION OF RUNOFF WILL FLOW FROM TRACT 2-B-3 TO LOT 1-C-3, BLOCK 2 AND FROM TRACT 2-B-2 TO TRACT 2-B-1. THESE FLOWS WILL CROSS THE PROPERTY LINES AND A "BLANKET DRAINAGE EASEMENT" WILL BE PROVIDED BY REPLAT.

CALCULATIONS: (BASED ON CITY OF ALBUQUERQUE DEVELOPMENT PROCESS MANUAL, VOLUME II)

CALCULATIONS:

Area = 0.620 acres I = 2.2 in./hr. Plate 22.2 D-2 6-hour, 100-year rainfall = 2.3 in. Plate 22.2 D-1 i = (2.2)(2.3) = 5.06 in./hr.

EXISTING ON-SITE CONDITIONS:

				COLLEGE	-
SURFACE TYPE	"C" VALUE	A (ACRES)	"C"X A	"C"=CXA/	A
Streets, Drives, Walks	0.95	0.076	0.072		
Roofs	0.90	0.018	0.016		
Lawns & Landscaping	0.25	0.085	0.021		
Undeveloped	0.40	0.441	0.176		
TOTAL		0.620	0.285	0.460	
Q(100) = (0.460)(5.06)(0		43 cfs			
Q(10) = (0.657)(1.443) =					
CN = 73 Plate 22.2 C-					
Direct Runoff = 0.50 in.	Plate 2	22.2 C-4			
V(100) = (0.50)(0.620)(4	(3560)/12 =	1,125 cu. 1	t.		
V(10) = (0.657)(1,125) =					

PROPOSED ON-SITE CONDITIONS:

				COMPOSI
SURFACE TYPE	"C" VALUE	A (ACRES)	"C"X A	"C"=CXA
Streets, Drives, Walks	0.95	0.300	0.285	
Roofs	0.90	0.018	0.016	
Lawns & Landscaping	0.25	0.085	0.021	
Undeveloped	0.40	0.217	0.087	
TOTAL		0.620	0.409	0.660
Q(100) = (0.660)(5.06)(0.620) = 2.0	071 cfs		
Q(10) = (0.657)(2.071)	= 1.361 cfs			
CN = 82 Plate 22.2	C-3			
Direct Runoff = 0.85 in	. Plate 2	22.2 C-4		
V(100) = (0.85)(0.62)(4	3560)/12 = 1	1,913 cu. ft		
V(10) = (0.657)(1,913)	= 1,257 cu.	ft.		

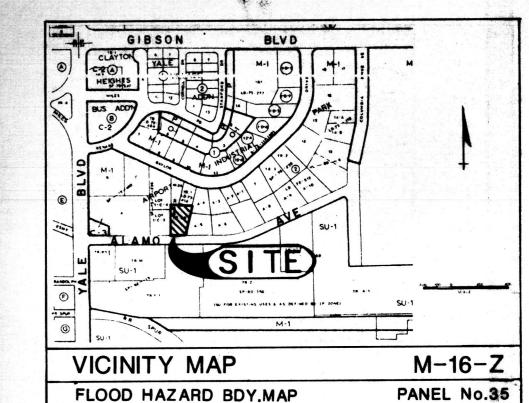
EXISTING OFF-SITE CONDITIONS WHICH FLOW ONTO TRACTS 2-B-1 AND 2-B-2

Area = 0.1010 ac

				α
SURFACE TYPE	"C" VALUE	A (ACRES)	"C"X A	"C"
Streets, Drives, Walks	0.95			
Roofs	0.90			
Lawns & Landscaping	0.25			
Undeveloped	0.40	0.1010	0.0404	
TOTA	L	0.1010	0.0404	0
Q(100) = (0.4)(5.06)(0.	1010) = 0.20	044 cfs		
Q(10) = (0.657)(0.2044)	= 0.1343 cf	fs		
CN = 68 Plate 22.2 C				

Direct Runoff = 0.4 in. Plate 22.2 C-4
V(100) = (0.4)(0.1010)(43560)/12 = 146.65 cu. ft.
V(10) = (0.657)(146.65) = 96.35 cu. ft.

FLOWS FROM TRACT 2-B-2 TO LOT 1-C-3, BLOCK 2


Area = 0.0367 acres

Area - 0.0307 acres				α
SURFACE TYPE	"C" VALUE	A (ACRES)	"C"X A	"C'
Streets, Drives, Walks	0.95		_	
Roofs	0.90		•	
Lawns & Landscaping	0.25			
Undeveloped	0.40	0.0367	0.0147	
TOTAL		0.0367	0.0147	(
Q(100) = (0.4)(5.06)(0.	0367) = 0.07	43 cfs)		
Q(10) = (0.657)(0.0743)				
CN = 68 Plate 22.2				
Direct Runoff = 0.4 in.		2.2 C-4		
V(100) = (0.0367)(0.4)(ft.	
V(10) = (0.657)(53.29)				
(10) (0.03//(33/23)	33.01 04.			

FLOWS FROM TRACT 2-B-2 TO TRACT 2-B-1

Area = 0.0161 acres

Alea - U.UIUI acles					
				COMPOSI	IE
SURFACE TYPE	"C" VALUE	A (ACRES)	"C"X A	"C"=CXA,	A
Streets, Drives, Walks	0.95				
Roofs	0.90				
Lawns & Landscaping	0.25				
Undeveloped	0.40	0.0161	0.0064		
TOTAL		0.0161	0.0064	0.4	
Q(100) = (0.4)(5.06)(0.0	(161) = 0.03	26 cfs			
Q(10) = (0.657)(0.0326)	= 0.0214 cf	s		The Court	
CN = 68 Plate 22.2 C-	-2				1
Direct Runoff = 0.4 in.	Plate 22	2.2 C-4			
V(100) = (0.4)(0.0161)(4	3560/12 = 2	3.38 cu.ft.			
V(10) = (0.657)(23.38) =	15.36 cu.	ft.			

LEGAL DESCRIPTION

TRACTS "2-B-1" & "2-B-2", BLOCK 2, AIRPORT INDUSTRIAL PARK

BENCHMARK ACS & PROJECT

THE STATION IS A STANDARD 3 1/4" ALUMINUM TABLET STAMPED "ACS,1-M 16, 1984" LOCATED IN THE INTERSECTION OF YALE BLVD. & GIBSON BLVD. N.E. ELEVATION = 5189.847

PROJECT BM IS A BRASS CAP STAMPED "MST&T" LOCATED AT THE SOUTHEAST PROPERTY CORNER ELEVATION = 5224.60

SURVEY DATA

TOPOGRAPHIC DATA PROVIDED BY V.E.HALL, N.M.P.S. NO.3241 ALBUQUERQUE, N.M.

O KEYED NOTES

1 REMOVE EXISTING CONC. & 4" PVC.

2 FUTURE ASPHALTIC PARKING LIMITS APPROX. ONLY (N.T.C.BY OTHERS.)

3 EXISTING CONCRETE.

4 EXISTING LANDSCAPING.

5 EXISTING 6" HEADER CURB.

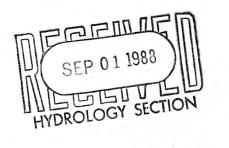
6 EXISTING CONCRETE RUNDOWN.

7 EXISTING SIDEWALK CULVERT.

8 EXISTING 5' PUBLIC UTILITY
FASFMENT

9 EXISTING 5'X30' ANCHOR EASEMENT.

10 EXISTING 20' PRIVATE ACCESS & DRAINAGE EASEMENT.


11 EXISTING CHAIN LINK FENCE ON PROPERTY LINE.

12 EXISTING CATCH BASIN.

13 EXISTING ASPHALTIC PAVING.

14 EXISTING DIRT DRIVE.

PROPERTY LINE	
CONTOUR (EXISTING)	30
CONTOUR (NEW)	30
SPOT ELEVATION (EXISTING)	30.5
SPOT ELEVATION (NEW)	30.5

HERSTER ST.

N BELL PHOPERITY
ON
AO AVE.S.E.

. ، 8ك...

B NO:

ME: 4ug 88

MAWIN: 77

HECKED: RGF

DING & DRAINAGE PLAN

CHAVEZ / CONSULTING ENGINEERS, INC.
GRIEVES
4600 MONTGOMERY N.E.,
BUILDING C, #101
ALBUQUERQUE, NEW MEXICO 87109

CHAVE

C 1

GRADING AND DRAINAGE PLAN