CITY OF ALBUQUERQUE

Richard J. Berry, Mayor

March 2, 2017

Steven Morrow, P.E. Molzen-Corbin & Associates 2701 Miles Road SE Albuquerque, NM 87106

RE: Aviation Center of Excellence Drainage Report Engineer's Stamp Date: 2/8/17 Hydrology File: M16D024N

Dear Mr. Morrow:

Based upon the information provided in your submittal received 2/8/17, the Drainage Report is not approved for Grading Permit. The following comments need to be addressed for approval of the above referenced project:

PO Box 1293

1. The first flush ponds need to be designed as part of these improvements. This information includes pond dimensions, bottom of pond, side slopes, maximum water surface elevation, and pond volume.

Albuquerque

Gibson). New Mexico 87103

It is Hydrology's understanding that these are low-speed, local roads, and the use of dip sections and curb cuts in accordance with standard drawing 2422 is acceptable. If you have any questions, please contact me at 924-3695 or dpeterson@cabq.gov.

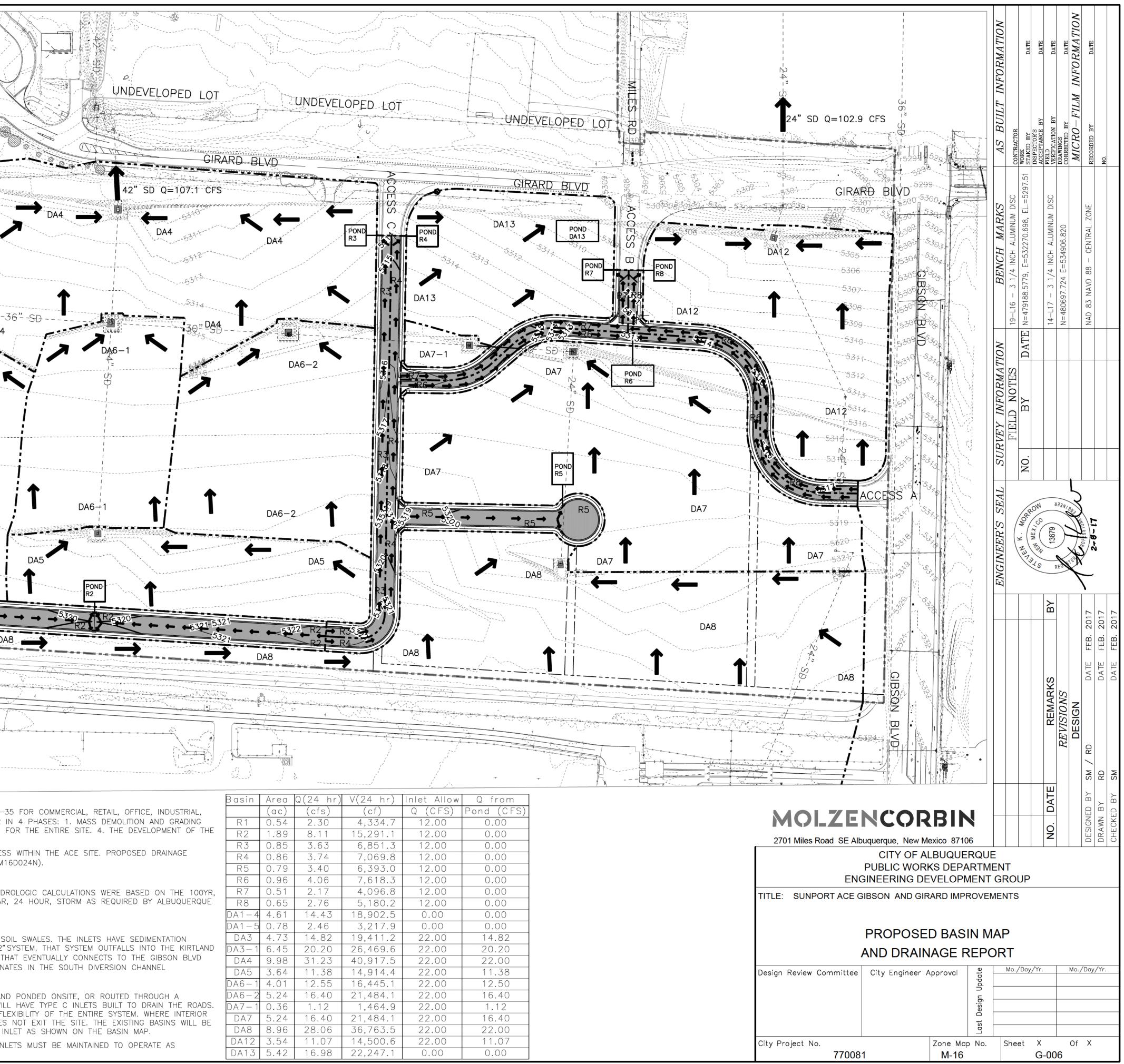
2. Waterblocks are necessary where the private roads meet public roads (Girard and

www.cabq.gov

Sincerely,

Dana Peterson, P.E. Senior Engineer, Planning Dept. Development Review Services

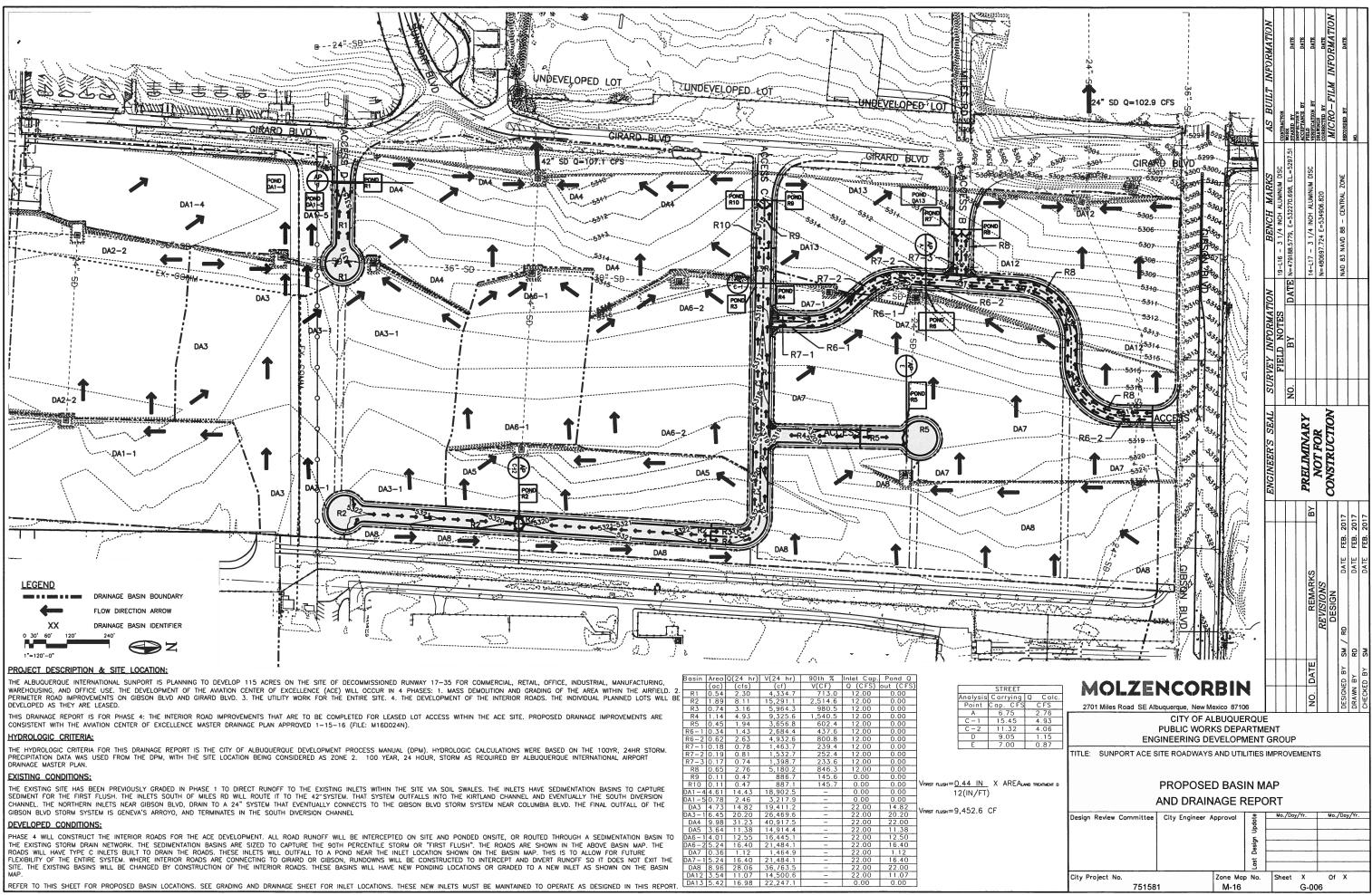
City of Albuquerque


Planning Department Development & Building Services Division DRAINAGE AND TRANSPORTATION INFORMATION SHEET (REV 09/2015)

Project Title:	Building Permit #:	City Drainage #:		
DRB#: EPC#:		Work Order#:		
Legal Description:				
City Address:				
Engineering Firm:		Contact:		
Address:				
Phone#: Fax#:		E-mail:		
Owner:		Contact:		
Address:				
Phone#: Fax#:		E-mail:		
Architect:		Contact:		
Address:				
Phone#: Fax#:		E-mail:		
Other Contact:		Contact:		
Address:				
Phone#: Fax#:		E-mail:		
In Figure 2 BUILDING PERMIT APPRO TRAFFIC/ TRANSPORTATION BUILDING PERMIT APPRO MS4/ EROSION & SEDIMENT CONTROL CERTIFICATE OF OCCUPA				
TYPE OF SUBMITTAL:				
ENGINEER/ ARCHITECT CERTIFICATION		PRELIMINARY PLAT APPROVAL SITE PLAN FOR SUB'D APPROVAL		
	SITE PLAN FOR BLDG. PERMIT APPROVAL			
CONCEPTUAL G & D PLAN	FINAL PLAT	FINAL PLAT APPROVAL		
GRADING PLAN	SIA/ RELEA	SE OF FINANCIAL GUARANTEE		
DRAINAGE MASTER PLAN	FOUNDATIC	FOUNDATION PERMIT APPROVAL		
DRAINAGE REPORT	GRADING P	GRADING PERMIT APPROVAL		
CLOMR/LOMR	SO-19 APPR			
TRAFFIC CIRCULATION LAYOUT (TCL)		RMIT APPROVAL		
TRAFFIC IMPACT STUDY (TIS)		GRADING/ PAD CERTIFICATION		
EROSION & SEDIMENT CONTROL PLAN (ESC)		WORK ORDER APPROVAL CLOMR/LOMR		
OTHER (SPECIFY)				
		PRE-DESIGN MEETING		
IS THIS A RESUBMITTAL?: Yes No	OTHER (SPE	ECIFY)		
DATE SUBMITTED:By:				

COA STAFF: ELECTRONIC SUBMITTAL RECEIVED: ____

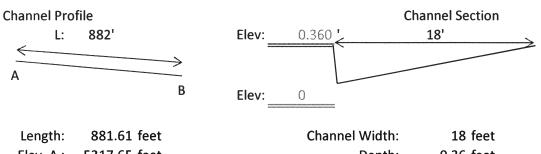
₽.	
	B24"-SD
	GIRARD BLVD
DA1-4	POND DA1-4 POND DA1-5 POND R1 DA4
DA2-2	
	DA3
DA3	DA3-1 DA3-1
DA2+2	
DA1-1	
	DA3 DA3-1 DA3-1
	$R2 \xrightarrow{5322} \rightarrow \xrightarrow{5321}$
	DA8 D
LEGEND	
FLOW DIRECTION ARROW	
XX DRAINAGE BASIN IDENTIFIER 0 30' 60' 120' 240'	
1"=120'-0"	
THE ALBUQUERQUE INTERNATIONAL SUNPORT IS PLANNING TO DEVELO MANUFACTURING, WAREHOUSING, AND OFFICE USE. THE DEVELOPMENT OF THE AREA WITHIN THE AIRFIELD. 2. PERIMETER ROAD IMPROVEMENT	T OF THE AVIATION CENTER OF EXCELLENCE (ACE) WILL OCCUR
INTERIOR ROADS. THE INDIVIDUAL PLANNED LOTS WILL BE DEVELOPED THIS DRAINAGE REPORT IS FOR PHASE 4: THE INTERIOR ROAD IMPRO IMPROVEMENTS ARE CONSISTENT WITH THE AVIATION CENTER OF EXC	D AS THEY ARE LEASED. OVEMENTS THAT ARE TO BE COMPLETED FOR LEASED LOT ACCE:
HYDROLOGIC CRITERIA: THE HYDROLOGIC CRITERIA FOR THIS DRAINAGE REPORT IS THE CITY	OF ALBUQUERQUE DEVELOPMENT PROCESS MANUAL (DPM). HYE
24HR STORM. PRECIPITATION DATA WAS USED FROM THE DPM, WITH INTERNATIONAL AIRPORT DRAINAGE MASTER PLAN. EXISTING CONDITIONS:	THE SITE LOCATION BEING CONSIDERED AS ZONE 2. 100 YEAR
THE EXISTING SITE HAS BEEN PREVIOUSLY GRADED IN PHASE 1 TO BASINS TO CAPTURE SEDIMENT BEFORE ENTERING THE STORM SYSTE CHANNEL AND EVENTUALLY THE SOUTH DIVERSION CHANNEL. THE NO	M. THE INLETS SOUTH OF MILES RD WILL ROUTE IT TO THE 42 ORTHERN INLETS NEAR GIBSON BLVD, DRAIN TO A 24" SYSTEM
STORM SYSTEM NEAR COLUMBIA BLVD. THE FINAL OUTFALL OF THE (<u>DEVELOPED CONDITIONS:</u> PHASE 4 WILL CONSTRUCT THE INTERIOR ROADS FOR THE ACE DEVE	
SEDIMENTATION BASIN TO THE EXISTING STORM DRAIN NETWORK. THE THESE INLETS WILL OUTFALL TO A POND NEAR THE INLET LOCATION ROADS ARE CONNECTING TO GIRARD OR GIBSON, RUNDOWNS WILL BE CHANGED BY CONSTRUCTION OF THE INTERIOR ROADS. THESE BASINS	E ROADS ARE SHOWN IN THE ABOVE BASIN MAP. THE ROADS WI SHOWN ON THE BASIN MAP. THIS IS TO ALLOW FOR FUTURE F E CONSTRUCTED TO INTERCEPT AND DIVERT RUNOFF SO IT DOE


REFER TO THIS SHEET FOR PROPOSED BASIN LOCATIONS. SEE GRADING AND DRAINAGE SHEET FOR INLET LOCATIONS. THESE NEW INLETS MUST BE MAINTAINED TO OPERATE AS DESIGNED IN THIS REPORT.

	Basin	Area	Q(24 hr)	V(24 hr)	Inlet Allow	Q fron
-35 FOR COMMERCIAL, RETAIL, OFFICE, INDUSTRIAL,		(ac)	(cfs)	(cf)	Q (CFS)	Pond (C
IN 4 PHASES: 1. MASS DEMOLITION AND GRADING	R 1	0.54	2.30	4,334.7	12.00	0.00
FOR THE ENTIRE SITE. 4. THE DEVELOPMENT OF THE	R2	1.89	8.11	15,291.1	12.00	0.00
	R3	0.85	3.63	6,851.3	12.00	0.00
SS WITHIN THE ACE SITE. PROPOSED DRAINAGE 116D024N).	R4	0.86	3.74	7,069.8	12.00	0.00
110D024N).	R5	0.79	3.40	6,393.0	12.00	0.00
	R6	0.96	4.06	7,618.3	12.00	0.00
DROLOGIC CALCULATIONS WERE BASED ON THE 100YR, R, 24 HOUR, STORM AS REQUIRED BY ALBUQUERQUE	R7	0.51	2.17	4,096.8	12.00	0.00
	R8	0.65	2.76	5,180.2	12.00	0.00
	DA1-4	4.61	14.43	18,902.5	0.00	0.00
	DA1-5	0.78	2.46	3,217.9	0.00	0.00
SOIL SWALES. THE INLETS HAVE SEDIMENTATION	DA3	4.73	14.82	19,411.2	22.00	14.82
"SYSTEM. THAT SYSTEM OUTFALLS INTO THE KIRTLAND	DA3-1	6.45	20.20	26,469.6	22.00	20.20
THAT EVENTUALLY CONNECTS TO THE GIBSON BLVD	DA4	9.98	31.23	40,917.5	22.00	22.00
NATES IN THE SOUTH DIVERSION CHANNEL	DA5	3.64	11.38	14,914.4	22.00	11.38
	DA6-1	4.01	12.55	16,445.1	22.00	12.50
ND PONDED ONSITE, OR ROUTED THROUGH A	DA6-2	5.24	16.40	21,484.1	22.00	16.40
ILL HAVE TYPE C INLETS BUILT TO DRAIN THE ROADS.		0.36	1.12	1,464.9	22.00	1.12

NLET AS SHOWN ON THE BASIN MAP.

C COPYRIGHT MOLZEN CORBIN: ABQ114-19A


C COPYRIGHT

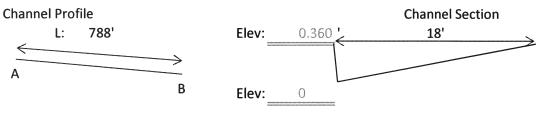
Access A East Street Calculations: Analysis Point A

$(0n^{8})^{3/8}$	Mannings, z:	1.24 (U.S.)
$y = z \left(\frac{QnS_x}{S^{1/2}}\right)^{3/8}$	Flow Capacity, Q:	2.73 CFS (R6-2)
$\left(\mathbf{S}^{1/2}\right)$	Mannings #, n:	0.017
Equation 10-1	Slope, S:	0.0058 FT/FT
where	vmt. Cross Slope, Sx:	0.02 FT/FT
y = depth of water in the curb and gutter cross section (ft. or m)	Solving for Depth, y=	0.23749 ft
O = gutter flow rate (cfs or m ³ /s)	Converting y, y=	2.85 IN
n = Manning's roughness coefficient		
S = longitudinal slope (ft./ft. or m/m)	19!* 02/y dama)-	0.36 FT
S_x = pavement cross slope = 1/x (ft./ft. or m/m)	18'*.02(x-slope)=	0.50 FT

z = 1.24 for English measurements or 1.443 for metric.

The table below presents suggested Manning's 'n" values for various pavement surfaces. Department recommendation for design is the use of the rough texture values.

Length:	881.61 feet		Channel width:	18 feet
Elev. A :	5317.65 feet		Depth:	0.36 feet
Elev. B :	5312.62 feet		Area:	3.24 ft. sq.
∆ Elev. :	5.03 feet		Wetted Perimeter:	18.36 feet
Slope:	0.005707 ft/ft	F	Iydraulic Radius, R:	0.176436 feet
			d up coefficient, n:	0.017
Q = VA	$A = \left(\frac{1.49}{n}\right) A R^{\frac{2}{3}} \sqrt{S}$	[U.S.]	Flow Capacity, Q:	6.75 CFS


٠

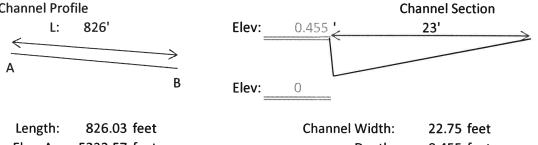
Access A North West Street Calculations: Analysis Point A

$(0nS)^{3/8}$	Mannings, z:	1.24 (U.S.)
$y = z \left(\frac{QnS_x}{S^{1/2}}\right)^{3/8}$	Flow Capacity, Q:	2.76 CFS (R8)
(s^{1})	Mannings #, n:	0.017
Equation 10-1.	Slope, S:	0.0049 FT/FT
where.	vmt. Cross Slope, Sx:	0.02 FT/FT
y = depth of water in the curb and gutter cross section (ft. or m)	Solving for Depth, y=	0.246125 ft
Q = gutter flow rate (cfs or m ³ /s)	Converting y, y=	2.95 IN
n = Manning's roughness coefficient		
S = longitudinal slope (ft./ft. or m/m)	18'*.02(x-slope)=	0.36 FT
S_{y} = pavement cross slope = 1/x (ft/ft. or m/m)	10 .02(x 510pc)	0.0011

z = 1.24 for English measurements or 1.443 for metric.

The table below presents suggested Manning's "n" values for various pavement surfaces. Department recommendation for design is the use of the rough texture values.

Length: 788.47	feet	Channel Width:	18 fe	et
Elev. A : 5317.65	feet	Depth:	0.36 fe	et
Elev. B : 5313.14	feet	Area:	3.24 ft	. sq.
Δ Elev. : 4.51	feet	Wetted Perimeter:	18.36 fe	et
Slope: 0.005716	ft/ft	Hydraulic Radius, R:	0.176436 fe	et
	Look	ed up coefficient, n:	0.017	
$Q = VA = \left(\frac{1.4}{n}\right)$	$\frac{9}{3}$ AR $\frac{2}{3}$ \sqrt{S} [U.S.]	Flow Capacity, Q:	6.75 C	FS


Access C North Street Calculations: Analysis Point C-1

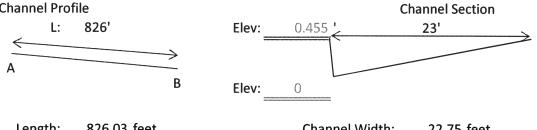
	$(0-5)^{3/8}$	Mannings, z:	1.24 (U.S.)
	$y = z \left(\frac{QnS_x}{S^{1/2}}\right)^{3/8}$	Flow Capacity, Q:	4.93 CFS (R4)
$\left(s^{1/2} \right)$	Mannings #, n:	0.017	
1	Equation 10-1.	Slope, S:	0.0093 FT/FT (C-207)
	where:	Pvmt. Cross Slope, Sx:	0.02 FT/FT
	y = depth of water in the curb and gutter cross section (ft. or m)	Solving for Depth, y=	0.271302 ft
	Q = gutter flow rate (cfs or m3/s)	Converting y, y=	3.26 IN
	n = Manning's roughness coefficient		
	S = longitudinal slope (ft./ft. or m/m)	22.75'*.02(x-slope)=	0.455 FT

 S_x = pavement cross slope = 1/x (ft/ft. or m/m)

z = 1.24 for English measurements or 1.443 for metric.

The table below presents suggested Manning's "n" values for various pavement surfaces. Department recommendation for design is the use of the rough texture values

Elev. A :	5322.57 feet		Depth:	0.455 feet
Elev. B :	5315.48 feet		Area:	5.175625 ft. sq.
∆ Elev. :	7.09 feet		Wetted Perimeter:	23.21 feet
Slope:	0.008583 ft/ft	F	Iydraulic Radius, R:	0.222995 feet
		Looked	d up coefficient, n:	0.017
Q = VA	$A = \left(\frac{1.49}{n}\right) A R^{\frac{2}{3}} \sqrt{S}$	[U.S.]	Flow Capacity, Q:	15.45 CFS


Access C South Street Calculations: Analysis Point C-1

$(0-8)^{3/8}$	Mannings, z:	1.24 (U.S.)
$y = z \left(\frac{QnS_x}{s^{1/2}}\right)^{3/8}$	Flow Capacity, Q:	3.16 CFS (R3)
$\left(\mathbf{S}^{1/2}\right)$	Mannings #, n:	0.017
Equation 10-1.	Slope, S:	0.0093 FT/FT (C-207)
where:	Pvmt. Cross Slope, Sx:	0.02 FT/FT
y = depth of water in the curb and gutter cross section (ft. or m)	Solving for Depth, y=	0.229625 ft
Q = gutter flow rate (cfs or m^3/s)	Converting y, y=	2.76 IN
n = Manning's roughness coefficient		
S = longitudinal slope (ft./ft. or m/m)	22.75'*.02(x-slope)=	0.455 FT
S_x = pavement cross slope = 1/x (ft/ft. or m/m)		

z = 1.24 for English measurements or 1.443 for metric.

The table below presents suggested Manning's "n" values for various pavement surfaces. Department recommendation for design is the use of the rough texture values

.

Length:	826.03 feet		Channel Width:	22.75 feet
Elev. A :	5322.57 feet		Depth:	0.455 feet
Elev. B :	5315.48 feet		Area:	5.175625 ft. sq.
∆ Elev. :	7.09 feet		Wetted Perimeter:	23.21 feet
Slope:	0.008583 ft/ft		Hydraulic Radius, R:	0.222995 feet
			Looked up coefficient, n:	0.017
	(1.40)	2		

$$Q = VA = \left(\frac{1.49}{n}\right)AR^{\frac{2}{3}}\sqrt{S} \quad [U.S.] \quad \text{Flow Capacity, Q:} \quad 15.45 \text{ CFS}$$

Access C South Street Calculations: Analysis Point C-2

$(0-5)^{3/8}$	Mannings, z:	1.24 (U.S.)
$y = z \left(\frac{QnS_x}{S^{1/2}}\right)^{3/8}$	Flow Capacity, Q:	2.03 CFS (R8/4)
	Mannings #, n:	0.017
Equation 10-1.	Slope, S:	0.005 FT/FT (C-207)
where:	Pvmt. Cross Slope, Sx:	0.02 FT/FT
y = depth of water in the curb and gutter cross section (ft. or m)	Solving for Depth, y=	0.218414 ft
Q = gutter flow rate (cfs or m ³ /s)	Converting y, y=	2.62 IN
n = Manning's roughness coefficient		
S = longitudinal slope (ft./ft. or m/m)	22.75'*.02(x-slope)=	0.455 FT

 S_x = pavement cross slope = 1/x (ft/ft, or m/m)

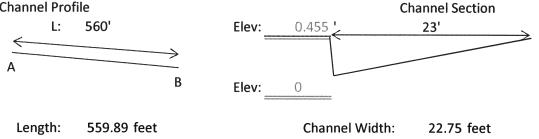
z = 1.24 for English measurements or 1.443 for metric.

The table below presents suggested Manning's ^an" values for various pavement surfaces. Department recommendation for design is the use of the rough texture values.

Length:	559.89 feet		Channel Width:	22.75 feet
Elev. A :	5322.57 feet		Depth:	0.455 feet
Elev. B :	5319.99 feet		Area:	5.175625 ft. sq.
Δ Elev. :	2.58 feet		Wetted Perimeter:	23.21 feet
Slope:	0.004608 ft/ft		Hydraulic Radius, R:	0.222995 feet
			Looked up coefficient, n:	0.017
	(1.10)	2		

$$Q = VA = \left(\frac{1.49}{n}\right)AR^{\frac{2}{3}}\sqrt{S} \quad [U.S.] \quad \text{Flow Capacity, Q:} \quad 11.32 \text{ CFS}$$

Access C South Street Calculations: Analysis Point C-2


$(0ng)^{3/8}$	Mannings, z:	1.24 (U.S.)
$y = z \left(\frac{QnS_x}{S^{1/2}}\right)^{3/8}$	Flow Capacity, Q:	4.06 CFS (R2/2)
$(S^{1/2})$	Mannings #, n:	0.017
Equation 10-1.	Slope, S:	0.005 FT/FT (C-207)
where:	Pvmt. Cross Slope, Sx:	0.02 FT/FT
y = depth of water in the curb and gutter cross section (ft. or m)	Solving for Depth, y=	0.283247 ft
Q = gutter flow rate (cfs or m ³ /s)	Converting y, y=	3.40 IN
n = Manning's roughness coefficient		
S = longitudinal slope (ft./ft. or m/m)	22.75'*.02(x-slope)=	0.455 FT

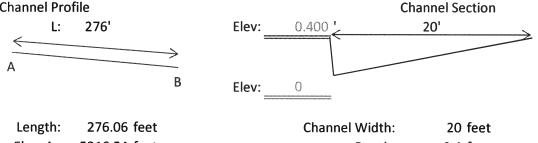
 S_x = pavement cross slope = 1/x (ft/ft. or m/m)

z = 1.24 for English measurements or 1.443 for metric.

The table below presents suggested Manning's "n" values for various pavement surfaces. Department recommendation for design is the use of the rough texture values.

Channel Profile

Lengin. 559.69 leet	Channel Width:	22.75 leet
Elev. A : 5322.57 feet	Depth:	0.455 feet
Elev. B : 5319.99 feet	Area:	5.175625 ft. sq.
Δ Elev. : 2.58 feet	Wetted Perimeter:	23.21 feet
Slope: 0.004608 ft/ft	Hydraulic Radius, R:	0.222995 feet
	Looked up coefficient, n:	0.017
$Q = VA = \left(\frac{1.49}{n}\right)AR^{\frac{2}{3}}\sqrt{S}$	[U.S.] Flow Capacity, Q:	11.32 CFS

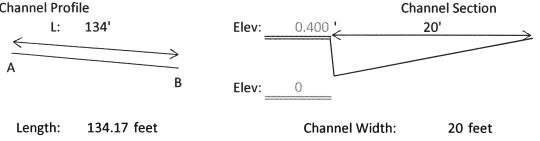

Access C South Street Calculations: Analysis Point D

$(0-5)^{3/8}$	Mannings, z:	1.24 (U.S.)
$y = z \left(\frac{QnS_x}{S^{1/2}}\right)^{3/8}$	Flow Capacity, Q:	1.15 CFS (R1/2)
$\left(\mathbf{S}^{1/2} \right)$	Mannings #, n:	0.017
Equation 10-1.	Slope, S:	0.0059 FT/FT (C-207)
where:	Pvmt. Cross Slope, Sx:	0.02 FT/FT
y = depth of water in the curb and gutter cross section (ft. or m)	Solving for Depth, y=	0.17118 ft
Q = gutter flow rate (cfs or m^3/s)	Converting y, y=	2.05 IN
n = Manning's roughness coefficient		
S = longitudinal slope (ft./ft. or m/m)	20'*.02(x-slope)=	0.4 FT
	•••	

S_v = pavement cross slope = 1/x (ft./ft. or m/m)

z = 1.24 for English measurements or 1.443 for metric.

The table below presents suggested Manning's "n" values for various pavement surfaces. Department recommendation for design is the use of the rough texture values.


Elev. A : 5316.54 feet	Depth:	0.4 feet
Elev. B : 5314.92 feet	Area:	4 ft. sq.
Δ Elev. : 1.62 feet	Wetted Perimeter:	20.40 feet
Slope: 0.005854 ft/ft	Hydraulic Radius, R:	0.19604 feet
	Looked up coefficient, n:	0.017
$Q = VA = \left(\frac{1.49}{n}\right)AR^{\frac{2}{3}}\sqrt{S}$	[U.S.] Flow Capacity, Q:	9.05 CFS

Access C South Street Calculations: Analysis Point E

$(0-2)^{3/8}$	Mannings, z:	1.24 (U.S.)
$y = z \left(\frac{QnS_x}{s^{1/2}}\right)^{3/8}$	Flow Capacity, Q:	0.97 CFS (R5/2)
$(s^{1/2})$	Mannings #, n:	0.017
Equation 10-1.	Slope, S:	0.0052 FT/FT (C-207)
where:	Pvmt. Cross Slope, Sx:	0.02 FT/FT
y = depth of water in the curb and gutter cross section (ft. or m)	Solving for Depth, y=	0.164443 ft
Q = gutter flow rate (cfs or m ³ /s)	Converting y, y=	1.97 IN
n = Manning's roughness coefficient		
S = longitudinal slope (ft./ft. or m/m)	20*.02(x-slope)	0.4 FT
S _x = pavement cross slope = 1/x (ft./ft. or m/m)		

z = 1.24 for English measurements or 1.443 for metric.

The table below presents suggested Manning's "n" values for various pavement surfaces. Department recommendation for design is the use of the rough texture values.

Length. 134.17 leet	Channel Whith.	20 1661
Elev. A : 5320.92 feet	Depth:	0.4 feet
Elev. B : 5320.45 feet	Area:	4 ft. sq.
Δ Elev. : 0.47 feet	Wetted Perimeter:	20.40 feet
Slope: 0.003503 ft/ft	Hydraulic Radius, R:	0.19604 feet
	Looked up coefficient, n:	0.017
$Q = VA = \left(\frac{1.49}{n}\right)AR^{\frac{2}{3}}\sqrt{S}$	[U.S.] Flow Capacity, Q:	7.00 CFS