CITY OF ALBUQUERQUE

October 19, 2006

Mr. Martin Garcia, PE
ABQ ENGINEERING
6739 Academy NE, Suite 130
Albuquerque, NM 87109

Re:

POLYFLOW MANUFACURING

10800 Gibson Avenue SE

Approval of Permanent Certificate of Occupancy (C.O.)

Engineer's Stamp dated 12/09/2006 (M-21/D7A1)

Certification dated 10/06/2005

Dear Martin:

P.O. Box 1293

Based upon the information provided in your submittal received 10/18/2006, the above referenced certification is approved for release of Permanent Certificate of Occupancy by Hydrology.

Albuquerque

If you have any questions, you can contact me at 924-3982.

New Mexico 87103

Arlene V. Portillo

Sincerely,

www.cabq.gov

Plan Checker, Planning Dept. - Hydrology Development and Building Services

C: CO Clerk File

DRAINAGE AND TRANSPORTATION INFORMATION SHEET

(REV. 1/28/2003rd)

PROJECT TITLE: Polyflow Manufacturing M-21/D7A DRB #: EPC#:	ZONE MAP/DRG. FILE #: M-21 / D-2-9 WORK ORDER#:
LEGAL DESCRIPTION:	
ENGINEERING FIRM: ABQ Engineering ADDRESS: 6739 Academy NE Suite 130 CITY, STATE: Albuquerque	CONTACT: Martin J. Garcia PHONE: 255-7802 ZIP CODE: 87109
OWNER: Shaw, Mitchell, and Mallory Partnership ADDRESS: 1110 Pennsylvania ST NE CITY, STATE: Albuquerque, NM	CONTACT: PHONE: ZIP CODE: _87110
ARCHITECT: JLS Architects ADDRESS: 1600 Rio Grande NW CITY, STATE: Albuquerque, NM	CONTACT: <u>Joe Slagle</u> PHONE: 246-0870 ZIP CODE: <u>87104</u>
SURVEYOR: ADDRESS: CITY, STATE:	CONTACT: PHONE: ZIP CODE:
CONTRACTOR: ADDRESS: CITY, STATE:	CONTACT: PHONE: ZIP CODE:
CHECK TYPE OF SUBMITTAL:	CHECK TYPE OF APPROVAL SOUGHT:
DRAINAGE REPORT DRAINAGE PLAN 1st SUBMITTAL, REQUIRES TCL or equal DRAINAGE PLAN RESUBMITTAL CONCEPTUAL GRADING & DRAINAGE PLAN GRADING PLAN EROSION CONTROL PLAN ENGINEER'S CERTIFICATION (HYDROLOGY) CLOMR/LOMR TRAFFIC CIRCULATION LAYOUT (TCL) ENGINEERS CERTIFICATION (TCL) ENGINEERS CERTIFICATION (DRB APPR. SITE PLAN) OTHER	S. DEV. PLAN FOR SUB'D. APPROVAL S. DEV. PLAN FOR BLDG. PERMIT APPROVAL SECTOR PLAN APPROVAL FINAL PLAT APPROVAL FOUNDATION PERMIT APPROVAL BUILDING PERMIT APPROVAL CERTIFICATE OF OCCUPANCY (PERM.) CERTIFICATE OF OCCUPANCY (TEMP.) GRADING PERMIT APPROVAL PAVING PERMIT APPROVAL WORK ORDER APPROVAL OTHER (SPECIFY)
WAS A PRE-DESIGN CONFERENCE ATTENDED: YES NO COPY PROVIDED	DECE VE DOCT 18 2006 HXOROLOGY SECTION
DATE SUBMITTED: October 18, 2006	BY. My J

Requests for approvals of Site Development Plans and/or Subdivision Plats shall be accompanied by a drainage submittal. The particular nature, location and scope of the proposed development defines the degree of drainage detail. One or more of the following levels of submittal may be required based on the following:

- 1. Conceptual Grading and Drainage Plan: Required for approval of Site Development Plans greater than five (5) acres and Sector Plans.
- 2. Drainage Plans: Required for building permits, grading permits, paving permits and site plans less than five

(5)

3

October 18, 2006

Ms. Arlene Portillo City of Albuquerque Development Services 600 Second Street SW Albuquerque, NM 87102

RE: Ktech Polyflow manufacturing as built Grading and drainage plan

Dear Ms. Portillo:

I am in receipt of your letter dated October 13, 2006 for this project and have addressed the requirements of your letter. The plan has been stamped with the original approval date as well as the revision date. As we discussed on the telephone, the sheet was revised to reflect the as built conditions, which were too numerous to include in the original plan.

If you have any questions or require additional information, please call me at 255-7802

Martin J. Garcia, PE

ABQ Engineering, Inc.

25063

CITY OF ALBUQUERQUE

October 13, 2006

Mr. Martin J. Garcia, PE

ABQ ENGINEERING

6739 Academy Rd. NE, Suite 130

Albuquerque, NM 87109

Re: POLYFLOW MANUFACTURING (M-21/D7A1)

10800 Gibson Blvd. SE

Request for Permanent Certificate of Occupancy (C.O.)

Dear Martin:

Based upon the information provided in your submittal received 10/13/2006, the above referenced Certification cannot be approved until the following are addressed:

P.O. Box 1293

1. The <u>approved</u> Grading and Drainage (G/D) Plan has an Engineer Stamp date of <u>12/09/2005</u>. The submittal does not have an original Engineer's Stamp with a date. Attached is a copy of the G/D approval letter and a copy of the bottom right hand corner the approved G/D Plan.

Albuquerque

Thank you, and if you have any questions, please do not hesitate to call me at 924-3982.

New Mexico 87103

www.cabq.gov

Sincerely,

Arlene V. Portillo

Plan Reviewer, Planning Dept.-Hydrology

Development and Building Services

Attachments

C: file

LIII OF ALBUQUERQUE

August 8, 2005

Martin Garcia, P.E.
ABQ Engineering
6739 Academy Rd. Suite 130 NE
Albuquerque, NM 87109

Re: Polyflow Manufacturing, Grading and Drainage Report Engineer's Stamp dated 7-25-05 (M21-D7A1)

Dear Mr. Garcia,

Based upon the information provided in your submittal received 7-26-05, the above referenced plan is approved for Building Permit. Please attach a copy of this approved plan to the construction sets prior to sign-off by Hydrology. Prior to Certificate of Occupancy release, Engineer Certification per the DPM checklist will be required.

P.O. Box 1293

This project requires a National Pollutant Discharge Elimination System (NPDES) permit. If you have any questions regarding this permit please feel free to call the DMD Storm Drainage Design section at 768-3654 (Charles Caruso).

Albuquerque

If you have any questions, you can contact me at 924-3981.

New Mexico 87103

Kristal D. Metro, P.E.

Sincerely,

www.cabq.gov

Senior Engineer, Planning Dept.

Development and Building Services

C: Charles Caruso, DMD Storm Drainage Design File

M DRAIN

ITOURS

TELEVATION

JK

E ELEVATION

NC

LOW

ING

1600 rio grande nw
a 7 b u q u e r q u e
new mexico 87104
505 246 0870
fax 505 246 0437

Grading

REVISIONS

ARCHITECT

ENGINEER

DATE
5-4-05

DRAINAGE AND TRANSPORTATION INFORMATION SHEET

(REV. 1/28/2003rd)

PROJECT TITLE: Polyflow Manufactu DRB #:	ring EPC#:	ZONE MAP/DRG. FILE #: M-21/D7 A \ WORK ORDER#:
LEGAL DESCRIPTION: CITY ADDRESS:		
ENGINEERING FIRM: ABQ Engineering ADDRESS: 6739 Academy NE S CITY, STATE: Albuquerque	<u>uite 130</u>	CONTACT: <u>Martin J. Garcia</u> PHONE: <u>255-7802</u> ZIP CODE: <u>87109</u>
OWNER: Shaw, Mitchell, and MADDRESS: 1110 Pennsylvania State CITY, STATE: Albuquerque, NM	TNE	CONTACT: PHONE: ZIP CODE: <u>87110</u>
ARCHITECT: JLS Architects ADDRESS: 1600 Rio Grande NV CITY, STATE: Albuquerque, NM	<u>N</u>	CONTACT: <u>Joe Slagle</u> PHONE: 246-0870 ZIP CODE: <u>87104</u>
SURVEYOR: ADDRESS: CITY, STATE:		CONTACT: PHONE: ZIP CODE:
CONTRACTOR: ADDRESS: CITY, STATE:		CONTACT: PHONE: ZIP CODE:
CHECK TYPE OF SUBMITTAL:		CHECK TYPE OF APPROVAL SOUGHT:
DRAINAGE REPORT DRAINAGE PLAN 1st SUBMITTA DRAINAGE PLAN RESUBMITTA CONCEPTUAL GRADING & DRAING PLAN GRADING PLAN EROSION CONTROL PLAN ENGINEER'S CERTIFICATION (I CLOMR/LOMR TRAFFIC CIRCULATION LAYOU ENGINEERS CERTIFICATION (I ENGINEERS CERTIFICATION (I OTHER	AINAGE PLAN HYDROLOGY) JT (TCL) TCL)	SIA / FINANCIAL GUARANTEE RELEASE PRELIMINARY PLAT APPROVAL S. DEV. PLAN FOR SUB'D. APPROVAL S. DEV. PLAN FOR BLDG. PERMIT APPROVAL SECTOR PLAN APPROVAL FINAL PLAT APPROVAL FOUNDATION PERMIT APPROVAL BUILDING PERMIT APPROVAL CERTIFICATE OF OCCUPANCY (PERM.) CERTIFICATE OF OCCUPANCY (TEMP.) GRADING PERMIT APPROVAL PAVING PERMIT APPROVAL WORK ORDER APPROVAL OTHER (SPECIFY)
WAS A PRE-DESIGN CONFERENCE AT YES NO COPY PROVIDED	TENDED: D 图 图 图 D D D D D D D D D D D D D D D	
DATE SUBMITTED: October 6, 2006	BY	: Martin J. Gareia W. J.

Requests for approvals of Site Development Plans and/or Subdivision Plats shall be accompanied by a drainage submittal. The particular nature, location and scope of the proposed development defines the degree of drainage detail. One or more of the following levels of submittal may be required based on the following:

- 1. Conceptual Grading and Drainage Plan: Required for approval of Site Development Plans greater than five (5) acres and Sector Plans.
- 2. Drainage Plans: Required for building permits, grading permits, paving permits and site plans less than five

(5)

October 6, 2006

Mr. Brad Bingham City of Albuquerque Development Services 600 2nd Street NW Albuquerque, NM 87102

RE: AS built Grading and Drainage Plan for Polyflow Manufacturing

Mr. Bingham:

Enclosed is one blueline copy of the as built Grading and Drainage Plan Polyflow Manufacturing for your approval and issuance of Certificate of Occupancy. Please note that only the first phase of construction was built and as such this certification addresses only the first phase. The ponds that were constructed adequately accommodate the flows associated from the first phase, but are not large enough to accommodate the second phase of construction.

Please call me at 255-7802 if you have any questions or require additional information.

Martin J. Garcia, PE

ABQ Engineering, Inc.

25063

Sincerel

CITY OF ALBUQUERQUE

August 8, 2005

Martin Garcia, P.E.
ABQ Engineering
6739 Academy Rd. Suite 130 NE
Albuquerque, NM 87109

Re: Polyflow Manufacturing, Grading and Drainage Report Engineer's Stamp dated 7-25-05 (M21-D7A1)

Dear Mr. Garcia,

Based upon the information provided in your submittal received 7-26-05, the above referenced plan is approved for Building Permit. Please attach a copy of this approved plan to the construction sets prior to sign-off by Hydrology. Prior to Certificate of Occupancy release, Engineer Certification per the DPM checklist will be required.

P.O. Box 1293

This project requires a National Pollutant Discharge Elimination System (NPDES) permit. If you have any questions regarding this permit please feel free to call the DMD Storm Drainage Design section at 768-3654 (Charles Caruso).

Albuquerque

If you have any questions, you can contact me at 924-3981.

New Mexico 87103

Kristal D. Metro, P.E.

Sincerely,

Senior Engineer, Planning Dept.

Development and Building Services

www.cabq.gov

C: Charles Caruso, DMD Storm Drainage Design File

DRAINAGE AND TRANSPORTATION INFORMATION SHEET

(REV. 1/28/2003rd)

PROJECT TITLE: Polyflow Manufacturing DRB #: EPC#:	ZONE MAP/DRG. FILE #: M-21/D/7A WORK ORDER#:
LEGAL DESCRIPTION: CITY ADDRESS:	
ENGINEERING FIRM: ABQ Engineering ADDRESS: 6739 Academy NE Suite 130 CITY, STATE: Albuquerque	CONTACT: <u>Martin J. Garcia</u> PHONE: <u>255-7802</u> ZIP CODE: <u>87109</u>
OWNER: Shaw, Mitchell, and Mallory Partnership ADDRESS: 1110 Pennsylvania ST NE CITY, STATE: Albuquerque, NM	CONTACT: PHONE: ZIP CODE: _87110
ARCHITECT: JLS Architects ADDRESS: 1600 Rio Grande NW CITY, STATE: Albuquerque, NM	CONTACT: <u>Joe Slagle</u> PHONE: 246-0870 ZIP CODE: <u>87104</u>
SURVEYOR: ADDRESS: CITY, STATE:	CONTACT: PHONE: ZIP CODE:
CONTRACTOR: ADDRESS: CITY, STATE:	CONTACT: PHONE: ZIP CODE:
CHECK TYPE OF SUBMITTAL:	CHECK TYPE OF APPROVAL SOUGHT:
DRAINAGE REPORT DRAINAGE PLAN 1st SUBMITTAL, REQUIRES TCL or equal DRAINAGE PLAN RESUBMITTAL CONCEPTUAL GRADING & DRAINAGE PLAN GRADING PLAN EROSION CONTROL PLAN ENGINEER'S CERTIFICATION (HYDROLOGY) CLOMR/LOMR TRAFFIC CIRCULATION LAYOUT (TCL) ENGINEER'S CERTIFICATION (TCL) ENGINEER'S CERTIFICATION (DRB APPR. SITE PLAN) OTHER	SIA / FINANCIAL GUARANTEE RELEASE PRELIMINARY PLAT APPROVAL S. DEV. PLAN FOR SUB'D. APPROVAL S. DEV. PLAN FOR BLDG. PERMIT APPROVAL SECTOR PLAN APPROVAL FINAL PLAT APPROVAL FOUNDATION PERMIT APPROVAL BUILDING PERMIT APPROVAL CERTIFICATE OF OCCUPANCY (PERM.) CERTIFICATE OF OCCUPANCY (TEMP.) GRADING PERMIT APPROVAL PAVING PERMIT APPROVAL WORK ORDER APPROVAL OTHER (SPECIFY)
WAS A PRE-DESIGN CONFERENCE ATTENDED: YES NO COPY PROVIDED DATE SUBMITTED:	JUL 2 6 2005 HYDROLOGY SECTION BY: 1/26/05

Requests for approvals of Site Development Plans and/or Subdivision Plats shall be accompanied by a drainage submittal. The particular nature, location and scope of the proposed development defines the degree of drainage detail. One or more of the following levels of submittal may be required based on the following:

- 1. Conceptual Grading and Drainage Plan: Required for approval of Site Development Plans greater than five (5) acres and Sector Plans.
- 2. Drainage Plans: Required for building permits, grading permits, paving permits and site plans less than five

(5)

July 25, 2005

Mr. Brad Bingham Principal Engineer, Planning Department Development and Building Services 600 Second Street NW Albuquerque, NM 87102

RE: Polyflow Manufacturing, Grading and Drainage plan and report Engineer's stamp dated 6-02-05 (M21-D7A1)

Dear Mr. Bingham,

I am in receipt of your comments dated June 7, 2005 for this project. Enclosed is the revised Grading and Drainage plan and Drainage report for your review and approval. we have the following responses to offer:

1. The edge of curb cannot be at a higher elevation than the retaining wall. Extend the retaining wall to the same elevation, and place fill in between the curb and the wall.

The retaining walls have been removed and replaced with a rock slope. The grading as shown on the revised plan should work.

2. Specify the size of the proposed curb cuts.
The dimensions for the curb cuts have been added to the plan.

3. Since ponds 1 and 2 are not connected, please specify the quantity of flow that enters each pond.

The flow to each pond is identified in the drainage report.

4. Why are no calculations shown for pond 3?

Pond 3 was considered as part of pond 1 due to the connection with the 12" cmp.

The plan has been re-labeled.

5. Provide inverts for all propose drainage structures. Inverts have been added.

6. The sump drains, located at each dock, appear to connect to storm drain.

Please specify the size of these storm drains, as well as inverts and outfall information.

The sump drains will connect to a drain line that will daylight into the landscaped area as shown.

7. According to AHYMO User's Manual, when using the ROUTE RESERVOIR command, "the first line of the outflow-storage table must have 0.0 values for outflow and storage.

The AHYMO programming information has been corrected.

8. The pond detail refers to the width of the pond as "varies". Please provide more information.

The ponds width varies as it follows the sidewalk. The pond capacities have been shown on the AHYMO calculations are also shown at the end of the drainage report on the pond calculation sheets.

Please call me if there is any additional information that you may need. The plan has also been submitted to Bruce Stidworthy at Bohannon Huston for review and approval since the property lies within the Science and Technology Research Park.

Martin J Garcia P.E.

ABQ Engineering, Inc

25063

Sincerely

DRAINAGE REPORT

FOR

Polyflow Engineering

LOT 9 AND 10 SCIENCE AND TECHNOLOGY PARK

ZONE ATLAS PAGE M-21

Limited a source
Historic

LBUQUERQUE, NEW MEXICO

July 25, 2005.

Moor Hear 215% lotares July.

Prepared By:

ABQ Engineering, Inc.

6739 Academy NE Suite 130 Albuquerque, NM 87109 255-7802 Fax 255-7902

TABLE OF CONTENTS

Contents	Page
Introduction	3
Project Description	3
Methodology	3
Drainage Computations	4
Infrastructure	4
Summary and Conclusion	4
	no input and output.
	Introduction Project Description Methodology Drainage Computations Infrastructure Summary and Conclusion

I. INTRODUCTION

This report documents the methods used to determine and convey the storm water runoff from the Polyflow Engineering new building site located at the corner of Innovation Parkway and Gibson Blvd to the existing storm drain system in Innovation Parkway.

II. PROJECT DESCRIPTION

The site for the new Polyflow Engineering building is a 5.73 acre site located at the southeast corner of Innovation Parkway and Gibson blvd SE. The new building will be built in multiple phases. The existing vacant site generally slopes from East to West and there are no off-site flows to this site. Surrounding properties to the west east and south are vacant land.

III. METHODOLOGY

The hydrology calculations follow the guidelines set forth in Section 22.2 of the Albuquerque Development Process Manual (DPM). The 100yr-24 hour storm was used to compute runoff quantities. The site is contained within the Science and Technology park Master Drainage plan prepared by Bohannon Huston in September 2001. The Master Drainage plan limits the amount of developed runoff allowed into the storm drain system to 1.57 cfs/acre for the lot and 4.82 cfs/acre for the street for a total of 2.02 cfs/acre. This would translate to an allowable developed discharge of 8.99 cfs for this site. The site will be graded to drain from East to west into three storm drainage ponds, two of which will be connected with a 12" cmp(pond 1), the third will be independent but adjacent (pond 2). Pond 1 will drain into the existing storm drain system via a 12" cmp that will be connected to an existing stub provided with the construction of Innovation Parkway. Pond 2 will drain into the existing storm drain system via a 9" cmp that will be connected to an existing storm drain stub provided with the construction of Innovation Parkway. From the AHYMO results this will allow 8.90 cfs to be control released into the existing storm drain. During the 100yr event, pond 1 will overflow into the parking lot at a water surface elevation of 95.32.

IV. DRAINAGE COMPUTATIONS

The proposed development is within Precipitation Zone 2. The Land Treatment Area for the proposed subdivision is as follows:

Type "D"	80%	
Type "C"	0%	Q ₁₀₀ = 25.56 cfs
Type "B"	20%	Dev
Type "A"	0%	

The analysis resulted in a developed peak flow of 25.56 cfs. See Attached exhibits.

VI. SUMMARY AND CONCLUSION

The developed flows can be control released to the maximum of 8.90 cfs through the use of a 2.0 Ift deep pond and a 12" pipe connection to the existing storm drain system in Innovation Parkway as is shown on the attached Grading and Drainage plan. With the use of this system, this plan complies with the restraints imposed by the Research and Technology Park Master Drainage Plan

prepared by Bohannon Huston and approved by the City of Albuquerque During the 100yr event, pond 1 overflows into the parking lot.

Exhibit A

AHYMO Input pond 1

	and and and and and and	• ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	*****	
*	POLYFLOV	W ENGINEE	RING PONDING C	ALCS
*	*100 YEAR	6 HOUR PI	ROP CONDITIONS	
*	******	*****	*****	
START	TIME=(0.0 HR PUN	CH CODE=0 PRINT	LINES=-3
RAINFALI	TYPI	E=1 RAIN Q	UARTER=0.0	
	RAIN ONE=	-2.1 IN RAI	V SIX=2.60 IN	
	RAIN DAY=	=3.10 IN DT	=0.0333 HRS	
*	******	*		
COMPUTE	NM HYD	ID=1 HYD	NO=A1 DA=0.0055	6 SQ MI
	PER A=0 PE	R B=20 PEI	R C=0 PER D=80	
	TP=-0.1333	HR MASS R	AIN=-1	
*	******	*		
PRINT HY	D = 1	CODE=1		
* 				
* *	*****	******	**	
			** .5% of entire basin	
*	Interim Po		.5% of entire basin	
*	Interim P(******	Ond No. 1 61 ******	.5% of entire basin	W = ID = 1
* * *	Interim P(******	Ond No. 1 61 ******	.5% of entire basin ***	0W = ID = 1
* * ROUTE RE	Interim Posts ***** SERVOIR	Ond No. 1 61 ***** ID=200 F	.5% of entire basin ***	
* * ROUTE RE	Interim Posts ***** SERVOIR	Ond No. 1 61 ***** ID=200 F	.5% of entire basin *** IYD=POND1 INFLC	
* * ROUTE RE	Interim Post ****** SERVOIR OUTFLO	Ond No. 1 61 ***** ***** ID=200 F W(CFS) ST	.5% of entire basin *** IYD=POND1 INFLO ORAGE(AC FT) EI	
* * ROUTE RE	Interim Post ****** SERVOIR OUTFLO 0.00	Ond No. 1 61 ***** ID=200 F W(CFS) ST 0.000	.5% of entire basin *** IYD=POND1 INFLO ORAGE(AC FT) EI 92.80	
* * ROUTE RE	Interim Posts Property Propert	Ond No. 1 61 ***** ID=200 F W(CFS) ST 0.000 0.015	.5% of entire basin *** IYD=POND1 INFLO ORAGE(AC FT) EI 92.80 93.00	
* * ROUTE RE	Interim PO ******* SER VOIR OUTFLO 0.00 1.56 2.92	Ond No. 1 61 ****** ID=200 F W(CFS) ST 0.000 0.015 0.055	.5% of entire basin *** IYD=POND1 INFLC ORAGE(AC FT) EI 92.80 93.00 93.50	
* * ROUTE RE	Interim PO ******* SERVOIR OUTFLO 0.00 1.56 2.92 3.82	Ond No. 1 61 ****** ID=200 F W(CFS) ST 0.000 0.015 0.055 0.097	.5% of entire basin *** IYD=POND1 INFLO ORAGE(AC FT) EI 92.80 93.00 93.50 94.00	

AHYMO Output Pond 1

AHYMO PROGRAM (AHYMO 97) -	- Version:
<u>1997.02c</u>	
RUN DATE (MON/DAY/YR) = 07/25/2005	
START TIME (HR:MIN:SEC) = 11:48:33	USER NO.=
AHYMO-I-9702a0100003C-SH	
INPUT FILE =	
C:\DOCUME~1\RECEPT~1\Desktop\AHYMOI~1.T>	<u>XT</u>

*	***************************************
*	POLYFLOW ENGINEERING PONDING CALCS
*	*100 YEAR 6 HOUR PROP CONDITIONS
*	*****
START	TIME=0.0 HR PUNCH CODE=0 PRINT LINES=-3
RAINF	LL TYPE=1 RAIN QUARTER=0.0
	RAIN ONE=2.1 IN RAIN SIX=2.60 IN
	RAIN DAY=3.10 IN DT=0.0333 HRS
	COMPUTED 6-HOUR RAINFALL DISTRIBUTION BASEI
ON NOAA	ATLAS 2 - PEAK AT 1.40 HR.
<u>OIVIOZIX</u>	DT = .033300 HOURS END TIME = 5.994000
HOURS	LY 1 . COUNTY LEVEL LEVE
110010	.0000 .0033 .0066 .0100 .0135 .0171 .0207
	.0244 .0282 .0321 .0361 .0402 .0444 .0487
	.0532 .0577 .0624 .0673 .0723 .0774 .0828
	.0332 .0377 .0024 .0073 .0723 .0771 .0025
	.0885 .0940 .1000 .1002 .1127 .1194 .1205
<u> </u>	.1340 .1418 .1301 .1300 .1021 .1088 .1824 .2138 .2622 .3318 .4269 .5520 .7117 .9106
	1.1534 1.3866 1.4823 1.5628 1.6343 1.6993 1.7591
<u> </u>	1.8147 1.8666 1.9152 1.9610 2.0042 2.0449 2.0835
	2.1201 2.1548 2.1877 2.2189 2.2486 2.2574 2.2645
	<u>2.2713 2.2778 2.2841 2.2901 2.2960 2.3016 2.3070</u>
	2.3123 2.3175 2.3224 2.3273 2.3320 2.3367 2.3412
	2.3456 2.3499 2.3541 2.3582 2.3623 2.3663 2.3702
	2.3740 2.3777 2.3814 2.3851 2.3886 2.3922 2.3956

2 2000 2 4024 2 4057 2 4000 2 4122 2 4154 2 4195
<u>2.3990 2.4024 2.4057 2.4090 2.4122 2.4154 2.4185</u> 2.4216 2.4246 2.4276 2.4306 2.4336 2.4365 2.4393
<u>2.4210 2.4240 2.4270 2.4300 2.4330 2.4303 2.4393</u> 2.4422 2.4450 2.4478 2.4505 2.4532 2.4559 2.4586
2.4422 2.4430 2.4478 2.4303 2.4332 2.4339 2.4380 2.4612 2.4638 2.4664 2.4689 2.4715 2.4740 2.4765
2.4012 2.4038 2.4004 2.4089 2.4713 2.4740 2.4703 2.4789 2.4814 2.4838 2.4862 2.4886 2.4909 2.4932
2.4769 2.4614 2.4636 2.4602 2.4660 2.4909 2.4932 2.4956 2.4979 2.5001 2.5024 2.5046 2.5069 2.5091
2.4930 2.4979 2.3001 2.3024 2.3040 2.3009 2.3091 2.5113 2.5134 2.5156 2.5177 2.5199 2.5220 2.5241
2.5115 2.5154 2.5150 2.5177 2.5199 2.5220 2.5241 2.5262 2.5282 2.5303 2.5323 2.5343 2.5364 2.5384
<u>2.5202 2.5282 2.5303 2.5323 2.5343 2.5304 2.5384</u> 2.5403 2.5423 2.5443 2.5462 2.5482 2.5501 2.5520
2.5405 2.5425 2.5445 2.5402 2.5482 2.5501 2.5520 2.5539 2.5558 2.5577 2.5595 2.5614 2.5632 2.5651
2.5559 2.5558 2.5577 2.5595 2.5014 2.5052 2.5051 2.5669 2.5687 2.5705 2.5723 2.5741 2.5758 2.5776
2.5794 2.5811 2.5828 2.5846 2.5863 2.5880 2.5897
<u>2.5914 2.5931 2.5947 2.5964 2.5981 2.5997</u>
* *******
COMPUTE NM HYD ID=1 HYD NO=A1 DA=0.00556 SQ MI
PER A=0 PER B=20 PER C=0 PER D=80
TP=-0.1333 HR MASS RAIN=-1
TZ = ABACAOTTD = BD = 100000TD = TZ/TD D ABTO = ZABOOO
K = .072649HR $TP = .133300HR$ $K/TP RATIO = .545000$
SHAPE CONSTANT, $N = 7.106420$
<u>UNIT PEAK = 17.561 CFS UNIT VOLUME = .9987 B = </u>
$\frac{526.28 P60 = 2.1000}{40.000}$
AREA = .004448 SQ MI IA = .10000 INCHES INF =
.04000 INCHES PER HOUR
RUNOFF COMPUTED BY INITIAL
ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .033300
K = .133173HR $TP = .133300HR$ $K/TP RATIO = .999050$
SHAPE CONSTANT, $N = 3.533693$
UNIT PEAK = 2.6927 CFS UNIT VOLUME = .9953 B =
322.78 P60 = 2.1000
AREA = .001112 SQ MI IA = .50000 INCHES INF =
1.25000 INCHES PER HOUR
RUNOFF COMPUTED BY INITIAL
ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .033300
* *******
PRINT HYD ID=1 CODE=1

HYDROGRAPH FROM AREA A1

RUNOFF VOLUME = 2.06177 INCHES = .6114 ACRE-FEET

PEAK DISCHARGE RATE = 15.87 CFS AT 1.499 HOURS

BASIN AREA = .0056 SQ. MI.

*				
*	****	*****	***	
*	Interim I	Ond No. 1	61.5% of entire	basin

ROUTE RESERVO	IR	ID=200 H	YD=POND1 IN	VFLOW=ID=1
CODE=5				
	DUTFL (DW(CFS)	STORAGE(AC	FT)
ELEVATION (FT)				
	0.00	0.000	92.80	
	1.56	0.015	93.00	
	2.92	0.055	93.50	
	3.82	0.097	94.00	
	4.54	0.142	94.50	
5.17	0.	190	95.00	
	5.65	0.238	95.35	
* * * * * *	* * *	* * * *	* *	

TIN AIT	TATE		ST ISSZ	VACT TIME	
 TIME		LOW I			OUTFLOW
 (HRS)	(CFS	<u>(FE</u>	ET) (A	<u>C-FT) (C</u>	<u>FS)</u>
 .00	.00	92.80	.000	.00	
.17	.00	92.80	.000	.00	
 .33	.00	92.80	.000	.00	
 .50	.00	92.80	.000	.00	
 .67	.00	92.80	.000	.00	
 .83	.03	92.80	.000	.00	
 1.00	.39	92.83	.002	.20	
 1.17	.47	92.85	.004	.39	

1.80 MAXIMUM WATER SURFACE ELEVATION = 95.307								
1.67 8.17 95.22 .220 5.47 1.83 5.14 95.30 .231 5.58 2.00 3.69 95.19 .215 5.42 2.16 1.76 94.92 .182 5.07 2.33 87 94.40 .133 4.40 2.50 .57 93.89 .088 3.62 2.66 .40 93.44 .050 2.76 2.83 .30 93.11 .024 1.86 3.00 .24 92.91 .008 .85 3.16 .20 92.85 .004 .37 3.33 .17 92.83 .002 .23 3.50 .16 92.82 .002 .18 3.66 .15 92.82 .002 .16 3.83 .14 92.82 .001 .15 4.00 .14 92.82 .001 .13 4.50 .13 92.82 .001 .13 4.50 .13 92.82 .001 .13 <t< td=""><td></td><td>1.33</td><td>4.51</td><td>93.04</td><td>.018</td><td>1.67</td><td></td><td></td></t<>		1.33	4.51	93.04	.018	1.67		
1.83		1.50	15.87	94.27	.121	4.21		
2.00 3.69 95.19 215 5.42 2.16 1.76 94.92 182 5.07 2.33 .87 94.40 .133 4.40 2.50 .57 93.89 .088 3.62 2.66 .40 93.44 .050 2.76 2.83 .30 93.11 .024 1.86 3.00 24 92.91 .008 .85 3.16 .20 92.85 .004 .37 3.33 .17 92.83 .002 .23 3.50 .16 92.82 .002 .18 3.66 .15 92.82 .002 .16 3.83 .14 92.82 .001 .15 4.00 .14 92.82 .001 .14 4.16 .13 92.82 .001 .14 4.16 .13 92.82 .001 .14 4.16 .13 92.82 .001 .13 4.50 .13 92.82 .001 .13 4.50 .13 92.82 .001 .13 4.66 .13 92.82 .001 .13 5.00 .13 92.82 .001 .13 5.16 .13 92.82 .001 .13 5.17 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10		1.67	8.17	95.22	.220	5.47		
2.16		1.83	5.14	95,30	.231	 		
2.16		2.00	3.69	95.19	.215			
2.33		2.16	1.76	94.92		·		
2.50		2.33	.87	94,40				
2.66		2.50	.57	93.89	.088	······································		
2.83 .30 93.11 .024 1.86 3.00 .24 92.91 .008 .85 3.16 .20 92.85 .004 .37 3.33 .17 92.83 .002 .23 3.50 .16 92.82 .002 .18 3.66 .15 92.82 .002 .16 3.83 .14 92.82 .001 .15 4.00 .14 92.82 .001 .14 4.33 .13 92.82 .001 .13 4.50 .13 92.82 .001 .13 4.66 .13 92.82 .001 .13 4.83 .13 92.82 .001 .13 5.00 .13 92.82 .001 .13 5.16 .13 92.82 .001 .13 5.49 .13 92.82 .001 .13 5.49 .13 92.82 .001 .13 5.83 .14 92.82 .001 .14 6.16 <td></td> <td>2.66</td> <td>.40</td> <td>93.44</td> <td>.050</td> <td></td> <td></td> <td></td>		2.66	.40	93.44	.050			
3.00 .24 92.91 .008 .85 3.16 .20 92.85 .004 .37 3.33 .17 92.83 .002 .23 3.50 .16 92.82 .002 .18 3.66 .15 92.82 .002 .16 3.83 .14 92.82 .001 .15 4.00 .14 92.82 .001 .14 4.16 .13 92.82 .001 .13 4.50 .13 92.82 .001 .13 4.66 .13 92.82 .001 .13 4.83 .13 92.82 .001 .13 4.83 .13 92.82 .001 .13 5.00 .13 92.82 .001 .13 5.16 .13 92.82 .001 .13 5.16 .13 92.82 .001 .13 5.16 .13 92.82 .001 .13 5.16 .13 92.82 .001 .13 5.16 .13 92.82 .001 .13 5.16 .13 92.82 .001 .13 5.16 .13 92.82 .001 .13 5.16 .13 92.82 .001 .13 5.16 .13 92.82 .001 .13 5.17 .18 .18 .18 .18 .18 .18 .18 .18 .18 .18		2.83	.30	93.11	.024			
3.16		3.00	.24					
3.33	<u> </u>	3.16	.20	92.85		.37		
3.50		3.33	.17			.23		
3.66		3,50				.18		
3.83 .14 92.82 .001 .15 4.00 .14 92.82 .001 .14 4.16 .13 92.82 .001 .14 4.33 .13 92.82 .001 .13 4.50 .13 92.82 .001 .13 4.66 .13 92.82 .001 .13 4.83 .13 92.82 .001 .13 5.00 .13 92.82 .001 .13 5.16 .13 92.82 .001 .13 5.16 .13 92.82 .001 .13 5.33 .13 92.82 .001 .13 5.49 .13 92.82 .001 .13 5.49 .13 92.82 .001 .13 5.66 .13 92.82 .001 .13 5.83 .14 92.82 .001 .13 5.83 .14 92.82 .001 .14 6.16 .05 92.81 .001 .14 6.16 .05 92.81 .001 .11 6.33 .02 92.81 .000 .04 6.49 .01 92.80 .000 .02 6.66 .00 92.80 .000 .02 6.683 .00 92.80 .000 .00 PEAK DISCHARGE = 5.591 CFS - PEAK OCCURS AT F		_	.15	, , , , , , , , , , , , , , , , , , , ,	.002	.16		
4.00 .14 92.82 .001 .14 4.16 .13 92.82 .001 .14 4.33 .13 92.82 .001 .13 4.50 .13 92.82 .001 .13 4.66 .13 92.82 .001 .13 5.00 .13 92.82 .001 .13 5.16 .13 92.82 .001 .13 5.33 .13 92.82 .001 .13 5.49 .13 92.82 .001 .13 5.83 .14 92.82 .001 .14 5.99 .14 92.82 .001 .14 6.16 .05 92.81 .001 .11 6.33 .02 92.81 .000 .04 6.49 .01 92.80 .000 .02 6.66 .00 92.80 .000 .00 PEAK DISCHARGE 5.591 CFS - PEAK OCCURS AT F 1.80 MAXIMUM WATER SURFACE ELEVATION 95.307			.14			.15		
4.33		4.00	.14	···	.001	.14		
4.50	***********	4.16	.13	92.82	.001	.14		
4.66 .13 92.82 .001 .13 4.83 .13 92.82 .001 .13 5.00 .13 92.82 .001 .13 5.16 .13 92.82 .001 .13 5.33 .13 92.82 .001 .13 5.49 .13 92.82 .001 .13 5.66 .13 92.82 .001 .13 5.83 .14 92.82 .001 .14 5.99 .14 92.82 .001 .14 6.16 .05 92.81 .001 .11 6.33 .02 92.81 .000 .04 6.49 .01 92.80 .000 .02 6.66 .00 92.80 .000 .01 6.83 .00 92.80 .000 .00 PEAK DISCHARGE = 5.591 CFS - PEAK OCCURS AT HISO MAXIMUM WATER SURFACE ELEVATION = 95.307		4.33	.13	92.82	.001	.13		
4.83 .13 92.82 .001 .13 5.00 .13 92.82 .001 .13 5.16 .13 92.82 .001 .13 5.33 .13 92.82 .001 .13 5.49 .13 92.82 .001 .13 5.66 .13 92.82 .001 .13 5.83 .14 92.82 .001 .14 5.99 .14 92.82 .001 .14 6.16 .05 92.81 .001 .11 6.33 .02 92.81 .000 .04 6.49 .01 92.80 .000 .02 6.66 .00 92.80 .000 .01 6.83 .00 92.80 .000 .00 PEAK DISCHARGE = 5.591 CFS - PEAK OCCURS AT FIRM		4.50	.13	92,82	.001	.13		
5.00 .13 92.82 .001 .13 5.16 .13 92.82 .001 .13 5.33 .13 92.82 .001 .13 5.49 .13 92.82 .001 .13 5.66 .13 92.82 .001 .13 5.83 .14 92.82 .001 .14 5.99 .14 92.82 .001 .14 6.16 .05 92.81 .001 .11 6.33 .02 92.81 .000 .04 6.49 .01 92.80 .000 .02 6.66 .00 92.80 .000 .01 6.83 .00 92.80 .000 .00 PEAK DISCHARGE = 5.591 CFS - PEAK OCCURS AT FIRMS MAXIMUM WATER SURFACE ELEVATION = 95.307	**********	4.66	.13	92.82	.001	.13		
5.16 .13 92.82 .001 .13 5.33 .13 92.82 .001 .13 5.49 .13 92.82 .001 .13 5.66 .13 92.82 .001 .13 5.83 .14 92.82 .001 .14 5.99 .14 92.82 .001 .14 6.16 .05 92.81 .001 .11 6.33 .02 92.81 .000 .04 6.49 .01 92.80 .000 .02 6.66 .00 92.80 .000 .01 6.83 .00 92.80 .000 .00 PEAK DISCHARGE = 5.591 CFS - PEAK OCCURS AT FIRM 1.80 MAXIMUM WATER SURFACE ELEVATION = 95.307		4.83	.13	92.82	.001	.13		
5.33 .13 92.82 .001 .13 5.49 .13 92.82 .001 .13 5.66 .13 92.82 .001 .13 5.83 .14 92.82 .001 .14 5.99 .14 92.82 .001 .14 6.16 .05 92.81 .001 .11 6.33 .02 92.81 .000 .04 6.49 .01 92.80 .000 .02 6.66 .00 92.80 .000 .01 6.83 .00 92.80 .000 .00 PEAK DISCHARGE = 5.591 CFS - PEAK OCCURS AT E 1.80 MAXIMUM WATER SURFACE ELEVATION = 95.307		5.00	.13		.001	.13		
5.49 .13 92.82 .001 .13 5.66 .13 92.82 .001 .13 5.83 .14 92.82 .001 .14 5.99 .14 92.82 .001 .14 6.16 .05 92.81 .001 .11 6.33 .02 92.81 .000 .04 6.49 .01 92.80 .000 .02 6.66 .00 92.80 .000 .01 6.83 .00 92.80 .000 .00 PEAK DISCHARGE = 5.591 CFS - PEAK OCCURS AT E 1.80 MAXIMUM WATER SURFACE ELEVATION = 95.307		5.16	.13	······································	 	,13		
5.66 .13 92.82 .001 .13 5.83 .14 92.82 .001 .14 5.99 .14 92.82 .001 .14 6.16 .05 92.81 .001 .11 6.33 .02 92.81 .000 .04 6.49 .01 92.80 .000 .02 6.66 .00 92.80 .000 .01 6.83 .00 92.80 .000 .00 PEAK DISCHARGE = 5.591 CFS - PEAK OCCURS AT F 1.80 MAXIMUM WATER SURFACE ELEVATION = 95.307		5.33	.13		.001	.13		
5.83 .14 92.82 .001 .14 5.99 .14 92.82 .001 .14 6.16 .05 92.81 .001 .11 6.33 .02 92.81 .000 .04 6.49 .01 92.80 .000 .02 6.66 .00 92.80 .000 .01 6.83 .00 92.80 .000 .00 PEAK DISCHARGE = 5.591 CFS - PEAK OCCURS AT F 1.80 MAXIMUM WATER SURFACE ELEVATION = 95.307		5.49	.13		.001	.13		
5.99 .14 92.82 .001 .14 6.16 .05 92.81 .001 .11 6.33 .02 92.81 .000 .04 6.49 .01 92.80 .000 .02 6.66 .00 92.80 .000 .01 6.83 .00 92.80 .000 .00 PEAK DISCHARGE = 5.591 CFS - PEAK OCCURS AT F 1.80 MAXIMUM WATER SURFACE ELEVATION = 95.307		5.66	.13	92.82	.001	.13		
6.16 .05 92.81 .001 .11 6.33 .02 92.81 .000 .04 6.49 .01 92.80 .000 .02 6.66 .00 92.80 .000 .01 6.83 .00 92.80 .000 .00 PEAK DISCHARGE = 5.591 CFS - PEAK OCCURS AT FILL 1.80 MAXIMUM WATER SURFACE ELEVATION = 95.307		5.83	.14	92.82	.001	.14		
6.33 .02 92.81 .000 .04 6.49 .01 92.80 .000 .02 6.66 .00 92.80 .000 .01 6.83 .00 92.80 .000 .00 PEAK DISCHARGE = 5.591 CFS - PEAK OCCURS AT H 1.80 MAXIMUM WATER SURFACE ELEVATION = 95.307		5.99	.14	92.82	.001	.14		
6.49 .01 92.80 .000 .02 6.66 .00 92.80 .000 .01 6.83 .00 92.80 .000 .00 PEAK DISCHARGE = 5.591 CFS - PEAK OCCURS AT H 1.80 MAXIMUM WATER SURFACE ELEVATION = 95.307		6.16	.05	92.81	.001	.11		
6.66 .00 92.80 .000 .01 6.83 .00 92.80 .000 .00 PEAK DISCHARGE = 5.591 CFS - PEAK OCCURS AT H 1.80 MAXIMUM WATER SURFACE ELEVATION = 95.307		6.33	.02	92.81	.000	.04		
6.83 .00 92.80 .000 .00 PEAK DISCHARGE = 5.591 CFS - PEAK OCCURS AT H 1.80 MAXIMUM WATER SURFACE ELEVATION = 95.307		6.49	.01	92.80	.000	.02		
PEAK DISCHARGE = 5.591 CFS - PEAK OCCURS AT F 1.80 MAXIMUM WATER SURFACE ELEVATION = 95.307		6.66	.00	92.80	.000	.01		
1.80 MAXIMUM WATER SURFACE ELEVATION = 95.307		6.83	.00	92.80	.000	.00		
1.80 MAXIMUM WATER SURFACE ELEVATION = 95.307	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	PEAK DIS	SCHAR	GE =	5.591 (CFS - PEA	AK OCC	CURS AT 1
	.	•						
MAXIMUM STORAGE = .2321 AC-FT INCREMENT		MAXIMU	M WA	TER SUF	RFACE I	ELEVAT	ON =	95.307
				•				CREMEN

TIME= .033300HRS

POLY FLOW ENGINEERING

Drainage pond area computations:

25063

Pond 1

7/22/05			Average				diameter = k= A=	0.9600 0.6000 0.7238
Height above pond bottom	Pond Elev.	Area (sf)	Storage Volume	Cumul. Storage	head	Q	inv el. =	92.8000
0.0000	92.8000	3,248.0000	0.000	0.0000	0.0000	0.0000		
0.2000	93.0000	3,340.0000	0.0151	0.0151	0.2000	1.5586		
0.7000	93.5000	3,573.0000	0.0397	0.0548	0.7000	2.9159		
1.2000	94.0000	3,812.0000	0.0424	0.0972	1.2000	3.8178		
1.7000	94.5000	4,054.0000	0.0451	0.1423	1.7000	4.5441		
2.2000	95.0000	4,251.0000	0.0477	0.1900	2.2000	5.1694		
2.5500	95.3500	7,785.0000	0.0484	0.2383	2.5500	5.5654		

*
FINISH

NORMAL PROGRAM FINISH END TIME (HR:MIN:SEC) = 11:48:33 $\square \square 2$

Pond 2 Ahymo Input

*	*****	*****	******	***
*	POLYFLO	W ENGINE	ERING POND	NG CALCS
*	*100 YEA	R 6 HOUR I	PROP CONDIT	IONS
*	*****	*****	*******	***
START	TIME=	-0.0 HR PU	NCH CODE=0	PRINT LINES=-3
RAINFALL	TYP	E=1 RAIN	QUARTER=0.0	•
F	RAIN ONE	=2.1 IN RA	IN SIX=2.60 IN	<u></u>
F	RAIN DAY	=3.10 IN D	T=0.0333 HRS	
*	*****	**		
COMPUTE N	MHYD	ID=1 HY	D NO=A1 DA=	0.00340 SQ MI
F	PER A=0 P	ER B=20 PI	ER C=0 PER D=	<u>=80</u>
7	P=-0.1333	HR MASS	RAIN=-1	
*	*****	**		
PRINT HYD	ID=	1 CODE=1		
*				
*	*****	*******	***	
*	Interim P	Ond No. 2:	38.4% of entire	basin
*	****	*****	***	
ROUTE RESI	ERVOIR	ID=200	HYD=POND1	INFLOW=ID=1
CODE=5				
	OUTFLO)W(CFS) S	TORAGE(AC F	T) ELEVATION (FT)
	0.00	0.051	93.50	
	1.50	0.078	94.00	
	2.13	0.107	94.50	
	2.61	0.138	95.00	
	3.01	0.170	95.50	
	3.36	0.205	96.00	
*				

FINISH

Pond 2 ahymo output

AHYMO PROGRAM (AHYMO 97) -	- Version:
<u>1997.02c</u>	
RUN DATE (MON/DAY/YR) = $06/01/2005$	
START TIME (HR:MIN:SEC) = 15:53:51	USER NO.=
AHYMO-I-9702a0100003C-SH	
INPUT FILE = K:\PROJECTS\2005\25063\A	HYMO~KO.TXT

*	******
*	POLYFLOW ENGINEERING PONDING CALCS
*	*100 YEAR 6 HOUR PROP CONDITIONS
*	************
START	TIME=0.0 HR PUNCH CODE=0 PRINT LINES=-3
RAINFA	LL TYPE=1 RAIN QUARTER=0.0
	RAIN ONE=2.1 IN RAIN SIX=2.60 IN
	RAIN DAY=3.10 IN DT=0.0333 HRS
	COMPUTED 6-HOUR RAINFALL DISTRIBUTION BASED
ON NOAA	<u>ATLAS 2 - PEAK AT 1.40 HR.</u>
	DT = .033300 HOURS END TIME = 5.994000
HOURS	
	<u>.0000 .0033 .0066 .0100 .0135 .0171 .0207</u>
	<u>.0244 .0282 .0321 .0361 .0402 .0444 .0487</u>
 	<u>.0532 .0577 .0624 .0673 .0723 .0774 .0828</u>
	<u>.0883 .0940 .1000 .1062 .1127 .1194 .1265</u>
	<u>.1340 .1418 .1501 .1560 .1621 .1688 .1824</u>
	<u>.2138 .2622 .3318 .4269 .5520 .7117 .9106</u>
, , , , , , , , , , , , , , , , , , ,	1.1534 1.3866 1.4823 1.5628 1.6343 1.6993 1.7591
	1.8147 1.8666 1.9152 1.9610 2.0042 2.0449 2.0835

2.1201 2.1548 2.1877 2.2189 2.2486 2.2574 2.2645
2.2713 2.2778 2.2841 2.2901 2.2960 2.3016 2.3070
2.3123 2.3175 2.3224 2.3273 2.3320 2.3367 2.3412
2.3456 2.3499 2.3541 2.3582 2.3623 2.3663 2.3702
2.3740 2.3777 2.3814 2.3851 2.3886 2.3922 2.3956
2.3990 2.4024 2.4057 2.4090 2.4122 2.4154 2.4185
2,4216 2,4246 2,4276 2,4306 2,4336 2,4365 2,4393
2.4422 2.4450 2.4478 2.4505 2.4532 2.4559 2.4586
2.4612 2.4638 2.4664 2.4689 2.4715 2.4740 2.4765
2.4789 2.4814 2.4838 2.4862 2.4886 2.4909 2.4932
2.4956 2.4979 2.5001 2.5024 2.5046 2.5069 2.5091
2.5113 2.5134 2.5156 2.5177 2.5199 2.5220 2.5241
2.5262 2.5282 2.5303 2.5323 2.5343 2.5364 2.5384
2.5403 2.5423 2.5443 2.5462 2.5482 2.5501 2.5520
2.5405 2.5425 2.5445 2.5402 2.5402 2.5501 2.5520 2.5539 2.5558 2.5577 2.5595 2.5614 2.5632 2.5651
2.5669 2.5687 2.5705 2.5723 2.5741 2.5758 2.5776
2.5794 2.5811 2.5828 2.5846 2.5863 2.5880 2.5897
2.5914 2.5931 2.5947 2.5964 2.5981 2.5997
* ******
COMPUTE NM HYD ID=1 HYD NO=A1 DA=0.00340 SQ MI
PER A=0 PER B=20 PER C=0 PER D=80
TP=-0.1333 HR MASS RAIN=-1
K = .072649HR $TP = .133300HR$ $K/TP RATIO = .545000$
SHAPE CONSTANT, $N = 7.106420$
UNIT PEAK = 10.739 CFS UNIT VOLUME = .9982 B =
526.28 P60 = 2.1000
AREA = .002720 SQ MI IA = .10000 INCHES INF =
<u>.04000 INCHES PER HOUR</u>
RUNOFF COMPUTED BY INITIAL
ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .033300
;
K = .133173HR $TP = .133300HR$ $K/TP RATIO = .999050$
SHAPE CONSTANT, $N = 3.533693$
<u>UNIT PEAK = 1.6466 CFS UNIT VOLUME = .9920 B = </u>
322.78 P60 = 2.1000
AREA = .000680 SQ MI IA = .50000 INCHES INF =
1.25000 INCHES PER HOUR

•

•

RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .033300

* *********

PRINT HYD ID=1 CODE=1

HYDROGRAPH FROM AREA A1

RUNOFF VOLUME = 2.06177 INCHES = .3739 ACRE-FEET

PEAK DISCHARGE RATE = 9.71 CFS AT 1.499 HOURS

BASIN AREA = .0034 SQ. MI.

************* Interim POnd No. 2 38.4% of entire basin ******* ID=200 HYD=POND1 INFLOW= ID=1 ROUTE RESERVOIR CODE=5OUTFLOW(CFS) STORAGE(AC FT) ELEVATION (FT) 93.50 0.051 0.0094.00 0.0781.50 94.50 0.1072.13 95.00 0.138 2.61 95.50 0.170 3.01 96.00 3.36 0.205

* * * * * * * * * * * * *

OUTFLOW VOLUME ELEV INFLOW TIME (AC-FT) (FEET) (CFS) (HRS) .051 93.50 .00 .00 .051 <u>.00</u> 93.<u>50</u> .00 .00 .051 93.50 00. .051 <u>00.</u> 93.50 .00 .50

.67	.00	93.50	.051	.00
.83	.02	93.50	.051	.00
1.00	.24	93.53	.052	.08
1.17	.29	93.56	.054	.18
1.33	2.76	93.76	.065	.77
1.50	9.71	94.85	.129	2.47
1.67	5.00	95.80	.191	3.22
1.83	3.14	95.93	.200	3.31
2.00	2,26	95.81	.191	3.22
2.16	1.08	95.53	.172	3.03
2.33	.53	95.08	.143	2.67
2.50	.35	94.63	.115	2.26
2.66	.24	94.23	.091	1.79
2.83	.18	93.90	.073	1.21
3.00	.14	93.72	.063	.65
3.16	.12	93.62	.058	.37
3.33	.11	93.58	.055	.23
3.50	.10	93.55	.054	.16
3.66	.09	93.54	.053	.13
3.83	.09	93.54	.053	.11
4.00	.08	93.53	.053	.10
4,16	.08	93.53	.053	.09
4.33	.08	93.53	.053	.08
4.50	.08	93.53	.052	.08
4.66	.08	93.53	.052	.08
4.83	.08	93.53	.052	.08
5.00	.08	93.53	.052	.08
5.16	.08	93.53	.052	.08
5.33	.08	93.53	.052	.08
5.49	.08	93.53	.052	.08
5.66	.08	93.53	.052	.08
5.83	.08	93.53	.052	.08
5.99	.09	93.53	.053	.08
6.16	.03	93.52	.052	.07
6.33	.01	93.51	.052	.04
6.49	.00	93,51	.051	.02
6.66	.00	93.50	.051	.01
6.83	.00	93.50	.051	.01
6.99	.00	93.50	.051	.00
			<u></u>	

•

PEAK DISCHARGE =	3.310 CFS	S-PEAK	OCCUR:	S AT HO	<u>)UR</u>
1.80					
MAXIMUM WATER SUR	FACE ELI	EVATION	= 9.	5.928	
MAXIMUM STORAGE =	.2000	AC-FT	INCRE	MENTA	L
TIME= .033300HRS					
*					
FINISH					
NORMAL PROGRAM F	INISH	END TI	ME (HR	:MIN:SI	<u> EC) =</u>
15:53:51					
\Box 2					

POLY FLOW ENGINEERING

Drainage pond area computations:

25063

Pond 2

6/01/05

Height above pond bottom	Pond Elev.	Area (sf)	Average Storage Volume	Cumul. Storage	head	Q	diameter = k= A= Inv el. =	0.7500 0.6000 0.4418 93.5000
0.0000	93.5000	2,267.0000	-0.1030	0.0512	0.0000	0.0000		
0.5000	94.0000	2,426.0000	0.0269	0.0782	0.5000	1.5042		
1.0000	94.5000	2,588.0000	0.0288	0.1069	1.0000	2.1272		
1.5000	95.0000	2,752.0000	0.0306	0.1376	1.5000	2.6053		
2.0000	95.5000	2,917.0000	0.0325	0.1701	2.0000	3.0083		
2.5000	96.0000	3,086.0000	0.0345	0.2046	2.5000	3.3634	₹	

CITY OF ALBUQUERQUE

Planning Department Transportation Development Services Section

August 9, 2006

Joe L. Slagle, Registered Architect 1600 Rio Grande NW Albuquerque, NM 87104

Re: Certification Submittal for Final Building Certificate of Occupancy for

Poly-Flow Manufacturing & Office, [M-21 / D7A1]

10800 Gibson SE

Architect's Stamp Dated 08/02/06

P.O. Box 1293

Albuquerque

Dear Mr. Slagle:

Sincerely

The

The TCL / Letter of Certification submitted on August 9, 2006 is sufficient for acceptance by this office for final Certificate of Occupancy (C.O.). Notification has been made to the Building and Safety Section.

New Mexico 87103

www.cabq.gov

Nilo E. Salgado-Fernandez, P.E.

Senior Traffic Engineer

Development and Building Services

Planning Department

C:

Engineer
Hydrology file
CO Clerk

TRAFFIC CERTIFICATION

I, Joe L. Slagle, NMPE or NMRA 2284, of the firm JLS Architects, hereby certify that the Ktech/Polyflow Building, located at 10800 Gibson SE, DRB project no. 1001031, is in substantial compliance with and in accordance with the design intent of the DRB approved plan dated 8-04-05. The record information edited onto the original design document has been obtained by Joe L. Slagle of the firm JLS Architects. I further certify that I have personally visited the project site on 8-02-06 and have determined by visual inspection that the survey data provided is representative of actual site conditions and is true and correct to the best of my knowledge and belief. This certification is submitted in support of a request for certificate of occupancy.

1600 rio grande nw albuquerque new mexico 87104 0 8 7 0 fax 505 246 0437

www.jlsarchitects.com

The record information presented hereon is not necessarily complete and intended only to verify substantial compliance of the traffic aspects of this project. Those relying on the record document are advised to obtain independent verification of its accuracy before using it for any other purpose.

Signature of Engineer or Architect

Engineer's or Architect's Stamp

PROJECT TITLE: TOLY TOLO	X/MANIFALLK WONE MAP:
DRB#: EPC#:	WORK ORDER#:
LEGAL DESCRIPTION:	
CITY ADDRESS: 10800 Calbook	AVE :
ENGINEERING FIRM:	CONTACT:
ADDRESS:	PHONE:
CITY, STATE:	ZIP CODE:
OWNER:	
ADDRESS:	CONTACT:
CITY, STATE:	PHONE:
	ZIP CODE:
ARCHITECT: JOE SLAGLE	CONTACT: JOE 5
ADDRESS: 1600 RIOGRAND	PHONE: 246-0
CITY, STATE: ALEQ NET	ZIP CODE: 87 04
SURVEYOR:	CONTACT:
ADDRESS:CITY, STATE:	PHONE:
CITI, SIAIE.	ZIP CODE:
CONTRACTOR:	CONTACT:
ADDRESS:	PHONE:
CITY, STATE:	ZIP CODE:
TYPE OF SUBMITTAL:	
DRAINAGE REPORT	CHECK TYPE OF APPROVAL SOUGHT:
DRAINAGE PLAN 1st SUBMITTAL	SIA/FINANCIAL GUARANTEE RELEAS PRELIMINARY PLAT APPROVAL
DRAINAGE PLAN RESUBMITTAL	S. DEV. PLAN FOR SUB'D APPROVAL
CONCEPTUAL G & D PLAN	S. DEV. FOR BLDG. PERMIT APPROVA
GRADING PLAN	SECTOR PLAN APPROVAL
EROSION CONTROL PLAN	FINAL PLAT APPROVAL
ENGINEER'S CERT (HYDROLOGY)	FOUNDATION PERMIT APPROVAL
CLOMR/LOMR	BUILDING PERMIT APPROVAL
TRAFFIC CIRCULATION LAYOUT	CERTIFICATE OF OCCUPANCY (PERM
ENGINEER'S CERT (TCL)	CERTIFICATE OF OCCUPANCY (LEMI
ENGINEER'S CERT (DRB SITE PLAN)	GRADING PERMIT APPROVALE
OTHER (SPECIFY)	PAVING PERMIT APPROVAL
1	WORK ORDER APPROVATIG 0 9 200
	OTHER (SPECIFY)
TITACIA DDIE INDICATORE OCNIEDEN SON A COMPANIO	LAND DEVELOPMENT S
WAS A PRE-DESIGN CONFERENCE ATTENDE: YES	D:

Requests for approvals of Site Development Plans and/or Subdivision Plats shall be accompanied by a drainage submittal. The particular nature, location, and scope to the proposed development defines the degree of drainage detail. One or more of the following levels of submittal may be required based on the following:

- 1. Conceptual Grading and Drainage Plan: Required for approval of Site Development Plans greater than five (5) acres and Sector Plans.
- 2. Drainage Plans: Required for building permits, grading permits, paving permits and site plans less than five (5) acres.
- 3. Drainage Report: Required for subdivision containing more than ten (10) lots or constituting five (5) acres or more.

LETTER OF TRANSMITTAL

AR (HITE (TS

PROJECT

Poly-Flow Manufacturing & Office

RE:

Traffic Certification

1600 rio grande nw a 1 buque rque new mexico 87104 505 246 0870 fax 505 246 0437

TO

Nilo Salgado

FROM Joe Slagle

NOTES

QUANTITY

DESCRIPTION

1 ea. Traffic certification

See below

COMMENTS

Nilo,

The only revision from the approved site plan was the re-location of four handicap spaces because the cross slope at the original location exceeded code requirements. The attached sheet shows the change and the current location of the HCP spaces. Let me know if you need more information.

Joe Slagle JLS Architects Inc.

Aile M-21/D7A1

"Joe Slagle" <joe@jlsarchitects.com>

07/25/2006 08:48 AM

Please respond to <joe@jlsarchitects.com>

To <wgallegos@cabq.gov>

CC "Matt Ammerman" < MattA@jaynescorp.com>, "Downie, Steve" <downie@ktech.com>

bcc

g. 4

Subject Ktech, Polyflow Manufacturing

Wilfred,

Per the request of Matt Ammerman at Jaynes, I am writing this to inform you of the progress at the new Polyflow Manufacturing building at10800 Gibson SE. As you may be aware, the costruction of this project is in two phases, the first being the manufacturing portion and east sitework which is complete, and the second phase being the offices and west sitework. The manufacturing portion is occupied and operational per a temporary certificate of occupancy. The construction of the office wing and west site work is almost complete, and Ktech has a move in date set for August 11, 2006. The project should be substantially complete by that date, with only punch list items remaining. We are requesting that the temporary certificate of occupancy for the manufacturing portion be extend to allow us this time to complete the office portion and submit the entire project for final C.O. by mid August.

Thank you for your consideration in this matter,

Joe Slagle President JLS Architects

Joe L. Slagle

JLS Architects, Inc.

1600 Rio Grande NW

Albuquerque, NM 87104

505.246.0870

joe@jlsarchitects.com

Merche 1

Bereve 1465 15

CAN

OKAT W/ ME 170 17.

YOU CHEEK MITO 17.

146

Certificate of Occupancy

Building Safety Division ing Department City of Albuquerque Pianni

and requirements of Section 308 of Administrative Code, certifies that at the time of issuance fiance with the above code and other technical code:s ng building construction or use ificate, issued pursuant to the

		Bldg. Permit No. 0510910	I and Use Zone	ess 1300 Eubank S E Albuquerque NM 87123	
			IIB Sprkdd	Address	
10800 Gibson Blvd SE	Suite B	Commerical Project	F 1 Construction	KTECH COIP	
Building Address	Portion of Building	Use Classification .	Occupancy Group	Owner of Building	

Date: April 18, 2006

Chief Building Official Sal

Chillian

CONSPICUOUS PLACE POST IN A

FAX TRANSMITTAL

AR (HITE

1600 rio grande nw a 1 b u q u q u e r q u e new mexica 87104 505 246 0870 fax 505 246 0437

TO

Wilfred Gallegos

FROM

Joe Slagle

FAX

924-3864

PAGES

2 sheets

PHONE

DATE

7/26/06 3:18 PM

SUBJECT

Polyflow-Temporary C.O.

COPY

URGENT

FOR REVIEW

D PLEASE REPLY

☐ FILE

☐ RECYCLE

COMMENTS

Wilfed,

In regard to the temporary C.O. that Polyflow is currently operating under, you had asked for the file number of the existing temp. C.O. I have no knowledge of a file number, however. I am attaching the temporary C.O. that we are attempting to have extended. You may not be the right contact for this, but I am sending this to you on the request of Matt Ammerman, who has asked me to help get the temporary C.O. extended until mid August. Please let me know if we are barking up the wrong tree.

Thanks.

Joe Slagle

JLS Architects Inc.

CITY OF ALBUQUERQUE

June 7, 2005

Martin Garcia, P.E. ABQ Engineering 6739 Academy Rd. Suite 130 NE Albuquerque, NM 87109

Polyflow Manufacturing, Grading and Drainage Report Re: Engineer's Stamp dated 6-02-05 (M21-D7A1)

Dear Mr. Garcia,

Based upon the information provided in your submittal received 6-03-05, the above referenced report cannot be approved for Building Permit until the following comments are addressed:

P.O. Box 1293

Albuquerque

New Mexico 87103

www.cabq.gov

- 1. The edge of curb cannot be at a higher elevation than the retaining wall. Extend the retaining wall to the same elevation, and place fill in between the curb and retaining wall.
- 2. Specify the size of the proposed curb cuts.
- 3. Since ponds 1 and 2 are not connected, please specify the quantity of flow that enters each pond.
- 4. Why are no calculations shown for Pond 3?
- 5. Provide inverts for all proposed drainage structures.
- 6. The sump drains, located at each dock, appear to connect to storm drain. Please specify the size of these storm drains, as well as inverts and outfall information.
- 7. According to the AHYMO User's Manual, when using the ROUTE RESERVOIR command, "the first line of the outflow-storage table must have 0.0 values for outflow and storage."
- 8. The pond detail refers to the width of the pond as "varies." Please provide more information.

If you have any questions, you can contact me at 924-3986.

Sincerely,
Budley A. Bughan

Bradley L. Bingham, PE

Principal Engineer, Planning Dept. Development and Building Services

File

DRAINAGE AND TRANSPORTATION INFORMATION SHEET

(REV. 1/28/2003rd)

PROJECT TITLE: Polyflow Manufacturing DRB #: EPC#:	ZONE MAP/DRG. FILE #: M-21 D7A WORK ORDER#:
LEGAL DESCRIPTION: CITY ADDRESS:	
ENGINEERING FIRM: ABQ Engineering ADDRESS: 6739 Academy NE Suite 130 CITY, STATE: Albuquerque	CONTACT: <u>Martin J. Garcia</u> PHONE: <u>255-7802</u> ZIP CODE: <u>87109</u>
OWNER: Shaw, Mitchell, and Mallory Partnership ADDRESS: 1110 Pennsylvania ST NE CITY, STATE: Albuquerque, NM	CONTACT: PHONE: ZIP CODE: <u>87110</u>
ARCHITECT: JLS Architects ADDRESS: 1600 Rio Grande NW CITY, STATE: Albuquerque, NM	CONTACT: <u>Joe Slagle</u> PHONE: 246-0870 ZIP CODE: <u>87104</u>
SURVEYOR: ADDRESS: CITY, STATE:	CONTACT: ** PHONE: ZIP CODE:
CONTRACTOR: ADDRESS: CITY, STATE:	CONTACT: PHONE: ZIP CODE:
CHECK TYPE OF SUBMITTAL:	CHECK TYPE OF APPROVAL SOUGHT:
 □ DRAINAGE REPORT □ DRAINAGE PLAN 1st SUBMITTAL, REQUIRES TCL or equal □ DRAINAGE PLAN REŞUBMITTAL □ CONCEPTUAL GRADING & DRAINAGE PLAN □ GRADING PLAN □ EROSION CONTROL PLAN □ ENGINEER'S CERTIFICATION (HYDROLOGY) □ CLOMR/LOMR □ TRAFFIC CIRCULATION LAYOUT (TCL) □ ENGINEER'S CERTIFICATION (TCL) □ ENGINEER'S CERTIFICATION (DRB APPR. SITE PLAN) □ OTHER 	SIA / FINANCIAL GUARANTEE RELEASE PRELIMINARY PLAT APPROVAL S. DEV. PLAN FOR SUB'D. APPROVAL S. DEV. PLAN FOR BLDG. PERMIT APPROVAL SECTOR PLAN APPROVAL FINAL PLAT APPROVAL FOUNDATION PERMIT APPROVAL BUILDING PERMIT APPROVAL CERTIFICATE OF OCCUPANCY (PERM.) CERTIFICATE OF OCCUPANCY (TEMP.) GRADING PERMIT APPROVAL PAVING PERMIT APPROVAL WORK ORDER APPROVAL OTHER (SPECIFY)
WAS A PRE-DESIGN CONFERENCE AT TENDED: YES NO COPY PROVIDED HYDROLOGY SECTION	
DATE SUBMITTED: June 3, 2005	- Wat 6300
Requests for approvals of Site Development Plans and/or Sub	division Plats shall be accompanied by a drainag

Requests for approvals of Site Development Plans and/or Subdivision Plats shall be accompanied by a drainage submittal. The particular nature, location and scope of the proposed development defines the degree of drainage detail. One or more of the following levels of submittal may be required based on the following:

- 1. Conceptual Grading and Drainage Plan: Required for approval of Site Development Plans greater than five (5) acres and Sector Plans.
- 2. Drainage Plans: Required for building permits, grading permits, paving permits and site plans less than five

(5)

DRAINAGE REPORT

FOR

Polyflow Engineering

LOT 9 AND 10 SCIENCE AND TECHNOLOGY PARK

ZONE ATLAS PAGE M-21

ALBUQUERQUE, NEW MEXICO June 2, 2005

Prepared By:

ABQ Engineering, Inc.

6739 Academy NE Suite 130 Albuquerque, NM 87109 255-7802 Fax 255-7902

TABLE OF CONTENTS

Table of	Contents	Page
I.	Introduction	3
II.	Project Description	3
Ш.	Methodology	3
IV.	Drainage Computations	4
V.	Infrastructure	4
VI.	Summary and Conclusion	4
Appendix	c A Calculations, ahyn	no input and output
Appendix	Site Grading and I	Orainage Plan

I. INTRODUCTION

This report documents the methods used to determine and convey the storm water runoff from the Polyflow Engineering new building site located at the corner of Innovation Parkway and Gibson Blvd to the existing storm drain system in Innovation Parkway.

II. PROJECT DESCRIPTION

The site for the new Polyflow Engineering building is a 5.73 acre site located at the southeast corner of Innovation Parkway and Gibson blvd SE. The new building will be built in multiple phases. The existing vacant site generally slopes from East to West and there are no off-site flows to this site. Surrounding properties to the west east and south are vacant land.

III. METHODOLOGY

The hydrology calculations follow the guidelines set forth in Section 22.2 of the Albuquerque Development Process Manual (DPM). The 100yr-24 hour storm was used to compute runoff quantities. The site is contained within the Science and Technology park Master Drainage plan prepared by Bohannon Huston in September 2001. The Master Drainage plan limits the amount of developed runoff allowed into the storm drain system to 1.57 cfs/acre for the lot and 4.82 cfs/acre for the street for a total of 2.02 cfs/acre. This would translate to an allowable developed discharge of 8.99 cfs for this site. The site will be graded to drain from East to west into three storm drainage ponds, two of which will be connected with a 12" cmp(pond 1), the third will be independent but adjacent (pond 2). Pond 1 will drain into the existing storm drain system via a 12" cmp that will be connected to an existing storm drain system via a 9" cmp that will be connected to an existing storm drain system via a 9" cmp that will be connected to an existing storm drain system via a 9" cmp that will be connected to an existing storm drain system via a 9" cmp that will be connected to an existing storm drain system via a 9" cmp that will be connected to an existing storm drain system via a 9" cmp that will be connected to an existing storm drain system via a 9" cmp that will be connected to an existing storm drain system via a 9" cmp that will be connected to an existing storm drain system via a 9" cmp that will be connected to an existing storm drain system via a 9" cmp that will be connected to an existing storm drain system via a 9" cmp that will be connected to an existing storm drain system via a 9" cmp that will be connected to an existing storm drain system via a 9" cmp that will be connected to an existing storm drain system via a 9" cmp that will be connected to an existing storm drain system via a 9" cmp that will be connected to an existing storm drain system via a 9" cmp that will be connected to an existing storm drain system via a 9" cmp

IV. DRAINAGE COMPUTATIONS

The proposed development is within Precipitation Zone 2. The Land Treatment Area for the proposed subdivision is as follows:

Type "D"	80%
Type "C"	0%
Type "B"	20%
Type "A"	0%

The analysis resulted in a developed peak flow of 25.56 cfs. See Attached exhibits.

VI. SUMMARY AND CONCLUSION

The developed flows can be control released to the maximum of 8.85 cfs through the use of a 2.0 ft deep pond and a 12" pipe connection to the existing storm drain system in Innovation Parkway as is shown on the attached Grading and Drainage plan. With the use of this system, this plan complies with the restraints imposed by the Research and Technology Park Master Drainage Plan

prepared by Bohannon Huston and approved by the City of Albuquerque During the 100yr event, pond 1 overflows into the parking lot.

Exhibit A

Pond 1 AHYMO input and Output files and pond calculations

```
************
         POLYFLOW ENGINEERING PONDING CALCS
         *100 YEAR 6 HOUR PROP CONDITIONS
         ************
            TIME=0.0 HR PUNCH CODE=0 PRINT LINES=-3
START
              TYPE=1 RAIN QUARTER=0.0
RAINFALL
         RAIN ONE=2.1 IN RAIN SIX=2.60 IN
         RAIN DAY=3.10 IN DT=0.0333 HRS
         *******
                  ID=1 HYD NO=A1 DA=0.00556 SQ MI
COMPUTE NM HYD
         PER A=0 PER B=20 PER C=0 PER D=80
         TP=-0.1333 HR MASS RAIN=-1
         *******
              ID=1 CODE=1
PRINT HYD
*
           ******
           Interim POnd No. 1 61.5% of entire basin
           *************
                    ID=200 HYD=POND1 INFLOW= ID=1
ROUTE RESERVOIR
CODE=5
           OUTFLOW(CFS), STORAGE(ACFT) ELEVATION (FT)
                    (0.046)
                               92.80
                               93.00
                    0.083
             1.69
                               93.50
                    0.123
             3.16
                    0.166
                               94.00
             4.14
                              94.50
             4.93
                    0.210
                              95.00
                    0.259
          5.61
```

FINISH

Pond 1 Ahymo Output

AHYMO PROGRAM (AHYMO 97) -	- Version:
<u>1997.02c</u>	
RUN DATE (MON/DAY/YR) = 06/01/2005	
START TIME (HR:MIN:SEC) = 16:07:40	USER NO.=
AHYMO-I-9702a0100003C-SH	
INPUT FILE = $K:\PROJECTS\2005\25063\A$	HYMO~BD.TXT

*	***	****	*** **	****	*****	****	*	
*	POI	YFLO	WENG	INEER	ING PC	NDIN	G CALC	<u>S</u>
*	*100) YEAF	2 6 HOI	JR PRO	OP CON	IDITIO	NS	
*	***	****	****	****	****	****	*	
START		TIME=	0.0 HR	PUNC	H COD	E=0 PR	INT LIN	ES=-3
RAINFA	\LL	TYP	E=1 RA	JN QU	ARTER	0.0 = 0		
	RAII	NONE=	=2.1 IN	RAIN	SIX=2.6	<u> 60 IN</u>		
	RAII	N DAY	=3.10 D	<u>N DT=(</u>).0333 <u>I</u>	<u>IRS</u>		
	COMPU	<u>TED 6-</u>	HOUR	RAINI	FALL D	ISTRI	BUTION	BASED
ON NOAA	ATLAS 2	2 - PEA	KAT 1	.40 HR	<u>-1.</u>			
	DT = .	<u>033300</u>	HOUR	S E	ND TIN	IE =	5.994000	<u>)</u>
HOURS								
····	.0000	.0033	.0066	.0100	.0135	.0171	.0207	
	.0244	.0282	.0321	.0361	.0402	.0444	.0487	
Fall, has 4 in the last of the second management of the general specific second management.	.0532	.0577	.0624	.0673	.0723	.0774	.0828	
	.0883	.0940	.1000	.1062	.1127	.1194	.1265	
· · · · · · · · · · · · · · · · · · ·	.1340_	.1418	.1501	.1560	.1621	.1688	.1824	
	.2138	.2622	.3318	.4269	.5520	.7117	<u>.9106</u>	
	1.1534	1.3866	1.482	3 1.562	28 1.634	43 1.69	993 1.759	<u>)1</u>

```
1.8147 1.8666 1.9152 1.9610 2.0042 2.0449 2.0835
           2.1201 2.1548 2.1877 2.2189 2.2486 2.2574 2.2645
           2.2713 2.2778 2.2841 2.2901 2.2960 2.3016 2.3070
           2.3123 2.3175 2.3224 2.3273 2.3320 2.3367 2.3412
           2.3456 2.3499 2.3541 2.3582 2.3623 2.3663 2.3702
           2.3740 2.3777 2.3814 2.3851 2.3886 2.3922 2.3956
           2.3990 2.4024 2.4057 2.4090 2.4122 2.4154 2.4185
           2.4216 2.4246 2.4276 2.4306 2.4336 2.4365 2.4393
           2.4422 2.4450 2.4478 2.4505 2.4532 2.4559 2.4586
           2.4612 2.4638 2.4664 2.4689 2.4715 2.4740 2.4765
           2.4789 2.4814 2.4838 2.4862 2.4886 2.4909 2.4932
           2.4956 2.4979 2.5001 2.5024 2.5046 2.5069 2.5091
           2.5113 2.5134 2.5156 2.5177 2.5199 2.5220 2.5241
           2.5262 2.5282 2.5303 2.5323 2.5343 2.5364 2.5384
           2.5403 2.5423 2.5443 2.5462 2.5482 2.5501 2.5520
           2,5539 2,5558 2,5577 2,5595 2,5614 2,5632 2,5651
           2.5669 2.5687 2.5705 2.5723 2.5741 2.5758 2.5776
           2.5794 2.5811 2.5828 2.5846 2.5863 2.5880 2.5897
           2.5914 2.5931 2.5947 2.5964 2.5981 2.5997
                        ID=1 HYD NO=A1 DA=0.00556 SQ MI
  COMPUTE NM HYD
             PER A=0 PER B=20 PER C=0 PER D=80
             TP=-0.1333 HR MASS RAIN=-1
     K = .072649HR TP = .133300HR K/TP RATIO = .545000
SHAPE CONSTANT, N = 7.106420
     UNIT PEAK = 17.561 CFS UNIT VOLUME = .9987
526.28 \quad P60 = 2.1000
     AREA = .004448 SQ MI IA = .10000 INCHES
.04000 INCHES PER HOUR
     RUNOFF COMPUTED BY INITIAL
ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .033300
     K = .133173HR TP = .133300HR K/TP RATIO = .999050
SHAPE CONSTANT, N = 3.533693
     UNIT PEAK = 2.6927 CFS UNIT VOLUME = .9953
                                                          \mathbf{B} =
        P60 = 2.1000
322.78
```

AREA = .001112 SQ N	IA = .50	0000 INCHES INF	<u>'</u>
1.25000 INCHES PER HOUR			
RUNOFF COMPUTED B	YINITIAL		
ABSTRACTION/INFILTRATION	ON NUMBER	METHOD - DT =	.033300
* *****			
PRINT HYD ID=1 CC	DE=1		
HY	DROGRAPH :	FROM AREA A1	
RUNOFF VOLUME = 2	2.06177 INCH	ES = .6114 A	CRE-
FEET			
PEAK DISCHARGE RAT	E = 15.87	CFS AT 1.499 HO	<u>URS</u>
BASIN AREA = .0056 SQ. MI	<u>.</u>		
* 			

		5% of entire basin	
*****	*******	* * 	
ROUTE RESERVOIR	D=200 HYD=	=POND1 INFLOW=	: ID=1
$\underline{CODE=5}$			
OUTFLO	W(CFS) STO	RAGE(AC FT)	
ELEVATION (FT)			
0.00	0.046	92.80	
1.69	0.083	93.00	
3.16	0.123	93.50	
4.14	0.166	94.00	
4.93	0.210	94.50	
5.61 0.25	<u>95.(</u>	<u>00</u>	
STORAGE-DISCHARGE TAB	LE EXCEEDI	<u>ED.</u>	
* * * * * * * * *	* * * * * 		
TIME INFLOW ELE			
(HRS) (CFS) (FEET)	(AC-FT) (CFS)	
.00 .00 92.80 .0	046 .00		

17	.00	92.80	.046	.00		
33	.00	92.80	.046	.00		
.50	.00	92.80	.046	.00		
.67	.00	92.80	.046	.00		
.83	.03	92.80	.046	.00		
1.00	.39	92.81	.048	.11		
1.17	.47	92.83	.052	.27		
1.33	4.51	92,93	.070	1.10		
1.50	15.87	94.11	.176	4.32		
***WARNII	NG - O	UTFLOV	V EXCEI	EDS RE	SERVOIR CAPACITY	***
1.67	8.17	95.20	.278	<u>5.88</u>		
***WARNI	<u>NG - O</u>	UTFLOV	V EXCEE	EDS RE	SERVOIR CAPACITY	***
1.83	5.14	95.28	.287	5.99		
2.00	3.69	94.98	.257	<u>5.58</u>		
2.16	1.76	94.62	.222	5.10		
2.33	.87	94.09	.174	4.28		
2.50	.57	93.60	.131	3.35		
2.66	.40	93.20	.099	2.28		
2.83	.30	92.97	.078	1.47		
3.00	.24	92.91	.066	<u>.91</u>		
3.16	.20	92.87	.059	.59		
3.33	.17	92.85	.055	.40		
3.50	.16	92.83	.052	.29		
3.66	.15	92.83	.051	.23		
3.83	.14	92.82	.050	.19		
4.00	.14	92.82	.050	.17		
4.16	.13	92.82	.049	.15		
4.33	.13	92.82	.049	.14		
4.50	.13	92.82	.049	.14		
4.66	.13	92.82	.049	.13		
4.83	.13	92.82	.049	.13		
5.00	.13	92.82	.049	.13		
5.16	.13	92.82	.049	.13		
5.33	.13	92.82	.049	.13		
5.49	.13	92.82	.049	.13		
5.66	.13	92.82	.049	.13		
5.83	.14	92.82	.049	.13		
5.99	.14	92.82	.049	.14		
6.16	.05	92.81	.049	.12		
6.33	.02	92.81	.048	.08		

6.49	.01	92.81	.047	.05			
6.66	.00	92.80	.047	.03			
6.83	.00	92.80	.046	.02			
6.99	.00	92.80	.046	.01			
7.16	.00	92.80	.046	.00			
WARNI	<u>vG - 0</u>	UTFLOV	W EXCEE	EDS RE	<u>SERVOII</u>	R CAPACI'	TY
PEAK DI	SCHA	RGE =	6.050	CFS - P	EAK OC	CURS AT	<u>HOUR</u>
1.76							
MAXIMI	JM W	ATER SU	JRFACE :	ELEVA	TION =	95.323	
MAXIM	JM ST	<u>ORAGE</u>	= .29	907 AC-	FT IN	CREMEN	ΓAL
TIME = .03	3300H	RS					
*							
FINISH							
NORM	AL PR	<u>OGRAM</u>	FINISH	Eì	VD TIME	(HR:MIN:	SEC) =
16:07:40							
\Box 2							

Pond 2 Ahymo Input

*
* POLYFLOW ENGINEERING PONDING CALCS
* *100 YEAR 6 HOUR PROP CONDITIONS
* *************
START TIME=0.0 HR PUNCH CODE=0 PRINT LINES=-3
RAINFALL TYPE=1 RAIN QUARTER=0.0
RAIN ONE=2.1 IN RAIN SIX=2.60 IN
RAIN DAY=3.10 IN DT=0.0333 HRS
* *******
COMPUTE NM HYD ID=1 HYD NO=A1 DA=0.00340 SQ MI
PER A=0 PER B=20 PER C=0 PER D=80
TP=-0.1333 HR MASS RAIN=-1
* ************************************
PRINT HYD ID=1 CODE=1
*
 *
* Interim POnd No. 2 38.4% of entire basin
* ***********
ROUTE RESERVOIR ID=200 HYD=POND1 INFLOW= ID=1
CODE=5
OUTFLOW(CFS) STORAGE(AC FT) ELEVATION (FT)
0.00 0.051 93.50
1.50 0.078 94.00
2.13 0.107 94.50
2.61 0.138 95.00
3.01 0.170 95.50
3.36 0.205 96.00
*

10

FINISH

Pond 2 ahymo output

AHYMO PROGRAM (AHYMO 97) -	- Version:
<u>1997.02c</u>	
RUN DATE (MON/DAY/YR) = $06/01/2005$	
START TIME (HR:MIN:SEC) = 15:53:51	USER NO.=
AHYMO-I-9702a0100003C-SH	
INPUT FILE = $K:\PROJECTS\2005\25063\A$	HYMO~KO.TXT

*	***	k****	*****	*****	****	****	*	
*	POI	YFLO	W ENG	INEER	ING PC)NDIN	G CALC	<u>S</u>
*	*100	YEAF	<u>8 6 HOU</u>	JR PRO)P CON	<u>IDITIO</u>	<u>NS</u>	
*	***	****	****	****	****	****	*	
START		TIME=	0.0 HR	PUNC!	H COD	E=0 PR	NT LIN	ES=-3
RAINFA	LL	TYP	E=1 RA	JN QU	ARTER	=0.0		
	RAI	NONE=	=2.1 IN	RAIN	SIX=2.6	<u>60 IN</u>		
	RAI	V DAY	=3.10 I	NDT=().0333 I	IRS		
	COMPU	TED 6-	<u>HOUR</u>	RAINI	FALL D	ISTRIE	BUTION	BASED
ON NOAA	ATLAS	2 - PEA	<u>K AT 1</u>	.40 HR	- <u>•</u>			
	DT = .	<u>033300</u>	HOUR	S E	ND TIN	Æ =	5.99400	<u>0</u>
HOURS								
	.0000	.0033	.0066	.0100	.0135	.0171	.0207	
	.0244	.0282	.0321	.0361	.0402	.0444	.0487	
	.0532	.0577	.0624	.0673	.0723	.0774	.0828	
	.0883	.0940	.1000	.1062	.1127	.1194	.1265	
	.1340	.1418	.1501	.1560	.1621	.1688	.1824	
	.2138	.2622	.3318	.4269	.5520	.7117	.9106	

1.1534 1.3866 1.4823 1.5628 1.6343 1.6993 1.7591
1.8147 1.8666 1.9152 1.9610 2.0042 2.0449 2.0835
2.1201 2.1548 2.1877 2.2189 2.2486 2.2574 2.2645
2.2713 2.2778 2.2841 2.2901 2.2960 2.3016 2.3070
2.3123 2.3175 2.3224 2.3273 2.3320 2.3367 2.3412
2.3456 2.3499 2.3541 2.3582 2.3623 2.3663 2.3702
2.3740 2.3777 2.3814 2.3851 2.3886 2.3922 2.3956
2.3990 2.4024 2.4057 2.4090 2.4122 2.4154 2.4185
2.4216 2.4246 2.4276 2.4306 2.4336 2.4365 2.4393
2.4422 2.4450 2.4478 2.4505 2.4532 2.4559 2.4586
2.4612 2.4638 2.4664 2.4689 2.4715 2.4740 2.4765
2,4789 2,4814 2,4838 2,4862 2,4886 2,4909 2,4932
2.4956 2.4979 2.5001 2.5024 2.5046 2.5069 2.5091
2.5113 2.5134 2.5156 2.5177 2.5199 2.5220 2.5241
2.5262 2.5282 2.5303 2.5323 2.5343 2.5364 2.5384
<u>2.5202 2.5202 2.500 2.5</u>
<u>2.5 105 2.5 125 2.5 17 2.5 195 2.5 14 2.5 1</u>
2.5669 2.5687 2.5705 2.5723 2.5741 2.5758 2.5776
2.5794 2.5811 2.5828 2.5846 2.5863 2.5880 2.5897
2.5914 2.5931 2.5947 2.5964 2.5981 2.5997
* ************************************
PER A=0 PER B=20 PER C=0 PER D=80
TP=-0.1333 HR MASS RAIN=-1
K = .072649HR $TP = .133300HR$ $K/TP RATIO = .545000$
SHAPE CONSTANT, $N = 7.106420$
UNIT PEAK = 10.739 CFS UNIT VOLUME = $.9982$ B =
$\underline{526.28} \underline{P60} = 2.1000$
AREA = .002720 SQ MI IA = .10000 INCHES INF =
.04000 INCHES PER HOUR
RUNOFF COMPUTED BY INITIAL
ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .033300
K = .133173HR $TP = .133300HR$ $K/TP RATIO = .999050$
SHAPE CONSTANT, $N = 3.533693$
UNIT PEAK = 1.6466 CFS UNIT VOLUME = .9920 B =
$\overline{322.78} P60 = 2.1000$

AREA = .000680 SQ MI IA = .50000 INCHES INF =
1.25000 INCHES PER HOUR
RUNOFF COMPUTED BY INITIAL
ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .033300
* *******
PRINT HYD ID=1 CODE=1
HYDROGRAPH FROM AREA A1
$\frac{\text{RUNOFF VOLUME} = 2.06177 \text{ INCHES} = .3739 \text{ ACRE-}}{Constant of the second $
FEET
PEAK DISCHARGE RATE = 9.71 CFS AT 1.499 HOURS
$\underline{BASIN AREA} = .0034 SQ. MI.$
* *
* Interim POnd No. 2 38.4% of entire basin
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* ************************************
ROUTE RESERVOIR ID=200 HYD=POND1 INFLOW= ID=1
ROUTE RESERVOIR ID=200 HYD=POND1 INFLOW= ID=1 CODE=5
ROUTE RESERVOIR ID=200 HYD=POND1 INFLOW= ID=1 CODE=5 OUTFLOW(CFS) STORAGE(AC FT)
ROUTE RESERVOIR ID=200 HYD=POND1 INFLOW= ID=1 CODE=5 OUTFLOW(CFS) STORAGE(AC FT) ELEVATION (FT)
ROUTE RESERVOIR ID=200 HYD=POND1 INFLOW= ID=1 CODE=5 OUTFLOW(CFS) STORAGE(AC FT) ELEVATION (FT) 0.00 0.051 93.50
ROUTE RESERVOIR ID=200 HYD=POND1 INFLOW= ID=1 CODE=5 OUTFLOW(CFS) STORAGE(AC FT) ELEVATION (FT) 0.00 0.051 93.50 1.50 0.078 94.00
ROUTE RESERVOIR ID=200 HYD=POND1 INFLOW= ID=1 CODE=5 OUTFLOW(CFS) STORAGE(AC FT) ELEVATION (FT) 0.00 0.051 93.50 1.50 0.078 94.00 2.13 0.107 94.50
ROUTE RESERVOIR ID=200 HYD=POND1 INFLOW= ID=1 CODE=5 OUTFLOW(CFS) STORAGE(AC FT) ELEVATION (FT) 0.00 0.051 93.50 1.50 0.078 94.00 2.13 0.107 94.50 2.61 0.138 95.00
ROUTE RESERVOIR ID=200 HYD=POND1 INFLOW= ID=1 CODE=5 OUTFLOW(CFS) STORAGE(AC FT) ELEVATION (FT) 0.00 0.051 93.50 1.50 0.078 94.00 2.13 0.107 94.50 2.61 0.138 95.00 3.01 0.170 95.50
ROUTE RESERVOIR ID=200 HYD=POND1 INFLOW= ID=1 CODE=5 OUTFLOW(CFS) STORAGE(AC FT) ELEVATION (FT) 0.00 0.051 93.50 1.50 0.078 94.00 2.13 0.107 94.50 2.61 0.138 95.00
ROUTE RESERVOIR ID=200 HYD=POND1 INFLOW= ID=1 CODE=5 OUTFLOW(CFS) STORAGE(AC FT) ELEVATION (FT) 0.00 0.051 93.50 1.50 0.078 94.00 2.13 0.107 94.50 2.61 0.138 95.00 3.01 0.170 95.50
ROUTE RESERVOIR ID=200 HYD=POND1 INFLOW= ID=1 CODE=5 OUTFLOW(CFS) STORAGE(AC FT) ELEVATION (FT) 0.00 0.051 93.50 1.50 0.078 94.00 2.13 0.107 94.50 2.61 0.138 95.00 3.01 0.170 95.50
ROUTE RESERVOIR ID=200 HYD=POND1 INFLOW= ID=1 CODE=5 OUTFLOW(CFS) STORAGE(AC FT) ELEVATION (FT) 0.00 0.051 93.50 1.50 0.078 94.00 2.13 0.107 94.50 2.61 0.138 95.00 3.01 0.170 95.50 3.36 0.205 96.00 ** ** * * * * * * * * * * * * * * * *
ROUTE RESERVOIR ID=200 HYD=POND1 INFLOW= ID=1 CODE=5 OUTFLOW(CFS) STORAGE(AC FT) ELEVATION (FT) 0.00 0.051 93.50 1.50 0.078 94.00 2.13 0.107 94.50 2.61 0.138 95.00 3.01 0.170 95.50 3.36 0.205 96.00 *** ** ** ** ** ** ** ** ** ** ** ** *
ROUTE RESERVOIR ID=200 HYD=POND1 INFLOW= ID=1 CODE=5 OUTFLOW(CFS) STORAGE(AC FT) ELEVATION (FT) 0.00 0.051 93.50 1.50 0.078 94.00 2.13 0.107 94.50 2.61 0.138 95.00 3.01 0.170 95.50 3.36 0.205 96.00 ** ** * * * * * * * * * * * * * * * *
ROUTE RESERVOIR ID=200 HYD=POND1 INFLOW= ID=1 CODE=5 OUTFLOW(CFS) STORAGE(AC FT) ELEVATION (FT) 0.00 0.051 93.50 1.50 0.078 94.00 2.13 0.107 94.50 2.61 0.138 95.00 3.01 0.170 95.50 3.36 0.205 96.00 ** * * * * * * * * * * * * * * * * *
ROUTE RESERVOIR ID=200 HYD=POND1 INFLOW= ID=1 CODE=5 OUTFLOW(CFS) STORAGE(AC FT) ELEVATION (FT) 0.00 0.051 93.50 1.50 0.078 94.00 2.13 0.107 94.50 2.61 0.138 95.00 3.01 0.170 95.50 3.36 0.205 96.00 *** ** ** ** ** ** ** ** ** ** ** ** *

.33	.00	93.50	.051	.00
.50	.00	93.50	.051	.00
.67	.00	93,50	.051	.00
.83	.02	93.50	.051	.00
1.00	.24	93.53	.052	.08
1.17	.29	93.56	.054	.18
1.33	2.76	93.76	.065	.77
1.50	9.71	94.85	.129	2.47
1.67	5.00	95.80	.191	3.22
1.83	3.14	95.93	.200	3.31
2.00	2.26	95.81	.191	3.22
2.16	1.08	95.53	.172	3.03
2.33	.53	95.08	.143	2.67
2.50	.35	94.63	.115	2.26
2.66	.24	94.23	.091	1.79
2,83	.18	93.90	.073	1.21
3.00	.14	93.72	.063	<u>.65</u>
3.16	.12	93.62	.058	.37
3.33	.11	93.58	.055	.23
3.50	.10	93.55	.054	.16
3.66	.09	93.54	.053	.13
3.83	.09	93.54	.053	.11
4.00	8	93.53	.053	.10
4.16	.08	93.53	.053	.09
4.33	.08	93.53	.053	.08
4.50	.08	93.53	.052	.08
4.66	.08	93.53	.052	.08
4.83	.08	93.53	.052_	.08
5.00	.08	93.53	.052	.08
5.16	.08	93.53	.052	.08
5.33	.08	93.53	.052	.08
5.49	.08	93,53	.052	.08
5.66	.08	93.53	.052	.08
5.83	.08_	93.53	.052	.08
5.99	.09	93.53	.053	.08
6.16	.03	93.52	.052	.07
6.33	.01	93.51	.052	.04
6.49	.00	93.51	.051	.02
6.66	.00	93.50	.051	.01
6.83	.00	93.50	.051	.01

6.99	.00 93.	50 .051	.00			
PEAK DIS	SCHARGE	2 = 3.310	CFS - PE	AK OCCI	JRS AT I	<u>HOUR</u>
1.80					•	
MAXIMU	M WATE	R SURFACE	ELEVAT	ION =	95.928	
MAXIMU	M STORA	GE =	2000 AC-F	T INC	REMEN	[AL
$\overline{\text{TIME}} = .03.$	3300HRS					
*						
FINISH						
NORMA	AL PROGR	AM FINISH	ENI	TIME (HR:MIN:	<u>SEC) =</u>
15:53:51						·

•

•

POLY FLOW ENGINEERING

Drainage pond area computations:

25063

Pond 1

6/01/05

Height above pond bottom	Pond Elev.	Area (sf)	Average Storage Volume	Cumul. Storage	head	k= A= Inv el. =	0.6000 0.7854 92.8000
0.0000	92.8000	3,248.0000	-0.1086	0.0456	0.0000	0.0000	
0.5000	93.0000	3,340.0000	0.0378	0.0834	0.2000	1.6912	
1.0000	93.5000	3,573.0000	0.0397	0.1231	0.7000	3.1640	
1.5000	94.0000	3,812.0000	0.0424	0.1655	1.2000	4.1426	
2.0000	94.5000	4,054.0000	0.0451	0.2106	1.7000	4.9307	
2.5000	95.0000	4,251.0000	0.0477	0.2583	2.2000	5.6091	

diameter =

1.0000

POLY FLOW ENGINEERING Drainage pond area computations:

25063

Pond 2

6/01/05			Average				diameter = k= A=	0.7500 0.6000 0.4418
Height above pond bottom	Pond Elev.	Area (sf)	Storage Volume	Cumul. Storage	head	Q	Inv el. =	93.5000
0.0000	93.5000	2,267.0000	-0.1030	0.0512	0.0000	0.0000		
0.5000	94.0000	2,426.0000	0.0269	0.0782	0.5000	1.5042		
1.0000	94.5000	2,588.0000	0.0288	0.1069	1.0000	2.1272		•
1.5000	95.0000	2,752.0000	0.0306	0.1376	1.5000	2.6053		
2.0000	95.5000	2,917.0000	0.0325	0.1701	2.0000	3.0083		
2.5000	96.0000	3,086.0000	0.0345	0.2046	2.5000	3.3634		

June 3, 2005

Mr. Brad Bingham
City of Albuquerque Development Services
600 2nd Street NW
Albuquerque, NM 87102

RE: Revised Grading and Drainage Plan for Polyflow Manufacturing

Mr. Bingham:

Enclosed is one blueline copy of the revised Grading and Drainage Plan and Drainage Report Dated June 2, 2005 for Polyflow Manufacturing for your review and approval. The plan was originally submitted to you on May 17, 2005, and was re-submitted on May 25, 2005, but comments received from the design team for the Science and technology park necessitated additional changes. This plan reflects thechanges. Please discard the previous submittal.

Please call me at 255-7802 if you have any questions or require additional information.

Sincerely

Martin J. Garcia, PE ABQ Engineering, Inc.

25063