
DRAINAGE REPORT For CEJA VISTA SUBDIVISION

Prepared for Albuquerque Rio Bravo Partners, LLC 6330 Riverside Plaza Lane NW, Suite 220 Albuquerque, NM 87120

Prepared by

Mark Goodwin & Associates, PA
P.O. Box 90606
Albuquerque, NM 87199
(505) 828-2200

January 9, 2007

TABLE OF CONTENTS

• •	INTRODUCTION
<i>II.</i>	PURPOSE
III.	HYDROLOGY
IV.	PROPOSED DEVELOPED CONDITIONS
Α	On-Site Drainage
В	Off-Site Drainage
V.	CONCLUSIONS

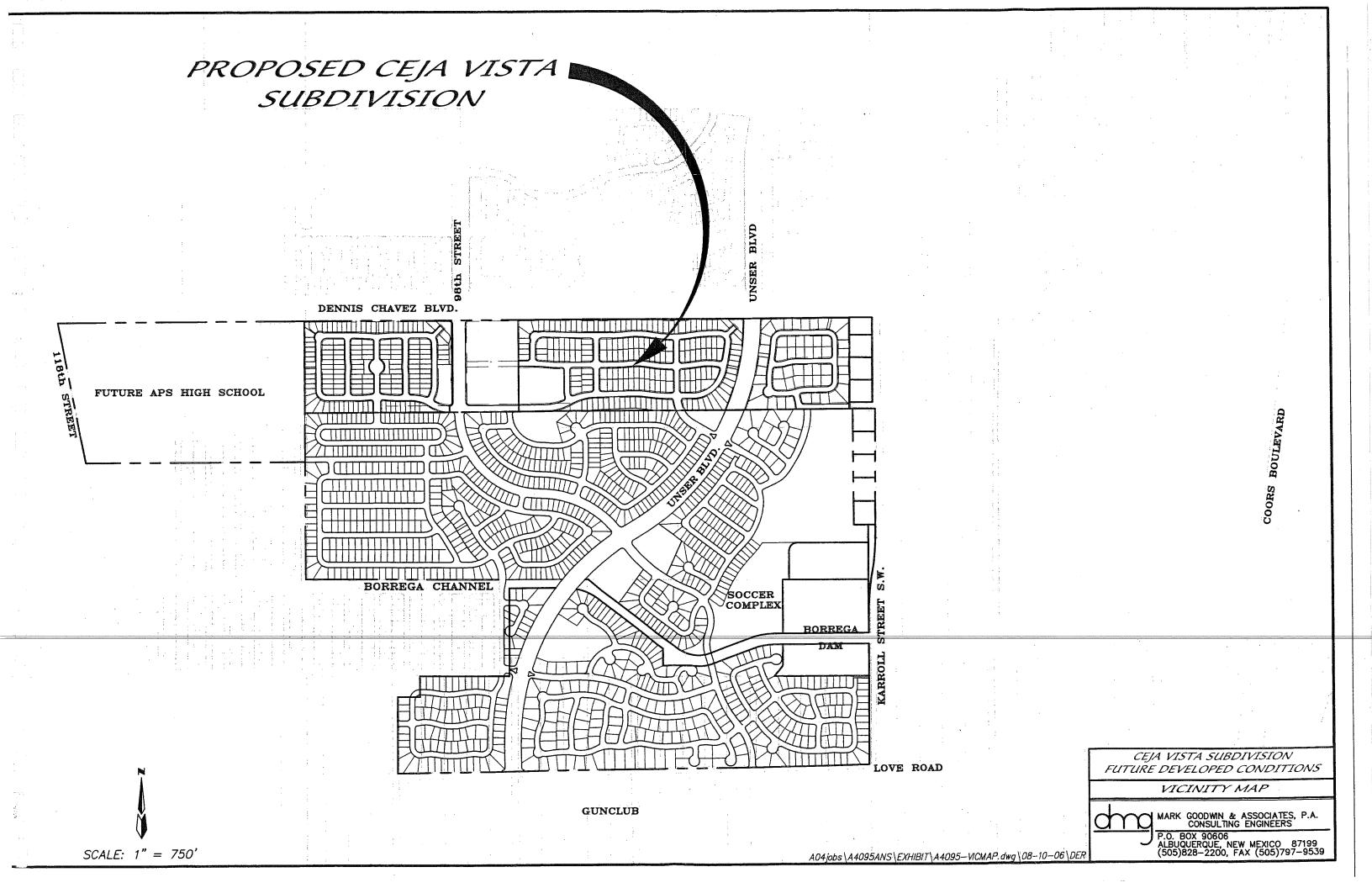
FIGURE 1: VICINITY MAP FIGURE 2: BASIN MAP

APPENDIX A – BASIN MAP/FEMA MAP
APPENDIX B – AHYMO - EXISTING CONDITIONS
APPENDIX C – AHYMO - DEVELOPED CONDITIONS
APPENDIX D –STREET & GRATE CAPACITIES
APPENDIX E –PROPOSED STORM DRAIN PLAN & PROFILE
APPENDIX F – MASTER GRADING AND DRAINAGE PLAN

. INTRODUCTION

This conceptual drainage design report presents the proposed drainage solutions for the Ceja Vista subdivision. The drainage area comprises approximately 190 acres and is bounded by Dennis Chavez to the North, Albuquerque Public School property to the west, and private landowners to the south and east. The drainage master plan will address developed storm water conditions from the proposed development and future conditions for the south side of Dennis-Chavez. The developed storm water flows will be collected by a local storm drain network and discharged into the Hubbell Channel. Off-site storm water flows will be conveyed via existing surface drainage, utilizing a combination of existing drainage pathways, proposed storm drain, and proposed grading.

II. PURPOSE


The purpose of this report is to present the drainage management plan for the development of the Ceja Vista Subdivision and obtain Preliminary Plat Approval. The proposed drainage plan will also require approval from AMAFCA prior to the completion of construction plans. The proposed drainage management plan is in accordance with the Amole-Hubbell Drainage Management Plan and the design Analysis Report for the Borrega Dam and North Borrega Channel. The drainage concepts within the proposed subdivision will include drainage improvements along Dennis Chavez, storm water ponds, storm drain improvements, and a connection to the Hubbell Channel.

III. HYDROLOGY

The proposed site and surrounding drainage areas consist of approximately 190 acres within the Rio Bravo Basin as identified in the Borrega Detention Dam & North Borrega Channel Design Analysis Report by Wilson & Company. The proposed Ceja Vista development consists of 99 acres. Currently the storm water runoff drains east through the proposed development site and discharges along Meade Road and various private properties, eventually discharging into the Amole Channel through an existing culvert under the Gun Club lateral. In addition, a Zone X FEMA floodplain will be remove with the construction of the proposed development, see Appendix A for current FEMA map.

The off-site drainage area consists of 26 acres within the Dennis-Chavez right-of-way and a 65 acre APS site along the western boundary. Currently this area along Dennis-Chavez drains east along the existing roadside ditch and discharges into the Rio Bravo channel immediately upstream of the existing box culvert.

Existing and proposed site hydrological conditions were analyzed for the 100-year, 6-hour storm event. The existing conditions model includes all the off-site basins in their existing conditions and the proposed development in the existing conditions. The existing conditions AHYMO from the Borrega Detention Dam & North Borrega Channel Design Analysis Report in included in Appendix B. This developed conditions model will provide the analysis utilizing future conditions for the off-site property and developed conditions for the proposed subdivision. All analysis and calculations supporting this report are located in Appendix B. The Arid-lands Hydrologic Model (AHYMO) was utilized for determination of existing condition peak flows and developed condition peak flows.

IV. PROPOSED DEVELOPED CONDITIONS

There are two (2) major drainage management components presented in this report. First, the on-site developed conditions consisting of all on-site storm water collected within the proposed subdivision. The second component is the off-site drainage consisting of Dennis-Chavez and the Albuquerque Public School site.

A. On-Site Drainage

The overall drainage concept for the Ceja Vista Subdivision includes grading Units 1 to drain towards the northeast corner of the site discharging to the Hubbell Channel, and grading Units 2 and 3 to drain to the south adventually discharging to the Borrega Dam. The proposed drainage plan for the proposed site includes collecting storm water in a storm drain system located in within their respective sites. The north-south streets have an average slope ranging from 0.5% to 1.0%, and the east-west streets have an average slope ranging from 2.0% to 3.3%. The street capacities and grate capacities are shown in Appendix D.

1. <u>Unit 1</u>

The proposed grading for Unit 1 consists of draining the site towards the northeast (intersection of Pita Verde and Lunaria) into a permanent detention pond. All storm water will be collected into a storm water detention pond (maintained by the City of Albuquerque) in order to reduce peak flow rates and reduce the storm drain size discharging into the Hubbell Channel. The detention pond will be sized to accommodate additional volume from future phases. The inlets at this location will be in a sump condition. The capacity for these inlets was determine utilizing the weir equation with 15 cfs for single grate and 22.5 cfs for double grate. The street and pond will allow excess storm water to discharge into Dennis-Chavez.

2. Unit 2 & Unit 3

The proposed grading for Unit 2 and Unit 3 consists of draining the development towards the southeast corner of the site. The interim condition will consist of collecting the storm water into a temporary retention pond with a volume equivalent to the 100-yr, 10 day storm event. The permanent solution will include constructing a storm drain outfall into the Borrega Dam during Phase II of the Ceja Vista subdivision. Unit 2 will utilize the land reclaimed from temporary retention pond for additional residential lots. Unit 3 will utilize the land reclaimed fro a future park & ride. The capacity for inlets located in sump conditions were determine utilizing the weir equation with 15 cfs for single grate and 22.5 cfs for double grate. The street profile will be designed to allow for excessive flows to discharge into Unser Blvd. The calculations for the temporary pond volumes are shown in Appendix D.

Unit 3 will also include a temporary storm water retention pond equivalent to the 100-yr, 10 day storm event for the APS site. The pond will be located in the southwest corner of Unit 3, and will be removed with the construction of the new APS high school. The new APS high school is projected to be built concurrently with Phase II of the Ceja Vista Subdivision.

Developed Conditions Time to Peak

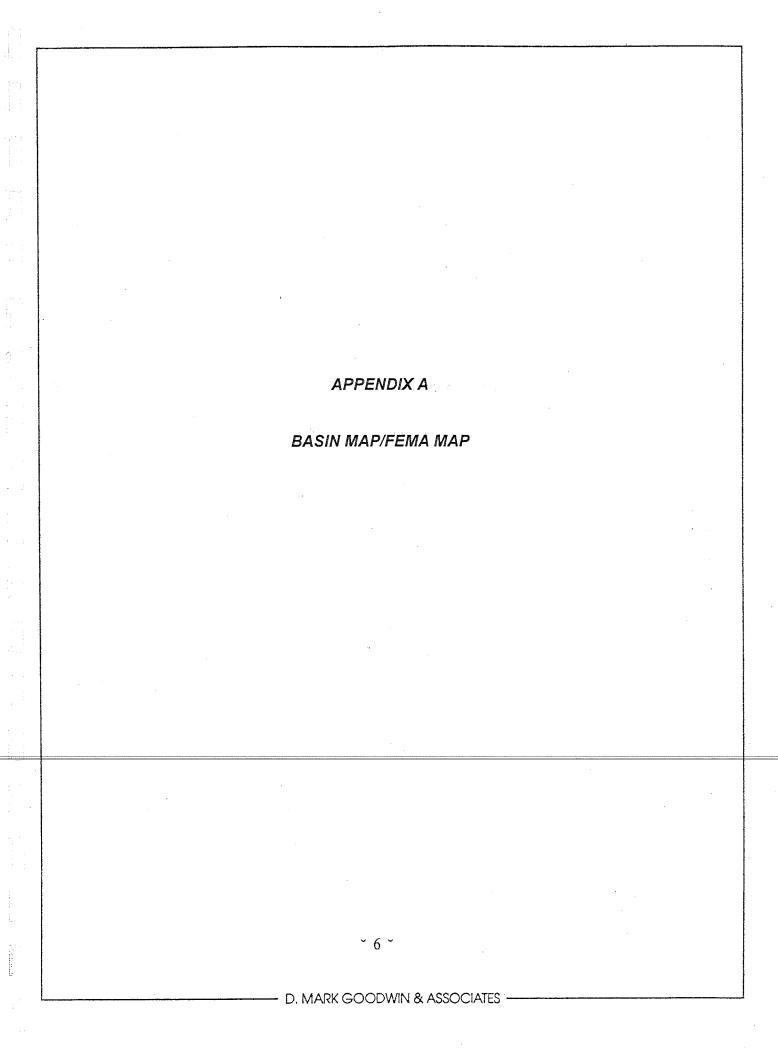
Basin	Description	Length (ft)	Slope (ft/ft)	K	V (fps)	Tp (hr)
104	APS	2200	0.03	2.50	3.95	0.13
103	Unit 3	1800	0.022	2.50	3.71	0.13
103B	Dennis-Chavez	3500	0.030	2.50	4.33	0.13
102	Unit2	2300	0.028	2.75	4.60	0.13
102A	98 th St/Comm.	830	0.020	3.00	4.24	0.13
102B	Dennis-Chavez	2700	0.024	2.50	3.87	0.13
102C	Open Space	400	0.009	3.00	2.85	0.13
102D	Unser Blvd.	820	0.009	3.00	2.85	0.13
101	Unit 1	1200	0.015	2.75	3.37	0.13
101B	Dennis-Chavez	1000	0.024	2.50	3.87	0.13

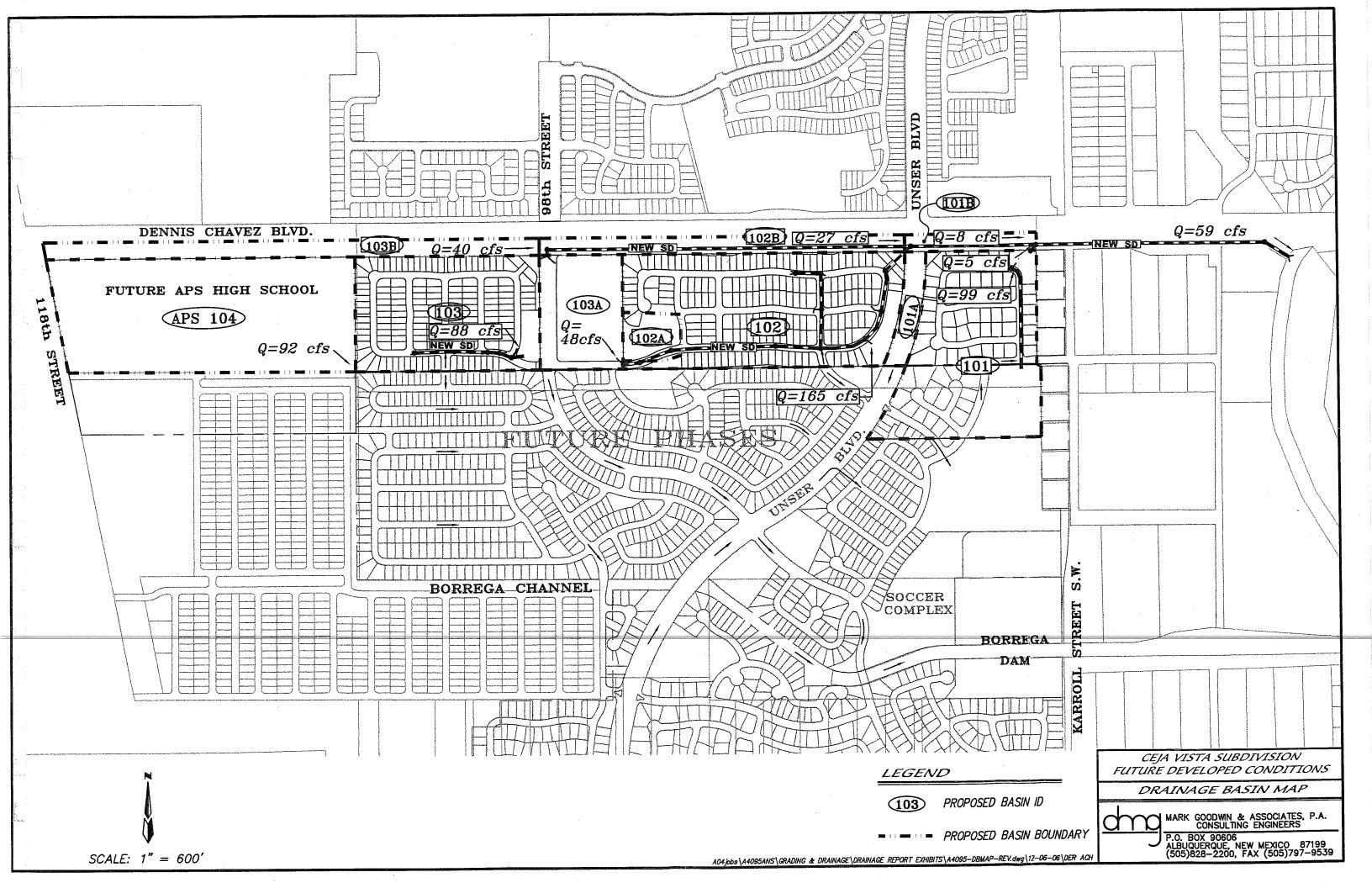
^{*}Minimum Tp value was substituted

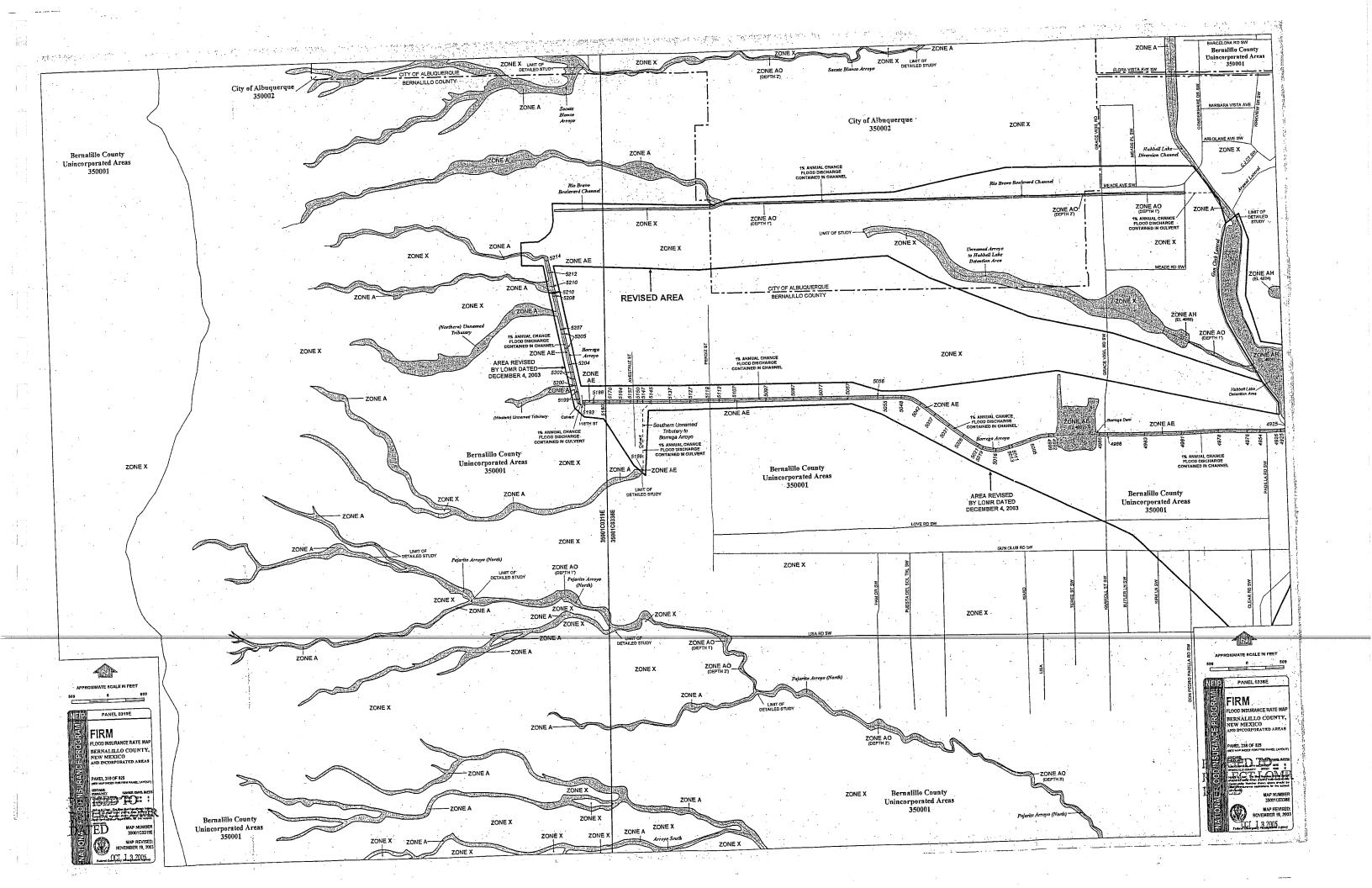
B. Off-Site Drainage

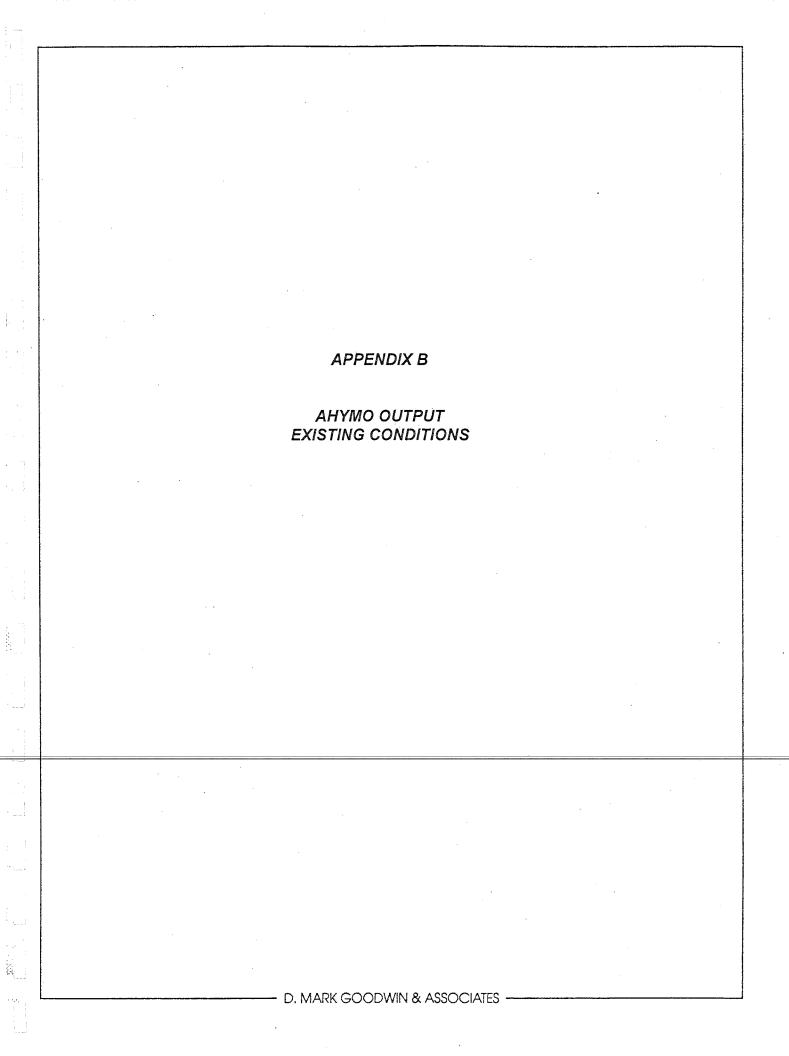
The upstream drainage area, shown in Figure 2, consists of approximately 65 acres located west of the proposed Ceja Vista development. The proposed development will grade the existing APS site to drain towards the southeast corner to the site. This grading and drainage scheme follows the existing drainage easements and the Borrega Detention Dam and Upstream Borrega Arroyo Channel Agreement between AMAFCA and the adjacent property owners. These requirements are present in the Borrega Detention Dam & North Borrega Channel Design Analysis Report by Wilson & Company. The report was followed by the Borrega Detention Dam and Upstream Borrega Arroyo Channel Agreement between AMAFCA and the adjacent property owners.

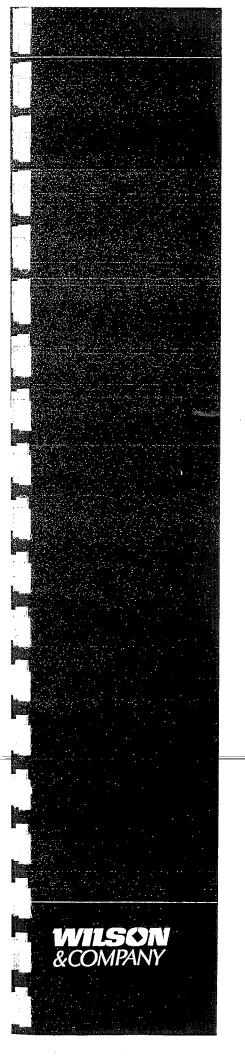
1. Dennis-Chavez


In addition to the APS property, the proposed storm drain will also collect storm water from the Southside of Dennis Chavez. Currently, the south side of Dennis Chavez is collected in the Rio Bravo channel.


Developed Conditions Drainage Basins


				Land Tre	atment	
Basin	Area (ac)	Area (mi^2)	Α	В	С	D
APS	65	0.102	95%	5.0%	0.0%	0.0%
Unit 3	26.88	0.042	0%	28.3%	28.3%	43.5%
Unit 2	36.46	0.057	0%	29.3%	29.3%	41.4%
Unit 1	32.47	0.027	0%	33.6%	33.6%	32.7%
Comm. 2	12.10	0.019	0%	7.5%	7.5%	85.0%
Open Sp	2.92	0.005	100%	0.0%	0.0%	0.0%
Unser	3.10	0.005	0%	17.2%	17.2%	65.7%
Dennis-Chavez (118th to 98th)	12.16	0.019	0%	40.0%	40.0%	20.0%
Dennis-Chavez (98th to Unser)	8.15	0.013	0%	40.0%	40.0%	20.0%
Dennis-Chavez (Unser to Condershire)	2.21	0.003	0%	40.0%	40.0%	20.0%


V. CONCLUSIONS


The proposed drainage management plan provides conceptual solutions for the regional drainage issues associated with the Ceja Vista Subdivision. The describe drainage manage plan will allow additional capacity within the Borrega Dam for future development within the adjacent properties. All proposed storm water improvements will be constructed in accordance with City standards and the improvements to the Amole Channel will be in accordance with AMAFCA requirements.

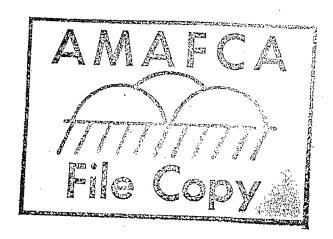
Job.UZ.U4
Design Analysis Report for Borrega
Detention Dam and North Borrega Channel
Wilson & Company
Wilson & Company, 2000

Design Analysis Report for

Borrega Detention Dam and North Borrega Channel

in Bernalillo County, NM

Prepared for


Albuquerque Metropolitan Arroyo Flood Control Authority Albuquerque, NM

Submitted by

Wilson & Company, Engineers & Architects 4900 Lang Avenue N.E. Albuquerque, New Mexico 87109 (50° 348-4000

WCEA File No: 99-210-099

April 2000

Bor_futu

AHIMO PROGRAM SUMMARY TABIE (AHYMO_97) - INPUT FILE = X:\PUBLIC\PROGRECTS\99099\AHYM\FUTURE\BOR_FUTU.DAT	CE (AHYMO_97) - \ahym\future\bof	FUTU.DAT	- VERSION: 199	1997.02c R	RUN DATE (M USER NO.= AH	ON/DAY/YI	(MON/DAY/YR) =04/09/2000 AHYMO-I-9702a01000C05-AH	2000 5-AH
HYDROGRAPH COMMAND IDENTIFICATION	FROM ID NO.	TO AREA NO. (SQ MI)	PEAK DISCHARGE (CFS)	RUNOFF VOLUME (AC-FT)	RUNOFF (INCHES)	TIME TO PEAK (HOURS)	CFS PER ACRE	PAGE = NOTATION	ਜ
START *S << WILSON&COMPANY (WCEA) AHYMO *S BASED ON LEEDSHILL AHYMO MOD *S THE LEEDSHILL MODEL WAS BASE	AHYMO MO MOD S BASE	ANALYSIS FOR DESIGN OF THE BORRE EL FOR THE '99 AMOLE-HUBBELL DMP D ON THE '92 BHI AHYMO MODEL.	1 OF THE BORREGA T-HUBBELL DMP (A TMO MODEL.	REGA DAM. P (A-H DMP).	ъ.,		Ė	TIME=	00.
*S FILENAME: BOR_FUTU.DAT *S BORREGA DAM PHASE "B"		FUTURE CONDITIONS, FULL DEVELORMENT,	DEVELOPMENT,	UNBULKED.					
*S		VELOPED & TO BORREGA	ADDED TO BORREGA, DAM,	за рам.					
**************************************	* * * * *	***************************************	***	***					
*S************************************	k k k k k	化化氧化物 化环状 化水体 化甲状腺 化异丙烯甲酰胺 化苯胺 医电影 医克拉斯氏试验检检验检验检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检	***	***					
*S *S 100 YEAR 24HR STORM DEVELOPED RAINFALL TYPE= 2 *S***********************************	VELOPED	CONDITION	***************************************	*************			μ,	RAIN24=	2.660
*S COMPUTE FLOWS FROM SUB-BASIN B-2 OF RIO 18 CA-H AREA WAS 0.0754. WCEA HEDUCED AREA S BLVD EXTENSION DIVIDES THE BASIN >> COMPUTE NM HYD 202,00	HBASIN B-2 (WCEA REDUCTORS) THE BASIL	OF RIO BRAVO ED AREA TO 0.0445 N >> .04450	5 BECAUSE THE 87.36	E RIO BRAVO 6 3.236	1.36343	1.500	3.067 1	3.067 PER IMP=	3 4. 00
*S ROUTE FLOWS TO POND 8 ROUTE MCUNGE 202.	50 1	11 .04450	87.31	3.246	1.36779	1.600	3.066	CCODE =	7.
СОМРОТЕ НУDROGRAPH МРОТЕ ИМ НУD	B-4 (WEST)	FROM RIO BRAVO	BRAVO REDUCE AREA T. 06410	TO 41 AC	1.36343	1.500	3.067 1	PER IMP=	34.00
*S ADD THE ROUTED FLOWS FROM SUB-BASIN ADD HYD 204.10 1£11 11	ROM SUB-BAS	202.5 TO THE .10860	TLOWS F	ROM SUB-BASIN 204 196.42 7.907	1,36521	1.550	2.826		
ROUTE FLOWS THROUGH PC ITE RESERVOIR POND8.	8 11	90 - 10860	42.96	7.907	1.36520	2.000	. 618	.618 AC-FT=	4.100
*S ROUTE FLOWS TO JUNCTION *S << FLOW TO CULVERT CROSSING UNDER *S GETS ADDED TO RIO BRAVO CHAN N S ROUTE MCUNGE *S	SING U VO CHA LV 8	RIO BRAVO BLVD/118TH SIDE OF RIO BRAVO BLVT 11	118TH ST TO NE O BLVD EXTENSI 42.98	T TO NE EXTENSION>> 42.98 7.907	1.36521	2.000	.618	CCODE =	Ġ
*S COMPUTE FLOWS FROM SUB-BASIN COMPUTE NM HYD 104,00	BASIN	**************************************	**************************************	***************************************	1.27251	1.500	2.869	PER IMP=	32.00
*S ROUTE FLOWS TO POND 7 ROUTE MCUNGE 103.	50 1	12 .03930	71.63	53 2.674	1.27559	1.550	2.848	CCODE =	4.
*S COMPUTE FLOWS FROM SUB-BASIN COMPUTE NM HYD 103 00	8-BASIN 50103	FROM BORREGA 1	(7K) 10 102.13	3.834	1,33141	1.500	2.955	PER IMP=	35.00

Future 100-yr - Page 1

7
POND
O.F
FLOWS
ROUTE
 F٨

PAGE = 2 NOTATION	11 t.		IMP= 45.00		r= 8.314	II 	IMP= 49.00		E = 1.	IMP= 1.00		IMP= 5.00)E = .0	BF = 1.00 \ IMP= 42.00)DE = .1	IMP= 49.00		BF = 1.00 IMP= 49.00	DE = .0	
CFS PA	2.940 CCODE	2.873	2.996 PER I	2.854	.974 AC-FT	.971 CCODE	3.118 PER	.967	.967 CCODE	PK BF 3.003 PER II	.963	2.585 PER	1.115 1.115 CCODE	PK BF = 2.750 PER IMP 2.636 CCODE =	3.328 PER	1.918	PK BF = 3.329 PER IMP 1.876	1.338 1.338 CCODE	
TIME TO PEAK (HOURS)	1.600	1.600	1.500	1.550	1.850	1.950	1.500	1.800	1.800	1.500	1.800	1.500	1.550	1.550	1.500	1.800	1.500	1.800	
RUNOFF (INCHES)	1.33030	1.30724	1.59742	1.48201	1.47323	1.47068	1.59741	1.50456	1.50382	1.28597	1.49482	.91999	1.41828	1.46394	1.59742	1.51974	1.59741	1.46402	
RUNOFF VOLUME (AC-FT)	3.831	6.505	12.038	WS 18.543	18.433	ST 18.401	AREA & TP 7.293	25.694	rRUZ ST 25.681	.946	26.628	2.517	29.145	12.024 11.953	10.879	22.833	1.227	53.204	
PEAK DISCHARGE (CFS)	101.60	ROUTED FLOWS 171.56	270.97	E ROUTED FLOWS	146.29	UNDER 118TH 145.75	CALCED NEW AF 170.83	198.12	UPSTRM OF AVESTRUZ '' BOTTOM>> 198.10	26.52	ST 205.93	84.88	ST 275.04 275.04	271.03 259.78	32 SG 271	345.75	30.68 355.46	583,55 583,55	
area di (somi)	.05400	5 TO THE ROU.	FROM BORREGA .14130	(WEST) TO THE .23460	.23460	CHAN INTAKE	DIVERT SOUTH, C	W FROM POND7	48" PIPE UPS SLOPES, 10' E	.01380	AT AVESTRUZ 8	.05130	AT AVESTRUZ : .38530	.15400	REA WAS 0	RT UNDER PAVO	.01440	.68140	
TO ID NO.	13	BASIN 50103.	05 (WEST) 1	BASIN 50105 2 12	70	N BORREGA 12	OH OH	TO THE FLOW	CHAN TO: 1 SIDE	ਜ	48" PIPE, 14		48" PIPE, 14 13	T 0 T	BNDRY	THE COLVERT 5	έ	15	
FROM ID ON NO.	.50 1	SUB-	SUB-BASIN 501		ND 7 OUT 12	r CHAN TO	118TH/POWER	UB-BASIN 106 106.10 3&12	OSED N BORREINE SECTION,	י ס י	N UPSTRM OF 106.31 1&14		₹	10 -		CULV 1&10	1 45	106.40 15	\ <u>\</u> \ <u>\</u> \
HYDROGRAPH	104	THE ROUTED FLOWS FROM	WS FROM	*S ADD THE ROUTED FLOWS FROM SUB-	*S *S ROUTE FLOWS THROUGH POND 7 ROUTE RESERVOIR POND7.0UT	** ROUTE FLOWS IN 118TH ST C. ROUTE MCUNGE 106.05	*S BASIN NO. 50106 *S << BASIN CUT OFF AT 118TH/POWERLINE COMPUTE NM HYD 106.00 - 3	THE FLOW FROM S	CONC CHAN	SEDIMENT BULK COMPUTE NM HYD BASIN_C	TAL FLOW IN CHA	*S << PAAKWEREE BASIN A >> COMPUTE NM HYD BASIN_A	CUNGE	K K KD 101 ZD 201	*S LH BASIN NO. 50102 *S << BASIN DIVIDED AT PAAKWEREE COMPUTE NM HYD 102.10 -	OW INTO THE UPSTR	D BASIN D	CONGE	*S << PAAKWEREE BASIN E >>
COMMAND	ROUTE MCUNGE	ADD HYE		*S ADD 1 ADD HYD		*S ROUTE FLO ROUTE MCUNGE		*S ADD ADD ADD ADD ADD ADD ADD	*S ROUTE FLO *S < <assumed ROUTE MCUNGE</assumed 	SEDIMENT BULK COMPUTE NM HY	*S < <to< td=""><td>COMPUTE</td><td>ADD HYD ROUTE MCUNGE</td><td>SEDIMENT BULK COMPUTE NA HY ROUTE MCUNGE</td><td>*S LH *S << COMPUTE</td><td>ADD HYD</td><td>SEDIMENT BULK COMPUTE NM HY ADD HYD ************************************</td><td>ADD HYD ROUTE MCUNGE</td><td>*S</td></to<>	COMPUTE	ADD HYD ROUTE MCUNGE	SEDIMENT BULK COMPUTE NA HY ROUTE MCUNGE	*S LH *S << COMPUTE	ADD HYD	SEDIMENT BULK COMPUTE NM HY ADD HYD ************************************	ADD HYD ROUTE MCUNGE	*S

Future 100-yr - Page 2

	4			87.899	.2	45.00
	PAGE = NOTATION			.165 AC-FT= 87	CCODE =	3.124 PER IMP= 4.
	CFS PER ACRE		·	.165	.165	3.124
	TIME TO PEAK (HOURS)			2.700	2.800	1.500
	RUNOFF (INCHES)			1.23652	1.23446	1.48691
·	RUNOFF VOLUME (AC-FT)			115.283	115.091	3.006 118.097
Bor_futu	PEAK DISCHARGE (CFS)			184.95	184.94	75.78
ELEV 4985 4986	AREA (SQ MI)	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	44999 44999 4999 5000 5001 5002	1.74810	1.74810	.03790 1.78600
PER WCEA DESIGN FILOW STORAGE 0	TO ID NO.	7.94 14.10 220.51 227.17 34.08 41.78 550.84	86.10 199.30 112.64 1126.55 14.86 169.29	66	4	4 * *
*CEA	FROM ID NO.			4. 4. 4.	66	ል ከ 52**** 52****
B' PER OUTFLOW 0		4400000. 64.	7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	OUT AP 51	.50	.00 HYD **AP
BORREGA DAM PHASE "B' OU'	HYDROGRAPH IDENTIFICATION	4 6 4 6 4 6 4 6	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	BPC IS *,	ī,	D BR_DMP1.HYD
*S BORREGA DA *S *S	COMMAND	ស្នេសសសសស្នេស ស្នេសសសសស	* * * * * * * * * * * * * * * * * * *	ROUTE RESERVOIR *S HYD=BPOND.OUT	ROUTE MCUNGE	COMPUTE NM HYD ADD HYD *S HYD=BR_DMP1.HYD IS ****AP FINISH (s10H

Pmp_futu

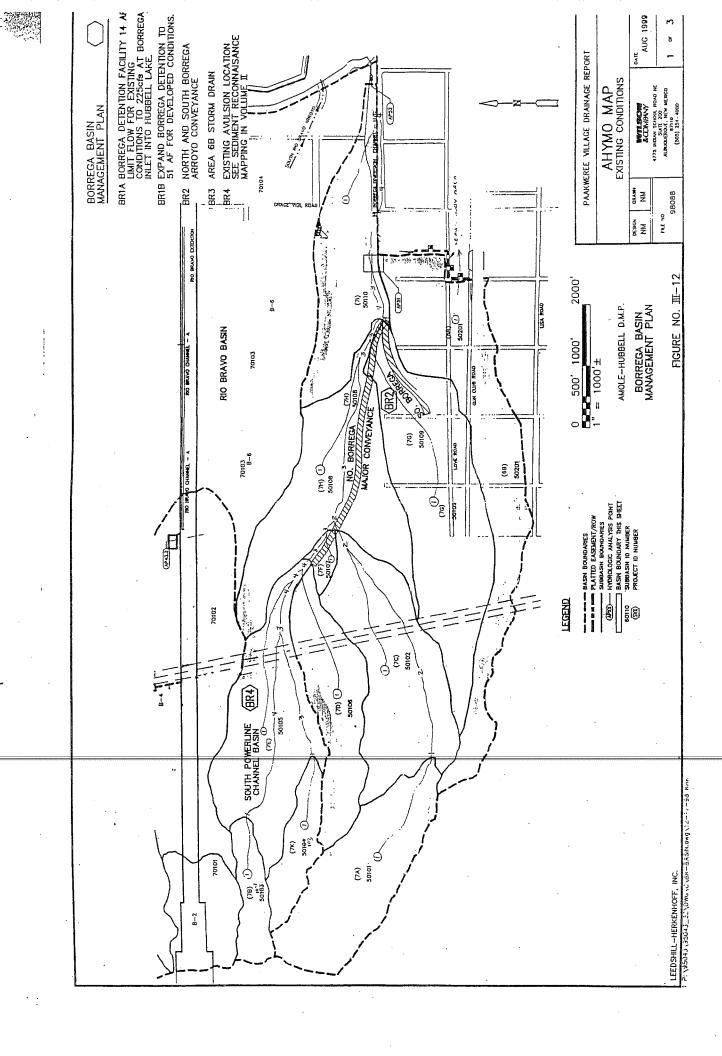
AHYMO PROGRAM SUMMARY TABLE (AHYMO_INPUT FILE = X:\PUBLIC\PROJECTS\990	RY TABI LIC\PRO	E (AHYMO		97) - 99\ahxm\future\bor_futu.dat	1	VERSION: 1997	.020	RUN DATE USER NO.= 1	(MON/DAY/YR) AHYMO-I-9702	(MON/DAY/YR) =04/09/2000 AHYMO-I-9702a01000C05-AH	72000 205-AH
H COMMAND IDENT	HYDROGRAPH IDENTIFICATION	FROM ID ON NO.	N TO NO.	AREA (SQ MI)	PEAK DISCHARGE (CFS)	RUNOFF VOLUME (AC-FT)	RUNOFF (INCHES)	TIME TO PEAK (HOURS)	CFS PER ACRE	PAGE = NOTATION	. 1 NG
START *S << WILSONECOMPANY (WCEA) AHYMO ANALYSIS F *S BASED ON LEEDSHILL AHYMO MODEL FOR THE *S THE LEEDSHILL MODEL WAS BASED ON THE '9	Y (WCE) HILL A	A) AHYMO 2 HYMO MODEI WAS BASED	ANALYSIS EL FOR THI D ON THE	OR DESIGN '99 AMOLE- 2 BHI AHYR	OR DESIGN OF THE BORREGA. '99 AMOLE-HUBBELL DMP (A. '2 BHI AHYMO MODEL.	да рам. (А-н рмР).	•	•	e.	TIME=	00.
*S FILENAME: BOR_FUTU.DAT *S BORREGA DAM PHASE "B"	UTU.DA	r ", FUTURE	E CONDITIONS,		FULL DEVELOPMENT, UNE	UNBULKED.					
*S 1. BORREGA WATERSHED FY S 2. AM SW HOMES (BELL PR *S 3. BASIN 50201 IS DEVEL	RSHED FULLY I (BELL PROPERTIS DEVELOPED	FULLY DEVELOPED PROPERTY) IS DE ELOPED & ADDED	VELOPED) IS DEVEI ADDED TO	LOPED IS DEVELOPED & ADDED DDED TO BORREGA DAM.	TO BORREGA	DAM.					
**************************************	* * *	***		在安全的有效的的现在分词的现在分词	*************	*					
******************	***	****	****	****	化环状性 化异性异性异性异性异性异性异性异性异性异性异性异性异性异性异性	****					
*S BORREGA WATERSHED *S	ERSHED										
*S PMP LOCAL STORM RAINFALL TYPE= 3 *S***********************************	* * *	***		***	******************	***				RAIN6=	16.000
*S COMPUTE FLOWS FROM SUB-BASIN B- *S <a-h *s="" 0.0754,="" area="" ba<="" blvd="" divides="" extension="" red="" td="" the="" was="" wcea=""><td>ROM SUB 0.0754. N DIVII</td><td>-BASIN B- WCEA RED ES THE BA</td><td>.2 OF UCED</td><td>RIO BRAVO AREA TO 0.0445</td><td>123</td><td>RIO BRAVO</td><td>•</td><td></td><td></td><td></td><td></td></a-h>	ROM SUB 0.0754. N DIVII	-BASIN B- WCEA RED ES THE BA	.2 OF UCED	RIO BRAVO AREA TO 0.0445	123	RIO BRAVO	•				
COMPUTE NM HYD	202	202.00 -	н	.04450	901.25	30.735	12.95028	2.250	31.645	PER IMP=	34.00
*S ROUTE FLOWS TO POND ROUTE MCUNGE	POND 8	.50	1 11	.04450	897.22	30.780	12,96923	2.300	31.504	CCODE =	7
*S COMPUTE HYDROGRAPH FOR COMPUTE NM HYD 204	APH FOR	B-4 (WES	SST) FROM	RIO BRAVO	REDUCE AREA TO 1298.08	41 AC 44.273	12.95027	2.250	31.642	PER IMP=	34.00
*S ADD THE ROUTED FLOWS FROM ADD HYD 204.10	FLOWS 20		ASIN 11	202.5 TO THE F)	FLOWS FROM SUB-	FROM SUB-BASIN 204 2098.52 75.053	12.95803	2.250	30.193		
*S ROUTE FLOMS THROUGH POND ROUTE RESERVOIR PONDS OUT	OUGH POND POND8.OUT	ND 8 OUT 11	1 80	.10860	221.17	75.053	12.95804	2.900	3.182	2 AC-FT=	91.185
*S ROUTE FLOWS TO JUNCTION *S << FLOW TO CULVERT CROSSING UNDER RIO *S GETS ADDED TO RIO BRAVO CHAN N SIDE ROUTE MCUNGE *S	JUNCTICERT CR	ON OSSING UNI RAVO CHAN CULV 80	NDER RIO N N SIDE 0 11	BRA	18TH ST TO NE BLVD EXTENSION>> 220.38		12.95010	3.000	3.171	1 CCODE =	
*S************************************	***** ROM SU	**************************************	********* 50104 FROM 1	* Д	**************************************	26.636	12.7082	3 2.250	31.445	5 PER IMP=	32.00
*S ROUTE FLOWS TO POND 7 ROUTE MCUNGE		3.50	1 12	. 03930	781.01	26.681	12.7293	2 2.300	31.052	2 CCODE =	.2
*S COMPUTE FLOWS FROM SUB-BASIN 5 COMPUTE NM HYD 103.00 -	ROM SU	B-BASIN 3.00 -	50103 FR 1	0103 FROM BORREGA (7K) 1 05400	K) 1089.89	37.044	12.86259	3 2.250	31.536	6 PER IMP=	35.00
					- GMG GTITTE	T ened.					

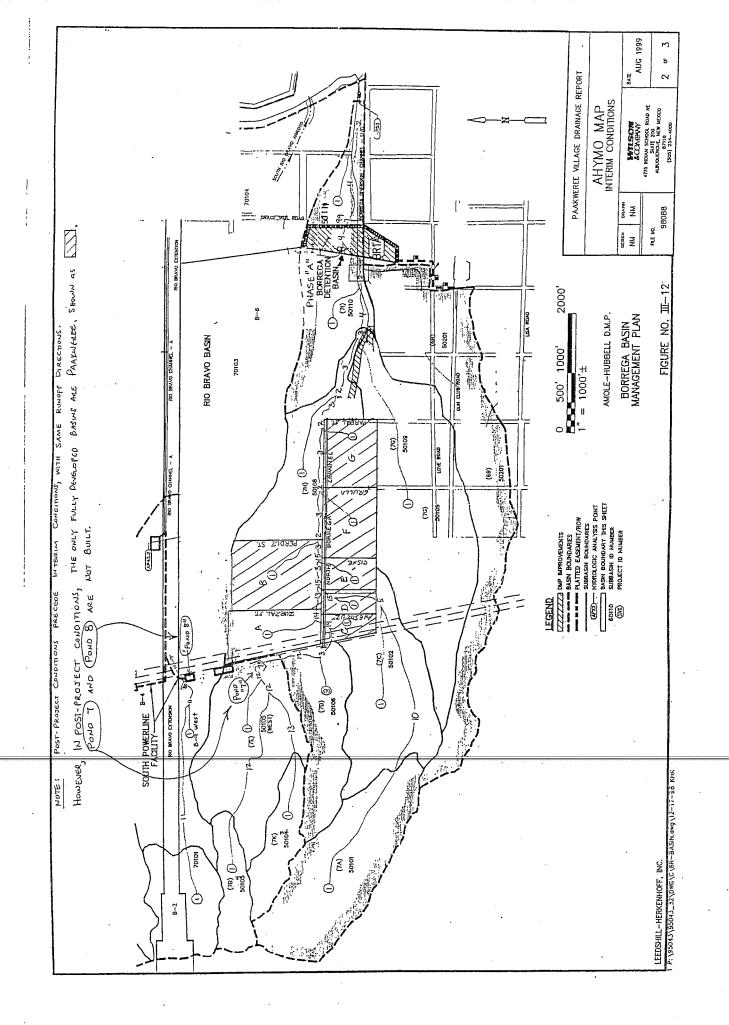
Future PMP - Page 1

•	•	•	
			7
			POND
			5 F
			FLOWS
			OUTE

S AUDITE FLOWS TO FOME A										
HYDROGRAPH COMMAND IDENTIFICATION	Harr	FROM ID NO.	TO ID NO.	AREA (SQ MI)	PEAK DISCHARGE (CFS)	RUNOFF VOLUME (AC-FT)	RUNOFF (INCHES)	TIME TO PEAK (HOURS)	CFS PAGE = PER NOTATION	= 2 !ION
OUTE MCUNGE 104	50	∙ ਜ	13	.05400	1049.28	37.084	12.87646	2.300	30.361 CCODE =	7.
S ADD THE ROUTED FLOWS FROM	FROM 8	SUB-BASIN 12613 12	31N 50103	.5 TO THE .09330	ROUTED FLOWS	63.765	12.81447	2.300	30.652	
UTE FLOWS FROM SU NM HYD	B-BASI 105W	IN 50105)5 (WEST)) FROM BORREGA	1A 2592.08	102.202	13.56188	2.250	28.663 PER IMP=	49.00
'S ADD THE ROUTED FLOWS FROM SUB-BASIN ADD HYD POND7, IN 1£12 12	FROM :	SUB-BA	SIN 5010 12	5 (WEST) TO .23460	THE ROUTED FLOWS	۲۶ 165.967	13.26463	2.300	29.197	
*S ROUTE FLOWS THROUGH POND ROUTE RESERVOIR POND7.OUT	OTTO 7	12	70	.23460	1341.27	165.960	13.26406	2.550	8.933 AC-FT=	68.063
	H ST CHAN TO 106.05 70	0	N BORREGA 12	A CHAN INTAKE .23460	UNDER 118TH 1339.51	ST 165.956	13.26378	2.550	8.922 CCODE ==	
** ** ** BASIN NO. 50106 *\$ << BASIN CUT OFF AT 118TH/POWE. **COMPUTE NM HYD 106.00	18TH/ 6.00	POWERL -	RLINE TO I	DIVERT SOUTH,	CALCED NEW AREA 1640.71	EA & TP 61.914	13.56188	2.250	29.949 PER IMP	49.00
*S ADD THE FLOW FROM SUB-BASIN 10 ADD HYD 106.10 3&1	-BASI 6.10	9 7	TO THE B	FLOW FROM POND7	D7 2268.01	227.871	13.34347	2.300	11,067	
*S ROUTE FLOW THU PROPOSED N BORR *S << ASSIMED CONC CHANNET SECUTION	E C E	ĕ ::	CHAN 1 ST	ດ້	48" PIPE UPSTRM OF AVESTRUZ	RUZ ST				
			7	.32020		227.871	13.34347	2.300	11.067 CCODE =	0.
	BASIN_C			• !		9.384	12.75063	2.250	PK BF = 31.578 PER IMP	1.00
ADD HYD 1121 16131 16131 161	0.31 16.31	4	48 % " FIFE,	AT AVESTRUZ .33400	ST 2507.40	237.255	13,31897	2.300	11.730	
<pre><< PAAKWEREE BASI IPUTE NM HYD</pre>	EN A >> BASIN_A		H :	•		32.264	11.79246	2.250	31.095 PER IMP	5.00
*S < <total chan<br="" flow="" in="">ADD HYD ROUTE MCUNGE</total>	105E.1	4	48" PIPE, 14 13	AT AVESTRUZ .38530 .38530	ST 3385.87 3385.87	269.520 269.520	13.11573	2.300	13.731 13.731 CCODE =	0.
*S IH BASIN NO. 50101 SEDIMENT BULK COMPUTE NM HYD 10 ROUTE MCINGE 20	101.10	, -	+ 0	.15400	2726.09	108,509	13.21138	2.300	PK BF = 27.659 PER IMP	1.00
*S LH BASIN NO. 50102 *S << BASIN DIVIDED AT	A A A		5	O PAW ARRA CITO	۲		o d) # •		
COMPUTE NM HYD 102.10	02.10		1	12770	2603.30	92.365	13.56187	2.250	31.853 PER IMP=	49.00
ADD HYD *C // DANAGED DAGTW D	VILV	1610	1 ne con	COLVERT UNDER FA	FAVO ST. >> 3853.85	200.356	13.33572	2.400	21.376	
IMENT BULK IPUTE NM HYD	` ==		F	.01440	294.45	10.416	13.56188	2.250	PK BF	= 1.00 P= 49.00
ADD HYD *S < <flow 8x4<="" chan="" dnstrm="" in="" of="" td=""><td>4 OF E</td><td>. ت</td><td>1 15 CBC>></td><td>.29610</td><td>3993.71</td><td>210.771</td><td>13.34673</td><td>2.400</td><td>21.075</td><td></td></flow>	4 OF E	. ت	1 15 CBC>>	.29610	3993.71	210.771	13.34673	2.400	21.075	
HYD TE MCUNGE	106.35	106.35 15213	15 3	.68140	6968.10 6968.10	480.291 480.291	13.21610 13.21610	2.300	15.978 15.978 CCODE	0.
COMPUTE IN HYD BASS ADD HYD 100	BASIN_E 106.50	1 48 . m	12	.69580	294.45 7220.36	10.416	13.56188	2.250	31.950 PER IMP 16.214	P= 49.00

Future PMP - Page 2


0.	3 NO	49.00	0.	49.00	0	49.00	o,		1.00	i.	49.00			0.	т С	•		49.00				16.00		25.00				
CCODE =	PAGE = NOTATION	PER IMP=	CCODE =	PER IMP=	CCODE =	PER IMP=	CCODE		PK BF = PER IMP=	CCODE =	PER IMP=			CCODE =	T COM			PER IMP=				PER IMP=	CCODE =	L PER IMP=	ď	,	9 73	a
16.214	CFS PER ACRE	31.938	17.155 17.155	31.942		31.942	18.174		22.922	18.275	24.849	19.409		19.409		1	20.018	23.314	6.002	7.6		27,127	26.983	22.701	23,519		32.31	18.260
2.300	TIME TO PEAK (HOURS)	2.250	2.300	2.250		2.250	2.250		2.350	2.350	2.300	2.300		2.300	c c	•	2,300	2.350	2.150			2.300	2.350	2.350	. 2,350	1	2.350	2.300
13.22325	RUNOFF (INCHES)	13,56187	13.25182	(1)	13.26495	13.56188	13.27755		12,38461	13.19778	13.56187	13,26551		13,26551		0	13.19355	13.56187	13.56188	3 2104		12.51057	12.53560	12.38461	12.41344		12.41344	13.14426
490.706	RUNOFF VOLUME (AC-FT)	46.364	537.070 537.070	24.303	561.373	25.460	586.833)	53.700	.>> 640.532 640.114	•	809,656		809.656	***		876.896	106.542	43.311	920.207	, ,	45.171	45.262	189.501	234.763	0	156.470	998.500
Pmp_futu 7220.36	PEAK DISCHARGE (CFS)	1310.22		686.8	8931.37 8931.37	719.60	9639.13	PROPERTY)	1192.66	BORREGA CHANNEL> 10643.19 10509.22	,	109 14215.45	BOTTOM		(BELL PROPERTY)		15965.39	2197.86	230.00	ır		1175.35	1169.13	RTY) >> 4168.26	5337.39	O DAN	4887.39	16645,39
.69580	AREA (SQ MI)		.75990	.03360	,79350	03520		PROPOSED (BELL	۰ ۰	PROPOSED N B .91000 .91000			₩ Ø	1.14440	PROPOSED	Ģ	1,24620	.14730	.05988	1.30608		.06770	.06770	(BELL PROPERT . 28690	.35460	Д.	.23634	1.42434
m	NO.		3	н	ist w	1		RSE		N		ARROYO CHAN 3 3	ENCE WITH	4	F COURSE	CHANNEL	α,	H /		4	44 ACRES>	۵	ហ	PROPOSED 1	7	FROM BELL	77	4
15	FROM I ID		16 3 2	ı	16 3	1 (1	16 3 L	GOLF	1	F PAAKWE 0 1& 3 0 2	ı	EGA 1. 3.	TO CONFLUENCE SECTION, 2:1	m.	HALF GOL) H	0 12 4	0 - O	1 2 and	5 1,8,2	AST)	T - T	1 6	JR.SE	>> 1 18 5		and	DAM >> .20 76.4
106.60 BASIN B >>	HYDROGRAPH IDENTIFICATION	BASIN B		BASIN F >>		BASIN G >> BASIN G	107.50	50108 CDENTIAL/F			. 50109	ROPOSED N BORR 109 30			HALF RESID/H	<< ADD 50110 TO CHANNEL.	110,10	201.00	201DEV1 201DEV2	0 DAM 110 15	70102	BARAST EAST THROUGH	E MCUNGE B4B.1 6 < < BASIN NO. 70103 (B-6) >>	D/HALF GOLF	EAST AND B-6>;	FUTURE STORM	7 - 7 - 7	
ROUTE MCUNGE *S '<< PAAKWEREE BASIN B	.COMMAND ID	COMPUTE NM HYD BASIN	~ \	*S << PARKWEREE BASIN F COMPUTE NM HYD BAS	, H	볊	ADD HYD 107.50 TO BOTTLE FOR THE ADD HYD 107.50	*S LH BASIN NO. *S << HALF RES	MIC	*S << TOTAL FLOW DNSTREAM ADD HYD 108 ROUTE MCUNGE 108	*S LH BASIN NO. 50109 COMPUTE NM HYD	*S << FLOW IN PROPOSED N ADD HYD 1109	*S ROUTE FLOW ABOVE AP109 *S < <assumed channel<="" conc="" td=""><td></td><td>٧ ٤</td><td>*s <<add 50110<="" td=""><td>ADD HYD</td><td>COMPUTE NM HYD</td><td>DIVIDE HYD 201DIV1 1 201DIV2 and</td><td>*S ADD 50201 TO DAM ADD HYD</td><td>*S <<basin no.<="" td=""><td>*S <<route b-4="" b-6="" east="" through="">></route></td><td>*S <<basin no.<="" td=""><td>#</td><td>*S <<total and="" b-4="" b-6="" east="">> ADD HYD B6.1</total></td><td>*S << PROPOSED FUTURE STORM DRAIN</td><td>הייים בייים ביים בייים בייים בייים בייים בייים בייים בייים בייים בייים ב</td><td>*S << TOTAL INTO BORREGA ADD HYD 110 *S</td></basin></td></basin></td></add></td></assumed>		٧ ٤	*s < <add 50110<="" td=""><td>ADD HYD</td><td>COMPUTE NM HYD</td><td>DIVIDE HYD 201DIV1 1 201DIV2 and</td><td>*S ADD 50201 TO DAM ADD HYD</td><td>*S <<basin no.<="" td=""><td>*S <<route b-4="" b-6="" east="" through="">></route></td><td>*S <<basin no.<="" td=""><td>#</td><td>*S <<total and="" b-4="" b-6="" east="">> ADD HYD B6.1</total></td><td>*S << PROPOSED FUTURE STORM DRAIN</td><td>הייים בייים ביים בייים בייים בייים בייים בייים בייים בייים בייים בייים ב</td><td>*S << TOTAL INTO BORREGA ADD HYD 110 *S</td></basin></td></basin></td></add>	ADD HYD	COMPUTE NM HYD	DIVIDE HYD 201DIV1 1 201DIV2 and	*S ADD 50201 TO DAM ADD HYD	*S < <basin no.<="" td=""><td>*S <<route b-4="" b-6="" east="" through="">></route></td><td>*S <<basin no.<="" td=""><td>#</td><td>*S <<total and="" b-4="" b-6="" east="">> ADD HYD B6.1</total></td><td>*S << PROPOSED FUTURE STORM DRAIN</td><td>הייים בייים ביים בייים בייים בייים בייים בייים בייים בייים בייים בייים ב</td><td>*S << TOTAL INTO BORREGA ADD HYD 110 *S</td></basin></td></basin>	*S < <route b-4="" b-6="" east="" through="">></route>	*S < <basin no.<="" td=""><td>#</td><td>*S <<total and="" b-4="" b-6="" east="">> ADD HYD B6.1</total></td><td>*S << PROPOSED FUTURE STORM DRAIN</td><td>הייים בייים ביים בייים בייים בייים בייים בייים בייים בייים בייים בייים ב</td><td>*S << TOTAL INTO BORREGA ADD HYD 110 *S</td></basin>	#	*S < <total and="" b-4="" b-6="" east="">> ADD HYD B6.1</total>	*S << PROPOSED FUTURE STORM DRAIN	הייים בייים ביים בייים בייים בייים בייים בייים בייים בייים בייים בייים ב	*S << TOTAL INTO BORREGA ADD HYD 110 *S

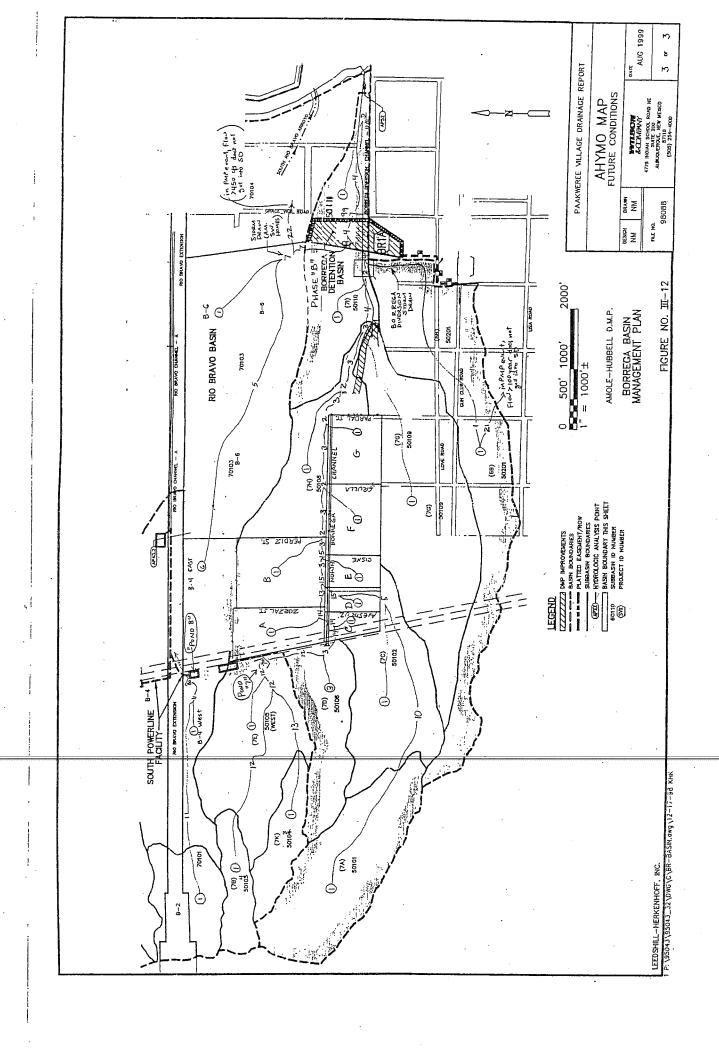

-

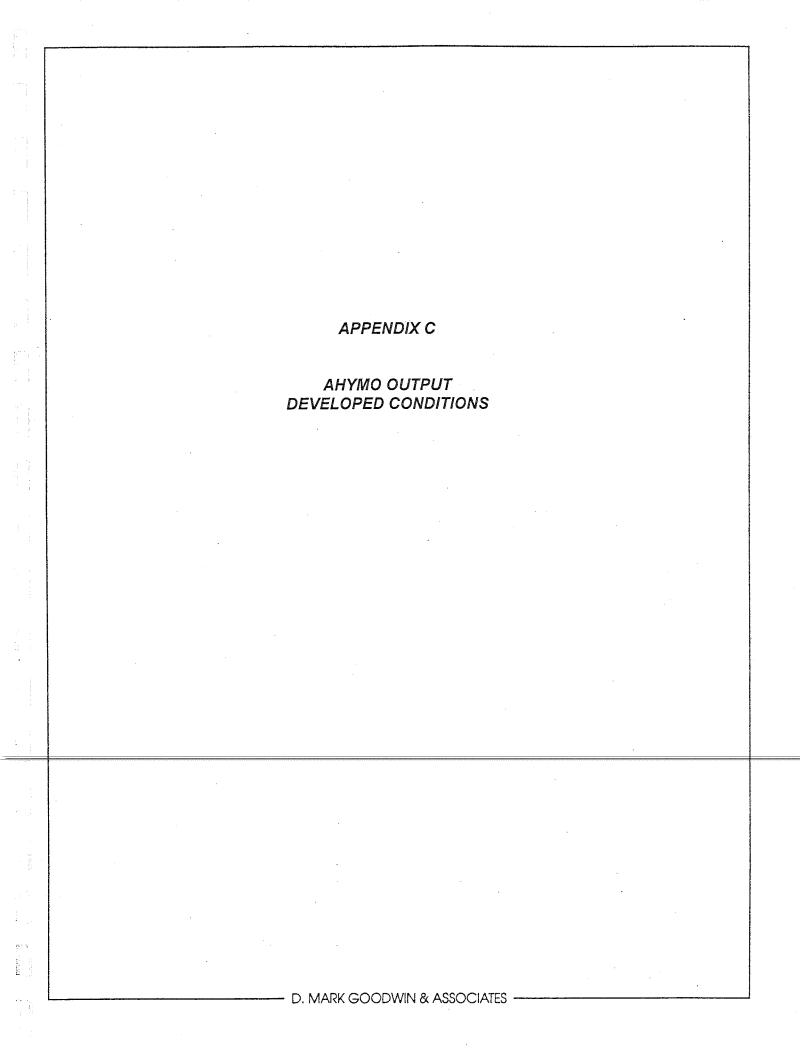
Part of the state of the state

,---<u>}</u>

		CFS PAGE = 4 PER NOTATION																		16.399 AC-FT= 181.403		15.985 CCODE = .2		31.733 PER IMP= 45.00	15.878		
		TIME TO PEAK (HOURS)										•								2.400		2.450		2.250	2.450		
		RUNOFF (INCHES)																		12.96548		12.97110		13.27138	12.97888		
		RUNOFF VOLUME (AC-FT)																		984.919		985.346		26.826	1012.172		
Pmp futu		PEAK DISCHARGE (CFS)	٠																	14948.60		14571.53		769.73	14858.95		
	ELEV 4985 4986	area (SQ MI)	4987	4988	4989	4000	1000	4. 4.0004	4994	4995	4996	4997	4997.1	4998	4999	2000	5001	5002	5003	1.42434		1.42434		.03790	1.46224		
	DESIGN STORAGE 0 2.02	NO.	7.94	14.10	20.51	27.17	100	50.84	61.26	73.20	86.10	99.30	100.64	112.80	126.55	140.56	154.85	169.29	184.32	66	*	4		7	7	***	
	WCEA.	FROM ID NO.																		4	51****	66		ī	45 2	52*	
	B' PER OUTFLOW 0	APH TON			٠,	-9 (0 0	ש ע	163	74	184	91	225	52	94	5667	20	996	567	OUT		110.50		00.	HYD	***A	
	PHASE "B' OU 0	HYDROGRAPH IDENTIFICATION	4	∞ ີ	+ 1 (i Y	·3 록	4 Q	r	, 1	***	-1	14	χ. Τ	31	Š	8	115	15667	BPOND, OUT	L IS **** AP	11(. 50111	111	BR_DMP1, HYD	** SI CXE	
	*S BORREGA DAM PHASE "B' PER WCEA *S OUTFLOW *S 0.4	COMMAND	w. *	W	M :	to t	va t	n 10	×.	×.	™	₩	» *	ν. *	×	w.*	w *	ιο *	n *	ROUTE RESERVOIR	*S HYD=BPOND.OUT	ROUTE MCUNGE	*S LH BASIN NO.	COMPUTE NM HYD	ADD HYD	*S HYD=BR DMP1.HYD IS ****AP	FINISH

1


ij.


i

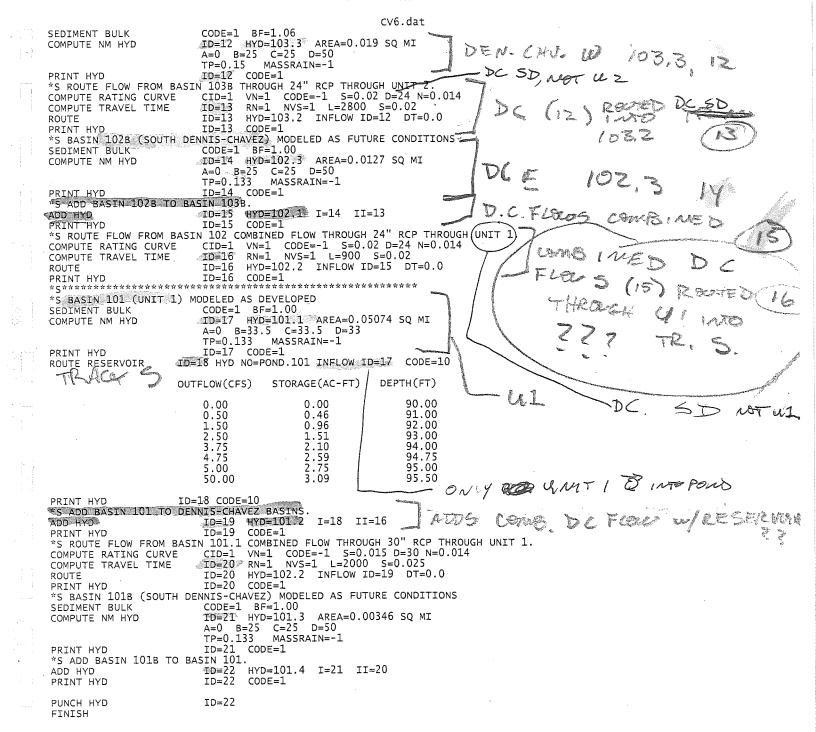
.i ----

.

i.

(MON/DAY/YR) =01/08/2007, AHYMO-I-9702dGoodwinm-AH	CFS PAGE = 1 PER ACRE NOTATION	TIME= .00				RAIN24= 2.660	PK BF = 1.06	Ji.		PK BF = 1.00 4.053 PER IMP= 80.00	3.261		∞	PK BF = 1.06 1.495 PER IMP= .00		3.220 PER IMP = 42.00	3.241	PK BF = 1.00 3.973 PER IMP= 80.00	
RUN DATE (USER NO.= A	TIME TO PEAK (HOURS)							1.500	1.500	1.500	1.500		1.500	1.500	1.500	1.500	1.500	1.500	
.02d	RUNOFF (INCHES)							.47533	1.52461	2.10488	1.52728		2.10487	.50684	1.68707	1.49238	1.54826	2.10488	
VERSION: 1997	RUNOFF VOLUME (AC-FT)		·	CEJA VISTA FOR THE DEVELOP	***** ***** THE BULKIN			2.573	3.415	.022	3.437		1.903	.162	2.065	4.537	6.602	.055	
N -	PEAK DISCHARGE (CFS)			********* FROM THE CEJ/ UIREMENTS FOR ION FACILITY	********** **************************		:	92.63	87,56	.51	88.07	ELOPED	42.62 FLOWS 6%	5.74	48.36	117.47	165.83	1.24	
) - 4VI~1\CV6.DAT	AREA (SQ MI)	ORTION	VELOPED CONDITIONS	**************************************	**************************************	TION 104.	BULK F	1 (UNIT 3).	04200 ED AS DEVELOPED	3 .00020	1 .04220	AL) MODELED AS DEVE	5 ,01695 UNDEVELOPED, BULK E	00900:	7 (UNIT 2).	3 .05700	.07995	DEVELOPED .00049	
AHYMO PROGRAM SUMMARY TABLE (AHYMO_97) - INPUT FILE = D:\MYDOCU~1\CEJAVI~1\CEJAVI~1\CV6.DAT	FROM TO HYDROGRAPH ID ID COMMAND IDENTIFICATION NO. NO	START *S *S CEJA VISTA SUBDIVISION CITY PC *S	*S 100-YR, 24-HR STORM WITH SEDIMENT *S FILE NAME: CEJA VISTA DEV.DAT (DEVELOPED CONDITIONS) *S FILE NAME: CEJA VISTA DEV.DAT (DEVELOPED CONDITIONS) *S AST REVISTON: 10-02-06	*S************************************	*S************************************	*5100 YEAR 24HR STORM EXISTING CONDITION RAINFALL TYPE= 2 *S CALCULATE THE FLOW FROM BASIN APS 104	*S BASIN 104 IS MODELED AS UNDEVELOPED SEDIMENT BULK	D APS104 - THE FLOW FROM BASIN 103 WODELED AS DEVELOPED	SEDIMENT BULK COMPUTE NM HYD 103.00 - 2 *S BASIN 103A (WESTSIDE OF 98TH) MODELED	SEDIMENT BULK COMPUTE NM HYD 101.00 - 3 *C AND RACTAS AND 103A	3 ADD BASINS IOS AND 105A. ADD HYD04220 **C*********************************	*S BASIN 102A (EASTSIDE 98th/COMMERCIAL) MODELED AS DEVELOPED	D 103.10 - (OPEN SPACE) MODELED AS	SEDIMEN BULK COMPUTE NM HYD 102.00 - 6	5 102 D	SEDIMENT BULK COMPUTE NM HYD 102.00 - 8	TS AUD BASIN IOZA IO BASIN IOZ. ADD HYD *C ALCHI ATE THE ELOW EDOM BASIN 103M	*S BASIN 102D (UNSER BLVD) MODELED AS SEDIMENT BULK COMPUTE NM HYD 101.00 - 10 *S ADD BASIN 102D TO BASIN 102.	

Page 1


PAGE = 2 NOTATION		PK BF = 1.00 PER IMP= 50.00	PK BF = 1.00 PER IMP= 50.00		PK BF = 1.00 PER IMP= 33.00 AC-FT= 2.742		PK BF = 1.00 PER IMP= 50.00	
CFS PER ACRE	3.245	PK BF = 3.318 PER IMP= 2.952	PK BF = 3.370 PER IMP=	2.741	3.052 PEF .154 AC	1.074	9K 3.375 PEI 1.067	
TIME TO PEAK (HOURS)	1.500	1.500	1.500	1.550	1.500	1.600	1.500	
RUNOFF (INCHES)	1.55162	1.71860	1.62133	1.67962	1.34731	1.42241	1.62133	
RUNOFF VOLUME (AC-FT)	6.656 BULK FLOWS 6%	1.742	1.098	2.840 NIT 1. 2.840	3.646 3.414	6.254 UNIT 1. 6.249	.299	
PEAK DISCHARGE (CFS)		40.35 UNIT 2. 35.90	CONDITIONS 27.39	55.60 RCP THROUGH U 53.92	**** 99.12 4.99	56.69 30" RCP ТНROUGH 54.54	CONDITIONS 7.47 58.64	
AREA (SQ MI)	11 .08044 .167.06		MODELED AS FUTURE	.0W THROUGH 24" RCP	.************* ED .05074	.08244 THROUGH .08244	MODELED AS FUTURE 21 .00346 22 .08590	
<u> </u>	11 ****** MODE	12 5H 24 13	4 T	15 ED FLOW	******* EVELOPED 17 18	BASINS.	21 21 22	
FROM HYDROGRAPH ID IDENTIFICATION NO.	ADD HYD *S***********************************	SEDIMENT BULK COMPUTE NM HYD 103.30 - 12 .01900 SS ROUTE FLOW FROM BASIN 103B THROUGH 24" RCP THROUGH ROUTE .01900	*S BASIN 102B (SOUTH DENNIS-CHAVEZ) SEDIMENT BULK 102.30 *S AND RASTN 102R TO RASTN 103R	ADD HYD 102.10 14&13 15 10 14 WD 4.8 ROUTE FLOW FROM BASIN 102 COMBINED FLOW THE ROUTE	*S************************************	*S ADD BASIN 101 TO DENNIS-CHAVEZ BA\$INS. ADD HYD 101.20 18&16 19 *S ROUTE FLOW FROM BASIN 101.1 COMBINED FLOW ROUTE	*S BASIN 101B (SOUTH DENNIS-CHAVEZ) SEDIMENT BULK COMPUTE NM HYD 101.30 - *S ADD BASIN 101B TO BASIN 101. ADD HYD 101.40 21&20	
IDEN	**************************************	T BULK NM HYD E FLOW FROM BA	N 102B (SOUTH IT BULK NM HYD	E FLOW FROM BA	*S************************************	*S ADD BASIN 101 TO DENNIS-CHAVEZ ADD HYD 101.20 18&1 *S ROUTE FLOW FROM BASIN 101.1 COI ROUTE	IN 101B (SOUTH IT BULK IN HYD BASIN 101B TO	
COMMAND	ADD HYD *S***** *S BASI	SEDIMENT BULK COMPUTE NM HYI *S ROUTE FLOW ROUTE	*S BASIN 102B SEDIMENT BULK COMPUTE NM HYI	ADD HYD *S ROUT ROUTE	*S********* *S BASIN 101 (SEDIMENT BULK COMPUTE NM HYE ROUTE RESERVO)	*S ADD E ADD HYD *S ROUTE ROUTE	*S BASIN 101B SEDIMENT BULK COMPUTE NM HYI *S ADD BASIN TANTON	FINISH

```
0.0 HOURS
                                                      PC=0 PL=-1
* S
*S
             CEJA VISTA SUBDIVISION CITY PORTION
*S 100-YR, 24-HR STORM WITH SEDIMENT
*S FILE NAME: CEJA VISTA DEV.DAT (DEVELOPED CONDITIONS)
*S BY: SCOTT MEDINA
*S THE PURPOSE OF THIS MODEL IS TO CALCULATE THE RUNOFF FROM THE CEJA VISTA
*S SUBDIVISION FOR USE IN DETERMINATION OF DRAINAGE REQUIREMENTS FOR THE DEVELOPMENT.
*S FLOW FROM THIS BASIN IS CONVEYED TO THE AMOLE DETENTION FACILITY
    VIA THE AMOLE ARROYO.
*S ANALYSIS ASSUMPTIONS:
*5**********************************
sts 1. A BULKING FACTOR HAS BEEN ADDED TO EACH UNDEVELOPED SUB-BASIN. THE BULKING
          FACTOR IS BASED ON LAND TREATMENT AND SLOPE.
*S100 YEAR (24HR/STORM EXISTING CONDITION
                                     TYPE=2 0.0 1.87
                                                                     2.20 2.66
RAINFALL
    10 YEAR 24HR STORM EXISTING CONDITION
**RAINFALL
                                     TYPE=2 0.0 1.25
                                                                     1.47 1.77
      2 YEAR 24HR STORM EXISTING CONDITION AINFALL TYPE=2 0.0 0.74
**RAINFALL
                                                                     0.95 1.15
                                                                                             DT=0.05
*S CALCULATE THE FLOW FROM BASIN APS 104.
*S BASIN 104 IS MODELED AS UNDEVELOPED, BULK FLOWS 6.0%
SEDIMENT BULK CODE=1 BF=1.06
SEDIMENT BULK
                                         ID=1 HYD=APS104 AREA=0.1015 SQ MI
COMPUTE NM HYD
                                         A=95 B=5 C=0 D=0
TP=0.133 MASSRAIN=-1
                                        ID=1 CODE=1
PRINT HYD
*S CALCULATE THE FLOW FROM BASIN 103 (UNIT 3).
*S BASIN 103 MODELED AS DEVELOPED SEDIMENT BULK CODE=1 B
                                         CODE=1 BF=1.00
                                        ID=2 HYD=103 AREA=0.042 SQ MI
A=0 B=28 C=28 D=44
COMPUTE NM HYD
                                        TP=0.133
ID=2 COT
                                                           MASSRAIN=-1
                                                  CODE=1
PRINT HYD
*S BASIN 103A (WESTSIDE OF 98TH) MODELED AS DEVELOPED
                                        CODE=1 BF=1.00
ID=3 HYD=101 AREA=0.
A=0 B=10 C=10 D=80
SEDIMENT BULK
                                                                  AREA=0.0.00195 SQ MI
COMPUTE NM HYD
                                         TP=0.133
                                                           MASSRAIN=-1
                                         ID=3
PRINT HYD
                                                  CODE=1
                                                                                                                                                43498W=103.2(9)
"S ADD BASINS 103 AND 103A.
ADD HYD
                                         ID=4 HYD=103.2 I=3 II=2
*S BASIN 102A (EASTSIDE 98th/COMMERCIAL) MODELED AS DEVELOPED
                                         CODE=1 BF=1.00
ID=5 HYD=103.1 AREA=0.01695 SQ MI
A=0 B=10 C=10 D=80
SEDIMENT BULK
COMPUTE NM HYD
                                         TP=0.133 M. ID=5 CODE=1
                                                           MASSRAIN=-1
PRINT-HYD
*S BASIN 102C(OPEN SPACE) MODELED AS UNDEVELOPED, BULK FLOWS 6%
SEDIMENT BULK
                                         CODE=1 BF=1.06
                                         ID=6 HYD=102 AREA=0
A=90 B=0 C=10 D=0
COMPUTE NM HYD
                                                                  AREA=0.006 SQ MI
                                         TP=0.133
                                                           MASSRAIN=-1
                                         ID=6
                                                   CODE=1
PRINT HYD
PRINT HYD

*S ADD BASIN 102A TO BASIN 102C,
ADD HYD

PRINT HYD

10=7 CODE=1
                                                                     I=6
*S CALCULATE THE FLOW FROM BASIN 102 (UNIT 2).
*S BASIN 102 MODELED AS DEVELOPED
SEDIMENT BULK
                                         CODE=1 BF=1.00
                                         ID=8 HYD=102
                                                                  AREA=0.057 SQ MI
                                                                                                                                                               (HYD & SAME RE
COMPUTE NM HYD
                                         A=0 B=29 C=29 D=42
TP=0.133 MASSRAIN=-1
                                                                                                                                                                      OPEN SP.
                                         TP=0.133
PRINT HYD ID=8 CODE=1 *S ADD BASIN 102A TO BASIN 102.
                                        ID=9 HYD=102.1 I=7 II=8
ID=9 CODE=1
ADD HYD
PRINT HYD
*S CALCULATE THE FLOW FROM BASIN 102D.
*S BASIN 102D (UNSER BLVD) MODELED AS DEVELOPED SEDIMENT BULK CODE=1 BF=1.00
                                       ID=10 HYD=101 AREA=0.0.00486 SQ MI
A=0 B=10 C=10 D=80
TP=0.133 MASSRAIN=-1
ID=10 CODE=1
COMPUTE NM HYD
PRINT HYD
*S ADD BASIN 102D TO BASIN 102
ADD HYD ID=11 HYD=102.1 I=10 II=9
PRINT HYD ID=11 CODE=1
*$\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{
                                                                                                                        SE +OS + UNSER (T
*s basin 103b (south dennis-chavez) modeled as future conditions, bulk flows 6%
```


- Version: 1997.02d

AHYMO PROGRAM (AHYMO_97) -

```
RUN DATE (MON/DAY/YR) = 01/08/2007

START TIME (HR:MIN:SEC) = 07:40:12 USER NO.= AF

INPUT FILE = D:\MYDOCU~1\CEJAVI~1\CEJAVI~1\CV6.DAT
                                                            USER NO.= AHYMO-I-9702dGoodwinM-AH
                           0.0 HOURS PC=0 PL=-1
START
*S
#S
          CEJA VISTA SUBDIVISION CITY PORTION
*S 100-YR, 24-HR STORM WITH SEDIMENT
*S FILE NAME: CEJA VISTA DEV.DAT (DEVELOPED CONDITIONS)
*S BY: SCOTT MEDINA
*S THE PURPOSE OF THIS MODEL IS TO CALCULATE THE RUNOFF FROM THE CEJA VISTA
*S SUBDIVISION FOR USE IN DETERMINATION OF DRAINAGE REQUIREMENTS FOR THE DEVELOP *S FLOW FROM THIS BASIN IS CONVEYED TO THE AMOLE DETENTION FACILITY
*S VIA THE AMOLE ARROYO.
*S ANALYSIS ASSUMPTIONS:
**
*S 1. A BULKING FACTOR HAS BEEN ADDED TO EACH UNDEVELOPED SUB-BASIN. THE BULKIN
       FACTOR IS BASED ON LAND TREATMENT AND SLOPE.
*S100 YEAR 24HR STORM EXISTING CONDITION
                            TYPE=2 0.0 1.87 2.20 2.66
                    COMPUTED 24-HOUR RAINFALL DISTRIBUTION BASED ON NOAA ATLAS 2 - PEAK AT 1.40 HR. DT = .050000 HOURS END TIME = 24.000000 HOURS
                              .050000 HOURS
0 .0025 .0050
0 .0222 .0254
                                                       END TIME = .0076 .010
                        .0000
                                                                 .0103
                                                                            .0131
                                                                            .0362
                        .0190
                                             .0254
                                                       .0289
                                                                  .0324
                        0443
                                  .0487
                                                                                       0758
                                             .0534
                                                       .0584
                                                                  .0637
                                                                             .0695
                                                     .0584
.1773
1.4295
1.8624
1.9848
2.0240
2.0542
2.0542
                                                                 .2798
1.5109
                        .0837
                                              .1176
                                   .0924
                                                                              .4384
                                                                                        .6668
                        .9790
                                 1.2253
                                            1.3366
                                                                            1.5836
                                                                                      1.6495
                                                                 1.9057
1.9912
2.0287
2.0580
                       1.7096
                                 1.7648
                                            1.8156
                                                                            1.9458
                                                                                       1.9548
                      1.9631 2.0087
                                 1.9708
                                            1.9780
                                                                            1.9973
                                                                                       2.0031
                                 2.0140 2.0462
                                            2.0191
                                                                            2.0333
                                                                                       2.0377
                                            2.0502
2.0757
                       2.0420
                                                                            2.0617
                                                                                       2.0653
                       2.0689
                                 2.0724
                                                                 2.0823
                                                                            2.0855
                                                                                       2.0886
                                            2.0976
2.1168
                                                      2.1005
2.1193
                                                                            2.1061
2.1244
                                 2.0946
                                                                 2.1033
                                                                                       2.1088
                       2.0916
                                 2.1142
2.1316
                                                                                       2.1268
                                                                 2.1219
                       2.1115
                       2.1293
                                            2.1340
                                                      2.1363
                                                                 2.1386
                                                                            2.1409
                                            2.1497
2.1641
                                                      2.1518
2.1660
                                                                 2.1539
2.1680
                      2.1453
2.1601
                                 2.1475
2.1621
                                                                            2.1560
2.1699
                                                                                       2.1580
2.1718
                                 2.1756
2.1882
                                            2.1774 2.1899
                                                      2.1793
2.1916
                                                                 2.1811 2.1933
                                                                            2.1829
2.1950
                       2.1737
                                                                                       2.1847
                       2.1864
                                                                                       2.1967
                                 2.2000 2.2136
                                                                                       2.2097
2.2231
                      2.1984
2.2117
                                            2.2020
2.2155
                                                      2.2039
2.2174
                                                                 2.2059
                                                                            2.2078
2.2212
                                 2.2136
2.2268
2.2398
2.2524
2.2647
2.2768
2.2887
                                            2.2287
2.2416
                                                      2.2305
2.2434
                                                                 2.2324 2.2452
                                                                                       2.2361
                       2.2249
                                                                            2,2342
                       2.2379
                                                                            2.2470
                                                                 2.2577
                                                                            2.2595
2.2717
                                            2.2542 2.2665
                                                      2.2559
                       2.2506
                                                                                       2.2612
2.2734
                       2.2630
                                                      2.2802
2.2920
2.3035
2.3148
                                            2.2785 2.2903
                                                                 2.2819
                      2.2751 2.2870
                                                                            2.2836
2.2953
                                                                                       2.2853
                                 2.2887
2.3002
2.3116
2.3227
2.3336
2.3444
2.3549
2.3652
2.3853
                                            2.3019 2.3132
                                                                 2.3051 2.3164
                                                                            2.3068
2.3180
                       2.2986
                                                                                       2.3084
                       2.3100
                                                                                       2.3196
                                                                            2.3290
2.3398
2.3504
2.3608
2.3710
                                            2.3243
                                                      2.3259
2.3367
                                                                 2.3274
                       2.3212
                                                                                       2.3305
                                            2.3243
2.3352
2.3459
2.3563
2.3666
2.3767
                       2.3321
                                                                                       2.3413
2.3519
                                                                 2.3489
                                                      2.3474
2.3578
                       2.3428
                                                                                       2.3622
                       2.3534
                       2.3637
                                                      2.3681
                                                                 2.3695
                                                                                       2.3724 2.3824
                                                                            2.3810
                                                      2.3782
                                                                 2.3796
                       2.3739
                                 2.3853
2.3951
                                            2.3767
2.3867
2.3965
2.4061
2.4155
2.4248
2.4340
                                                                 2.3895
2.3992
                                                                            2.3909
                                                      2.3881
2.3978
                                                                                       2.3923
2.4020
                       2.3839
                       2.3937
                                                                            2.4006
2.4101
2.4195
2.4287
2.4378
2.4456
2.4643
2.4643
2.4728
2.4813
2.48978
                                                      2.4074
2.4168
2.4261
2.4352
2.4442
2.4531
                                                                 2.4088
2.4182
2.4274
2.4365
2.4455
2.4453
                       2.4033
                                                                                       2.4115
2.4208
2.4300
2.4391
                                 2.4047
                      2.4128
2.4222
                                 2.4142
2.4235
2.4327
                       2.4314
                                 2.4417
2.4506
                                            2.4430
2.4518
                       2.4404
                                                                                       2.4480
2.4568
                       2.4493
                                                      2.4618
                                           2.4606
2.4692
2.4777
2.4860
                       2.4581
                                                                 2.4630
2.4716
                                 2.4593
                                                                                       2.4655
                                 2.4680
                                                                                       2.4740
                       2,4667
                                                      2.4789
2.4872
                                                                 2.4801 2.4884
                       2.4753
                                 2.4765
                                                                                       2.4825
                       2.4837
                                 2.4849
                                                                                       2.4908
                                                      2.4955
                                                                 2.4966
                                                                                       2.4990
                       2.4919
                                 2.4931
                                            2.4943
                                                                            2.4978
                                 2.5013
2.5093
                                            2.5024
2.5105
                                                      2.5036
2.5116
                                                                 2.5047
2.5127
                       2.5001
                                                                            2.5059
                                                                                       2.5070
                       2.5082
                                                                            2.5139
                                                                                       2.5150
                       2.5161
                                 2.5172
                                            2.5184
                                                      2.5195
                                                                 2.5206
2.5284
2.5361
                                                                            2.5217
                                                                                       2.5229
                                 2.5251
2.5328
                                            2.5262
2.5339
                                                      2.5273
                                                                            2.5295
                                                                                       2.5306
2.5383
                       2.5240
                                                      2.5350
                                                                            2.5372
                       2.5317
                                 2.5404 2.5480
                                                      2.5426
2.5501
                                                                 2.5437
2.5512
                       2.5394
                                            2.5415
                                                                            2.5448
                                                                                       2.5458
                       2.5469
                                            2.5490
                                                                            2.5522
                                                      2.5575
2.5649
                                                                 2.5586
2.5659
                                                                            2.5596
2.5669
                                                                                       2.5607
2.5680
                       2.5544
                                 2.5554
                                            2.5565
                                            2.5638
                       2.5617
                                 2.5628
```

2.5731

2.5741

2.5813

2.5721

2.5792

2.5690

2.5700

2.5772

2.5711

2.5782

```
AHYMO.OUT
                                                        2.5863 2.5873
2.5933 2.5943
                        2.5833
                                   2.5843
                                             2.5853
2.5923
                                                                                 2.5883
                        2.5903
                                                                                 2.5953
                                   2.5913
                                                                                             2.5963
                                                         2.6002
                        2.5973
                                    2.5982
                                               2.5992
                                                                      2.6012
                                                                                 2.6022
                                                                                             2.6031
                                                         2.6070 2.6080
                        2.6041
                                    2.6051
                                               2.6061
                                                                                 2.6090
                                                                                             2.6099
                                                          2.6138
                                                                     2.6148
                                    2.6119
                                               2.6128
                                                                                 2.6157
                                                                                             2.6167
                        2.6109
                        2.6176
                                    2.6186
                                               2.6195
                                                          2.6205
                                                                     2.6214
                                                                                 2.6224
                                                                                             2.6233
                                                                                 2.6290
                        2.6243
                                    2.6252
                                               2.6261
                                                          2.6271
                                                                      2.6280
                                                                                             2.6299
                                                                      2.6346
2.6410
                                                                                 2.6355
2.6419
                        2.6308
                                    2.6318
                                               2.6327
                                                          2.6336
                                                                                             2.6364
                                    2.6383
                                               2.6392
                                                          2.6401
                                                                                             2.6428
                                             2.6456
2.6519
2.6582
                        2.6438
                                  2.6447
2.6510
                                                         2.6465
                                                                     2.6474
                                                                                2.6483 2.6492
2.6546 2.6555
                                                          2.6528
                                                                      2.6537
                        2.6501
                                    2.6573
                                                          2.6591 2.6600
** 10 YEAR 24HR STORM EXISTING CONDITION
**RAINFALL TYPE=2 0.0 1.25 1.47 1.77
*S CALCULATE THE FLOW FROM BASIN APS 104.
*S BASIN 104 IS MODELED AS UNDEVELOPED, BULK FLOWS 6.0% SEDIMENT BULK CODE=1 BF=1.06
                                 CODE=1 BF=1.06

ID=1 HYD=APS104 AREA=0.1015 SQ MI

A=95 B=5 C=0 D=0

TP=0.133 MASSRAIN=-1
       BULKING FACTOR APPLIED TO HYDROGRAPH. FACTOR = 1.06000 AT PEAK FLOW.
                                  ID=1 CODE=1
                                                          HYDROGRAPH FROM AREA APS104
      RUNOFF VOLUME = .47533 INCHES = 2.5731 ACRE-FEET
PEAK DISCHARGE RATE = 92.63 CFS AT 1.500 HOURS BASIN AREA = .1015 SQ. MI.
*S CALCULATE THE FLOW FROM BASIN 103 (UNIT 3).
*S BASIN 103 MODELED AS DEVELOPED
SEDIMENT BULK
CODE=1 BF=1.00
                                 CODE=1 BF=1.00

ID=2 HYD=103 AREA=0.042 SQ MI

A=0 B=28 C=28 D=44

TP=0.133 MASSRAIN=-1
       K = .072485HR TP = .133000HR K/TP RATIO = .545000 SHAPE CONSTANT, N = 7.106420 UNIT PEAK = .73.125 CFS UNIT VOLUME = .9990 B = .526.28 P60 = 1.8700 AREA = .018480 SQ MI IA = .10000 INCHES INF = .04000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .050000
       K = .118163HR TP = .133000HR K/TP RATIO = .888442 SHAPE CONSTANT, N = 3.992480 UNIT PEAK = 62.720 CFS UNIT VOLUME = 1.001 B = 354.67 P60 = 1.8700 AREA = .023520 SQ MI IA = .42500 INCHES INF = 1.04000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .050000
                                  ID=2 CODE=1
                                                   PARTIAL HYDROGRAPH 103.00
      RUNOFF VOLUME = 1.52461 INCHES = 3.4151 ACRE-FEET PEAK DISCHARGE RATE = 87.56 CFS AT 1.500 HOURS BASIN AREA = .0420 SQ. MI.
```

*S BASIN 103A (WESTSIDE OF 98TH) MODELED AS DEVELOPED SEDIMENT BULK CODE=1 BF=1.00 ID=3 HYD=101 AREA=0.0.00195 SQ MI A=0 B=10 C=10 D=80 TP=0.133 MASSRAIN=-1 COMPUTE NM HYD

K = .072485HR TP = .133000HR K/TP RATIO = .545000 SHAPE CONSTANT, N = 7.1 UNIT PEAK = .61729 CFS UNIT VOLUME = .9834 B = 526.28 P60 = 1.8700 AREA = .000156 SQ MI IA = .10000 INCHES INF = .04000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .0500007.106420

K = .118163HR TP = .133000HR K/TP RATIO = .888442 SHAPE CONSTANT, N = 3.5 UNIT PEAK = .10400 CFS UNIT VOLUME = .8745 B = 354.67 P60 = 1.8700 AREA = .000039 SQ MI IA = .42500 INCHES INF = 1.04000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .050000 3.992480

PRINT HYD

COMPUTE NM HYD

PRINT HYD

COMPUTE NM HYD

PRINT HYD

ID=3 CODE=1

RUNOFF VOLUME = 2.10488 INCHES = .0219 ACRE-FEET
PEAK DISCHARGE RATE = .51 CFS AT 1.500 HOURS BASIN AREA = .0002 SQ. MI. RUNOFF VOLUME = 2.10488 INCHES

*S ADD BASINS 103 AND 103A.

ID=4 HYD=103.2 I=3 II=2 ID=4 CODE=1 ADD HYD

PRINT HYD

PARTIAL HYDROGRAPH 103.20

RUNOFF VOLUME = 1.52728 INCHES RUNOFF VOLUME = 1.52728 INCHES = 3.4370 ACRE-FEET PEAK DISCHARGE RATE = 88.07 CFS AT 1.500 HOURS BASIN AREA = .0422 SQ. MI.

*5************** *S BASIN 102A (EASTSIDE 98th/COMMERCIAL) MODELED AS DEVELOPED TP=0.133 MASSRAIN=-1 SEDIMENT BULK COMPUTE NM HYD

K = .072485HR TP = .133000HR K/TP RATIO = .545000 SHAPE CONSTANT, N = 7.106420 UNIT PEAK = 53.656 CFS UNIT VOLUME = .9989 B = 526.28 P60 = 1.8700 AREA = .013560 SQ MI IA = .10000 INCHES INF = .04000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .050000

K = .118163HR TP = .133000HR K/TP RATIO = .888442 SHAPE CONSTANT, N = 3.992480 UNIT PEAK = 9.0400 CFS UNIT VOLUME = .9999 B = 354.67 P60 = 1.8700 AREA = .003390 SQ MI IA = .42500 INCHES INF = 1.04000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .050000

PRINT HYD

ID=5 CODE=1

PARTIAL HYDROGRAPH 103.10

RUNOFF VOLUME = 2.10487 INCHES = 1.9028 ACRE-FEET PEAK DISCHARGE RATE = 42.62 CFS AT 1.500 HOURS BASIN AREA = .0170 SQ. MI.

*S BASIN 102C(OPEN SPACE) MODELED AS UNDEVELOPED, BULK FLOWS 6% SEDIMENT BULK CODE=1 BF=1.06 ID=6 HYD=102 AREA=0.006 SQ MI A=90 B=0 C=10 D=0 TP=0.133 MASSRAIN=-1 COMPUTE NM HYD

K = .157547HR TP = .133000HR K/TP RATIO = 1.184562 SHAPE CONSTANT, N = 2.996709 UNIT PEAK = 12.702 CFS UNIT VOLUME = .9978 B = 281.55 P60 = 1.8700 AREA = .006000 SQ MI IA = .62000 INCHES INF = 1.58600 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .050000

BULKING FACTOR APPLIED TO HYDROGRAPH. FACTOR = 1.06000 AT PEAK FLOW.

PRINT HYD

TD=6 CODE=1

PARTIAL HYDROGRAPH 102.00

RUNOFF VOLUME = .50684 INCHES = .1622 ACRE-FEET PEAK DISCHARGE RATE = 5.74 CFS AT 1.500 HOURS BASIN AREA = .0060 SQ. MI.

*S ADD BASIN 102A TO BASIN 102C. ID=7 HYD=102.1 I=6 II=5 ID=7 CODE=1 ADD HYD

PRINT HYD

PARTIAL HYDROGRAPH 102.10

RUNOFF VOLUME = 1.68707 INCHES = 2.0650 ACRE-FEET
PEAK DISCHARGE RATE = 48.36 CFS AT 1.500 HOURS BASIN AREA = .0230 SQ. MI.

*S CALCULATE THE FLOW FROM BASIN 102 (UNIT 2). *S BASIN 102 MODELED AS DEVELOPED
SEDIMENT BULK CODE=1 BF= CODE=1 BF=1.00

COMPUTE NM HYD

ID=8 HYD=102 AREA=0.057 SQ MI A=0 B=29 C=29 D=42 TP=0.133 MASSRAIN=-1

K = .072485HR TP = .133000HR K/TP RATIO = .545000 SHAPE CONSTANT, N = 7.1200 Numit peak = .94.730 CFS Unit volume = .9990 B = .526.28 P60 = 1.8700 AREA = .023940 SQ MI IA = .10000 INCHES INF = .04000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .050000

AHYMO.OUT

K = .118163HR TP = .133000HR K/TP RATIO = .888442 SHAPE CONSTANT, N = 3.992480 UNIT PEAK = 88.160 CFS UNIT VOLUME = 1.001 B = 354.67 P60 = 1.8700 AREA = .033060 SQ MI IA = .42500 INCHES INF = 1.04000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .050000

PRINT HYD

TD=8 CODF=1

PARTIAL HYDROGRAPH 102.00

RUNOFF VOLUME = 1.49238 INCHES 4.5368 ACRE-FEET PEAK DISCHARGE RATE = 117.47 CFS AT 1.500 HOURS BASIN AREA = .0570 SQ. MI.

*S ADD BASIN 102A TO BASIN 102.

ID=9 HYD=102.1 I=7 II=8 ID=9 CODE=1 ADD HYD

PARTIAL HYDROGRAPH 102.10

RUNOFF VOLUME = 1.54826 INCHES 6.6017 ACRE-FEET PEAK DISCHARGE RATE = 165.83 CFS AT 1.500 HOURS BASIN AREA = .0800 SQ. MI.

*S CALCULATE THE FLOW FROM BASIN 102D.

*S BASIN 102D (UNSER BLVD) MODELED AS DEVELOPED SEDIMENT BULK CODE=1 BF=1.00

COMPUTE NM HYD

CODE=1 BF=1.00 ID=10 HYD=101 AREA=0.0.00486 SQ MI A=0 B=10 C=10 D=80 TP=0.133 MASSRAIN=-1

K = .072485HR TP = .133000HR K/TP RATIO = .545000 SHAPE CONSTANT, N = 7.106420 UNIT PEAK = 1.5385 CFS UNIT VOLUME = .9928 B = 526.28 P60 = 1.8700 AREA = .000389 SQ MI IA = .10000 INCHES INF = .04000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .050000

SHAPE CONSTANT, N = 3.992480RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .050000

PRINT HYD

ID=10 CODE=1

PARTIAL HYDROGRAPH 101.00

RUNOFF VOLUME = 2.10488 INCHES = .0546 ACRE-FEET
PEAK DISCHARGE RATE = 1.24 CFS AT 1.500 HOURS BASIN AREA = .0005 SQ. MI.

PARTIAL HYDROGRAPH 102.10

RUNOFF VOLUME = 1.55162 INCHES = 6.6563 ACRE-FEET PEAK DISCHARGE RATE = 167.06 CFS AT 1.500 HOURS BASIN AREA = .0804 SQ. MI.

*S***************

*S BASIN 103B (SOUTH DENNIS-CHAVEZ) MODELED AS FUTURE CONDITIONS, BULK FLOWS 6% SEDIMENT BULK CODE=1 BF=1.06

COMPUTE NM HYD

CODE=1 BF=1.06
ID=12 HYD=103.3 AREA=0.019 SQ MI
A=0 B=25 C=25 D=50
TP=0.15 MASSRAIN=-1

K = .081750HR TP = .150000HR K/TP RATIO = .545000 SHAPE CONSTANT, N = 7.106420 UNIT PEAK = 33.331 CFS UNIT VOLUME = 1.000 B = 526.28 P60 = 1.8700 AREA = .009500 SQ MI IA = .10000 INCHES INF = .04000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .050000

SHAPE CONSTANT, N = 3.992480RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .050000

BULKING FACTOR APPLIED TO HYDROGRAPH. FACTOR = 1.06000 AT PEAK FLOW.

PRINT HYD

ID=12 CODE=1

RUNOFF VOLUME = 1.71860 INCHES = 1.7415 ACRE-FEET PEAK DISCHARGE RATE = 40.35 CFS AT 1.500 HOURS BASIN AREA = .0190 SQ. MI.

*S ROUTE FLOW FROM BASIN 103B THROUGH 24" RCP THROUGH UNIT 2. COMPUTE RATING CURVE CID=1 VN=1 CODE=-1 S=0.02 D=24 N=0.014

RATING CURVE PIPE SECTION 1.0 FLOW FLOW MAX SURFACE AREA RATE WIDTH ELEV SQ FT CFS FT .00 .00 .00 .00 .10 .06 .16 .89 .17 .68 .31 1.57 1.45 .42 1.62 1.76 2.83 .65 4.42 1.85 1.93 1.97 2.00 6.30 .63 .84 .73 8.44 1.04 1.24 1.45 10.79 .83 13.31 .94 15.92 18.59 2.00 1.66 1.04 1.15 1.86 2.07 21.24 23.81 1.25 2.00 1.35 2.46 1.46 2.00 2.00 2.00 26.21 28.36 30.15 1.56 2.80 1.67 2.00 2.00 2.00 2.94 31.43 31.96 1.77 3.06 1.88 2.00 3.14

COMPUTE TRAVEL TIME ID=13 RN=1 NVS=1 L=2800 S=0.02

TRAVEL TIME TABLE

REACH= 1.0

	WATER DEPTH FEET .104 .208 .313 .417 .521 .625 .730 .834	AVERAGE AREA SQ.FT. .062 .174 .314 .475 .651 .839 1.037 1.240	FLOW RATE CFS .16 .68 1.57 2.83 4.42 6.30 8.44 10.79	TRAVEL TIME HRS .3117 .1997 .1552 .1305 .1147 .1036 .0955 .0893
	.938 1.042 1.146 1.251 1.355 1.459 1.563 1.668	1.447 1.655 1.863 2.067 2.265 2.456 2.635 2.799 2.943	13.31 15.92 18.59 21.24 23.81 26.21 28.36 30.15 31.43	.0846 .0808 .0779 .0757 .0740 .0729 .0723 .0722
ID=13	1.876 2.000 HYD=103.2	3.061 3.142 INFLOW ID=12	31.96 31.96 DT=0.0	.0745 .0765

TRAVEL TIME TABLE EXCEEDED

ID=13 CODE=1

PARTIAL HYDROGRAPH 103.20

```
RUNDEF VOLUME = 1.71863 INCHES = 1.7415 ACRE-FEET
PEAK DISCHARGE RATE = 35.90 CFS AT 1.650 HOURS BASIN AREA = .0190 SQ. MI.
```

```
*S BASIN 102B (SOUTH DENNIS-CHAVEZ) MODELED AS FUTURE CONDITIONS SEDIMENT BULK CODE=1 BF=1.00 ID=14 HYD=102.3 AREA=0.0127 SQ MI A=0 B=25 C=25 D=50 TP=0.133 MASSRAIN=-1
```

K = .118163HR TP = .133000HR K/TP RATIO = .888442 SHAPE CONSTANT, N = 3.992480 UNIT PEAK = 16.933 CFS UNIT VOLUME = 1.000 B = 354.67 P60 = 1.8700 AREA = .006350 SQ MI IA = .42500 INCHES INF = 1.04000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .050000

PRINT HYD

ID=14 CODE=1

TUO.OMYHA PARTIAL HYDROGRAPH 102.30

RUNOFF VOLUME = 1.62133 INCHES = 1.0982 ACRE-FEET
PEAK DISCHARGE RATE = 27.39 CFS AT 1.500 HOURS BASIN AREA = .0127 SQ. MI.

PARTIAL HYDROGRAPH

*S ADD BASIN 102B TO BASIN 103B.

ADD HYD

ID=15 HYD=102.1 I=14 II=13 ID=15 CODE=1

PRINT HYD

RUNOFF VOLUME =

1.67962 INCHES

2.8397 ACRE-FEET

PEAK DISCHARGE RATE = 55.60 CFS AT 1.550 HOURS BASIN AREA = .0317 SQ. MI.

102.10

*S ROUTE FLOW FROM BASIN 102 COMBINED FLOW THROUGH 24" RCP THROUGH UNIT 1. COMPUTE RATING CURVE CID=1 VN=1 CODE=-1 S=0.02 D=24 N=0.014

RATING CURVE WATER SURFACE ELEV .00	PIPE SECTION FLOW AREA SQ FT .00	1.0 FLOW RATE CFS .00	MAX WIDTH FT .00
.10 .21 .31 .42 .52	.06 .17 .31 .47 .65	.16 .68 1.57 2.83 4.42 6.30	.89 1.22 1.45 1.62 1.76 1.85
.73 .83 .94 1.04 1.15 1.25 1.35	1.04 1.24 1.45 1.66 1.86 2.07 2.27	8.44 10.79 13.31 15.92 18.59 21.24 23.81	1.93 1.97 2.00 2.00 2.00 2.00
1.46 1.56 1.67 1.77 1.88 2.00	2.46 2.63 2.80 2.94 3.06 3.14	26.21 28.36 30.15 31.43 31.96 31.96	2.00 2.00 2.00 2.00 2.00 2.00

COMPUTE TRAVEL TIME

ID=16 RN=1 NVS=1 L=900 S=0.02

TRAVEL TIME TABLE

REACH= 1.0

WATER	AVERAGE	FLOW RATE CFS .16 .68 1.57 2.83 4.42 6.30 8.44 10.79 13.31 15.59 21.24 23.81	TRAVEL
DEPTH	AREA		TIME
FEET .104	SQ.FT.		HRS .1002
.208	.062		.0642
.313	.174		.0499
.417	.475		.0419
.521	.651		.0369
.625	.839		.0333
.730	1.037		.0307
.834	1.240		.0287
.938	1.447		.0272
1.042	1.655		.0260
1.146	1.863		.0250
1.251	2.067		.0243
1.355	2.265		.0238
1.459	2.456	26.21	.0234
1.563	2.635	28.36	.0232
1.668	2.799	30.15	.0232
1.772	2.943	31.43	.0234
1.876	3.061	31.96	.0239
2.000	3.142	31.96	.0246

ROUTE

ID=16 HYD=102.2 INFLOW ID=15 DT=0.0

TRAVEL TIME TABLE EXCEEDED

PRINT HYD

ID=16 CODE=1

PARTIAL HYDROGRAPH 102.20

1.67964 INCHES = 2.8397 ACRE-FEET = 53.92 CFS AT 1.600 HOURS BASIN AREA = .0317 SQ. MI. RUNOFF VOLUME = PEAK DISCHARGE RATE =

*5*********************

*S BASIN 101 (UNIT 1) MODELED AS DEVELOPED SEDIMENT BULK

COMPUTE NM HYD

CODE=1 BF=1.00 ID=17 HYD=101.1 AREA=0.05074 SQ MI A=0 B=33.5 C=33.5 D=33 TP=0.133 MASSRAIN=-1

AHYMO.OUT

K = .118163HR TP = .133000HR K/TP RATIO = .888442 SHAPE CONSTANT, N = 3.992480 UNIT PEAK = 90.656 CFS UNIT VOLUME = 1.001 B = 354.67 P60 = 1.8700 AREA = .033996 SQ MI IA = .42500 INCHES INF = 1.04000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .050000

PRINT HYD

ID=17 CODE=1

PARTIAL HYDROGRAPH 101.10

RUNOFF VOLUME = 1.34731 INCHES = 3.6460 ACRE-FEET
PEAK DISCHARGE RATE = 99.12 CFS AT 1.500 HOURS BASIN AREA = .0507 SQ. MI.

ROUTE RESERVOIR	ID=18 HYD NO=P	OND.101 INFLOW I	D=17 CODE=10	
,	OUTFLOW(CFS)	STORAGE(AC-FT)	DEPTH(FT)	
		0.00	0.00	90.00
		0.50	0.46	91.00
		1.50	0.96	92.00
		2.50	1.51	93.00
		3.75	2.10	94.00
		4.75	2.59	94.75
		5.00	2.75	95.00
		50.00	3.09	95.50

TIME (HRS)	INFLOW (CFS)	ELEV (FEET)	VOLUME (AC-FT)	OUTFLOW (CFS)
1.500 1.500 2.500 3.500 4.500 4.500 5.500 6.500 7.500 8.500 8.500	.00 .00 .00 .99.12 16.39 2.58 .81 .40 .30 .27 .29 .32 .41 .40 .39 .38	90.00 90.00 91.95 94.81 94.73 94.23 94.07 93.576 93.37 93.37 93.37 93.48 92.60 92.48	.000 .000 .937 2.630 2.717 2.578 2.413 2.252 2.102 1.965 1.840 1.726 1.625 1.532 1.447 1.367 1.293	.00 .000 1.451 4.815 4.739 4.065 3.746 3.746 3.974 2.539 2.10
9.50 10.00 10.50 11.50 12.00 12.50 13.50 14.00 14.50 15.50 16.00 17.50 17.50 18.50 19.00 19.50 20.50 21.00	.35 .34 .33 .32 .31 .30 .29 .29 .27 .27 .26 .25 .25 .25 .25 .25 .23 .23 .23 .22 .22 .22	92.36 92.25 92.15 92.05 91.96 91.78 91.70 91.63 91.56 91.34 91.34 91.25 91.21 91.17 91.14 91.07 91.05 91.02	1.158 1.098 1.041 .988 .939 .893 .851 .775 .741 .710 .681 .654 .529 .606 .584 .545 .528 .512 .497 .483 .470	1.86 1.75 1.65 1.37 1.20 1.13 1.06 1.94 .89 .75 .71 .67 .64 .60 .55 .52

Page 7

MA	21.50 22.00 22.50 23.50 24.00 24.50 25.50 25.50 26.50 27.00 27.50 TIME (HRS) 28.50 29.00 29.50 AK DISCHAR XIMUM WATER	R SURFACE		9	4.987			·	
PRI	NT HYD	ID:	=18 CODE=10						
•				Н	YDROGRAPH	FROM AREA	POND.101		
TIME	TIME FLOW	FLOW	TIME	FL	OW	TIME	FLOW	TIME	FLOW
HRS	HRS CFS	CFS	HRS	С	:FS	HRS	CFS.	HRS	CFS
24.000	.000	.0	6.000		3.0	12.000	1.4	18.000	.7
24.500	.500	.0	6.500		2.7	12.500	1.3	18.500	.6
	1.000	.0	7.000	•	2.5	13.000	1.2	19.000	.6
25.000	1.500	1.5	7.500		2.4	13.500	1.1	19.500	.6
25.500	2.000	4.8	8.000		2.2	14.000	1.1	20.000	. 5
26.000 26.500	2.500 .3	4.9	8.500		2.1	14.500	1.0	20.500	.5
20.300	3.000	4.7	9.000		2.0	15.000	.9	21.000	. 5

. 3 1.26172 INCHES = 4.99 CFS AT RUNOFF VOLUME = 3.4144 ACRE-FEET PEAK DISCHARGE RATE = 2.250 HOURS BASIN AREA = .0507 SQ. MI.

1.9

1.8

1.6

1.6

1.5

15.500

16.000

16.500

17.000

17.500

.9

.8

. 8

.7

.7

21.500

22.000

22.500

23.000

23.500

. 5

. 5

. 5

. 4

. 4

ADD HYD PRINT HYD

9.500

10.000

10.500

11.000

11.500

27.000

27.500

28.000

28.500

29.000

29.500

3.500

4.500

5.000

5.500

. 3 4.000

4.4

4.1

3.8

3.5

3.2

101.20 PARTIAL HYDROGRAPH

6.2540 ACRE-FEET 1.600 HOURS BASIN AREA = 1.42241 INCHES = 56.69 CFS AT RUNOFF VOLUME = 1. PEAK DISCHARGE RATE = .0824 SQ. MI.

*S ROUTE FLOW FROM BASIN 101.1 COMBINED FLOW THROUGH 30" RCP THROUGH UNIT 1. COMPUTE RATING CURVE CID=1 VN=1 CODE=-1 S=0.015 D=30 N=0.014

RATING CURVE WATER SURFACE ELEV .00 .13 .26 .39 .52 .65 .78 .91	PIPE SECTION FLOW AREA SQ FT .00 .10 .27 .49 .74 1.02 1.31 1.62 1.94	1.0 FLOW RATE CFS .00 .24 1.06 2.47 4.44 6.93 93.26 16.95	MAX WIDTH FT .00 1.11 1.53 1.82 2.03 2.19 2.32 2.47
1.04	1.94	16.95	2.47
1.17	2.26	20.89	2.50

Page 8

AHYMO.OUT 2.59 2.91 3.23 3.54 3.84 1.30 25.00 2.50 29.19 33.35 37.38 41.16 44.53 47.34 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 1.43 1.56 1.69 1.82 1.95 2.08 4.12 4.37 2.21 4.60 49.35 4.78 50.18 2.50 4.91 ID=20 RN=1 NVS=1 L=2000 S=0.025 COMPUTE TRAVEL TIME

TRAVEL TIME TABLE

REACH= 1.0

	WATER DEPTH FEET .130 .261 .391 .521 .651 .782 .912 1.173 1.303 1.433 1.563 1.433 1.563 1.694 1.954 2.084 2.215 2.345 2.500	AVERAGE AREA 50.FT098 .271 .490 .741 1.017 1.312 1.620 1.937 2.261 2.586 2.910 3.229 3.540 3.837 4.117 4.373 4.599 4.783 4.909	FLOW RATE CFS .24 1.06 2.47 4.44 6.93 9.89 136.95 20.89 25.00 29.35 37.38 41.16 44.53 47.34 49.35 50.18 50.18	TRAVEL TIME HRS .2215 .1420 .1103 .0927 .0815 .0736 .0635 .0601 .0575 .0554 .0538 .0526 .0518 .0514 .0513 .0514
ID=20	HYD=102.2	INFLOW ID=19	DT=0.0	

ROUTE TRAVEL TIME TABLE EXCEEDED

PRINT HYD

ID=20 CODE=1

PARTIAL HYDROGRAPH 102.20

6.2493 ACRE-FEET 1.42135 INCHES RUNOFF VOLUME = 54.54 CFS AT 1.650 HOURS BASIN AREA = .0824 SQ. MI. PEAK DISCHARGE RATE =

*S BASIN 101B (SOUTH DENNIS-CHAVEZ) MODELED AS FUTURE CONDITIONS SEDIMENT BULK CODE=1 BF=1.00 ID=21 HYD=101.3 AREA=0.00346 SQ MI A=0 B=25 C=25 D=50 TP=0.133 MASSRAIN=-1

K = .072485HR TP = .133000HR K/TP RATIO = .545000 SHAPE CONSTANT, N = 7.106420 UNIT PEAK = 6.8455 CFS UNIT VOLUME = .9976 B = 526.28 P60 = 1.8700 AREA = .001730 SQ MI IA = .10000 INCHES INF = .04000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .050000

K = .118163HR TP = .133000HR K/TP RATIO = .888442 SHAPE CONSTANT, N = 3.992480 UNIT PEAK = 4.6134 CFS UNIT VOLUME = .9985 B = 354.67 P60 = 1.8700 AREA = .001730 SQ MI IA = .42500 INCHES INF = 1.04000 INCHES PER HOUR RUNOFF COMPUTED BY INITIAL ABSTRACTION/INFILTRATION NUMBER METHOD - DT = .050000

PRINT HYD

ID=21 CODE=1

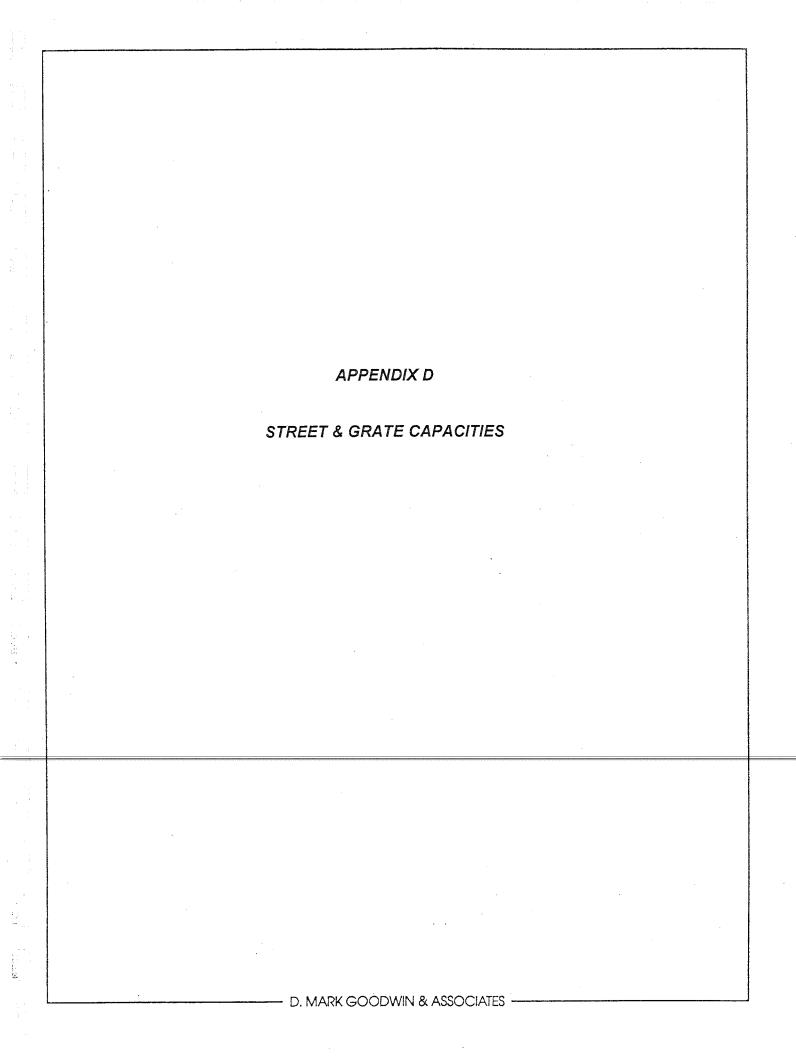
PARTIAL HYDROGRAPH 101.30

RUNOFF VOLUME = 1.62133 INCHES = .2992 ACRE-FEET
PEAK DISCHARGE RATE = 7.47 CFS AT 1.500 HOURS BASIN AREA = .0035 SQ. MI.

*S ADD BASIN 101B TO BASIN 101.

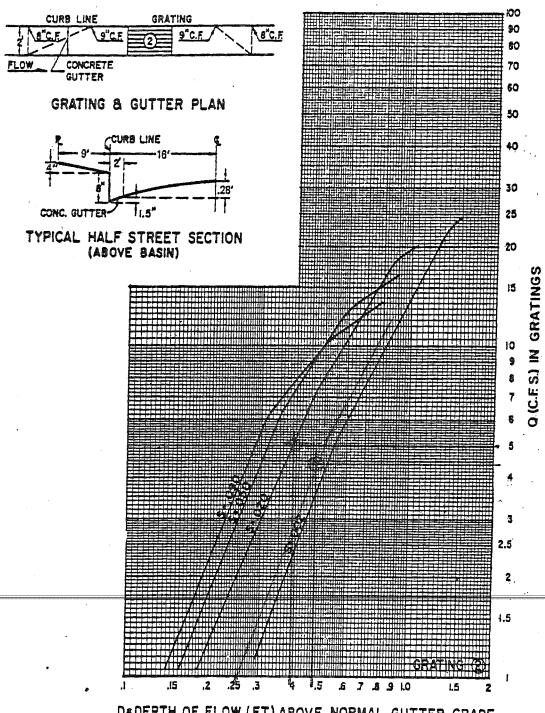
ADD HYD

ID=22 HYD=101.4 I=21 II=20 ID=22 CODE=1


PRINT HYD

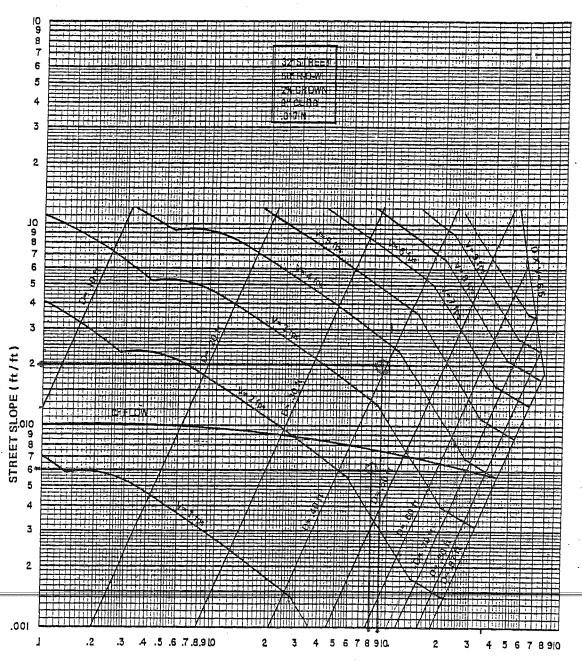
PARTIAL HYDROGRAPH 101.40

RUNOFF VOLUME = 1.42940 INCHES = 6.5485 ACRE-FEET
PEAK DISCHARGE RATE = 58.64 CFS AT 1.650 HOURS BASIN AREA = .0859 SQ. MI. 6.5485 ACRE-FEET

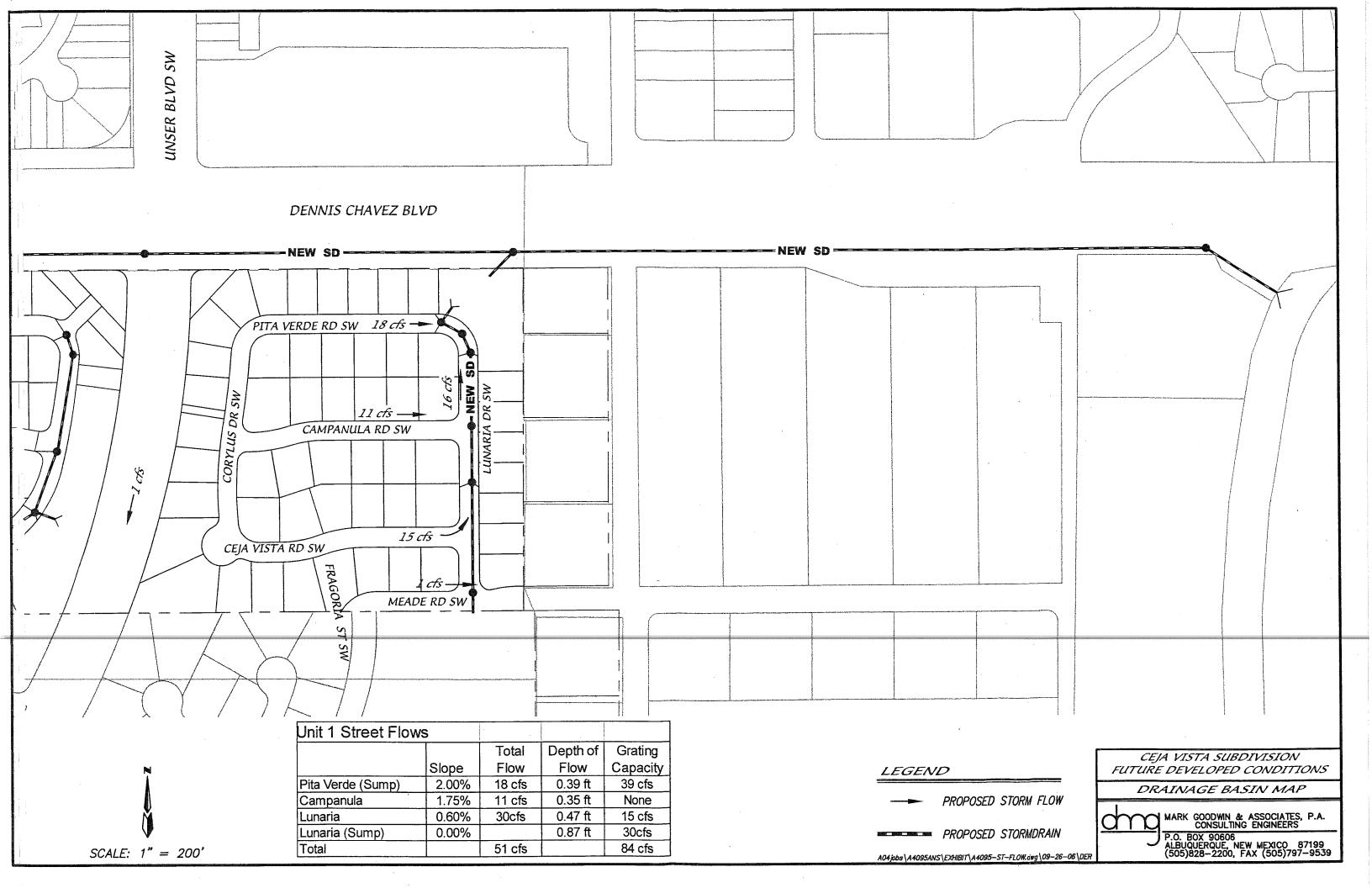

PUNCH HYD FINISH

ID=22

. Céja Vista - Unit 1


GRATING CAPACITIES FOR TYPE 'A' , 'C' and'D'

D=DEPTH OF FLOW (FT.) ABOVE NORMAL GUTTER GRADE


STREET CAPACITY

Ceja Vista - Unit I

ONE HALF STREET FLOWS (cfs)

PLATE 22.3 D-1

GRATING CAPACITIES FOR TYPE 'A' , 'C' and'D'

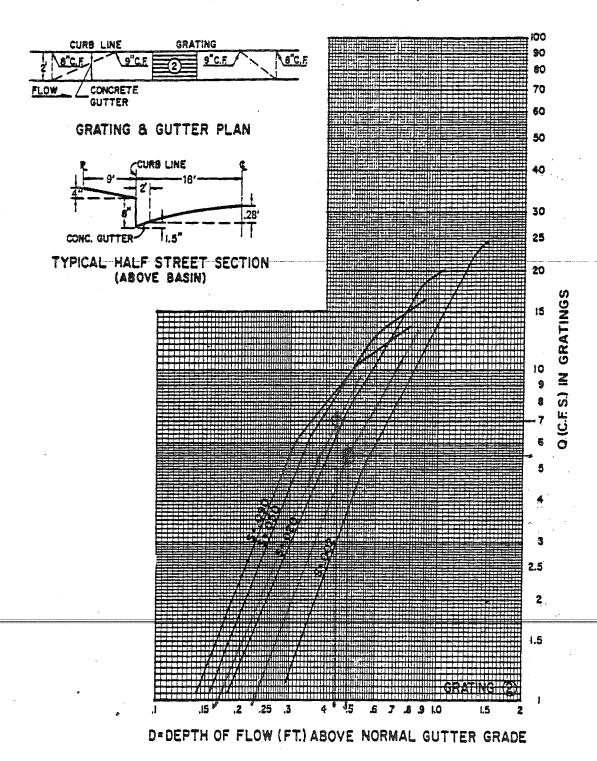
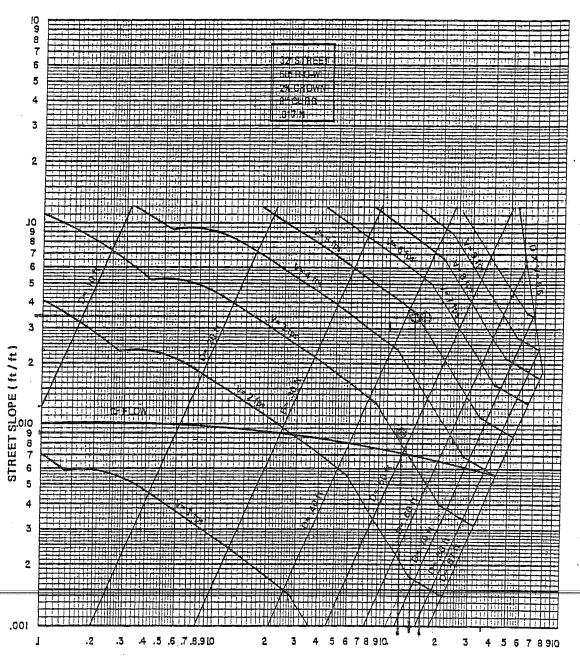
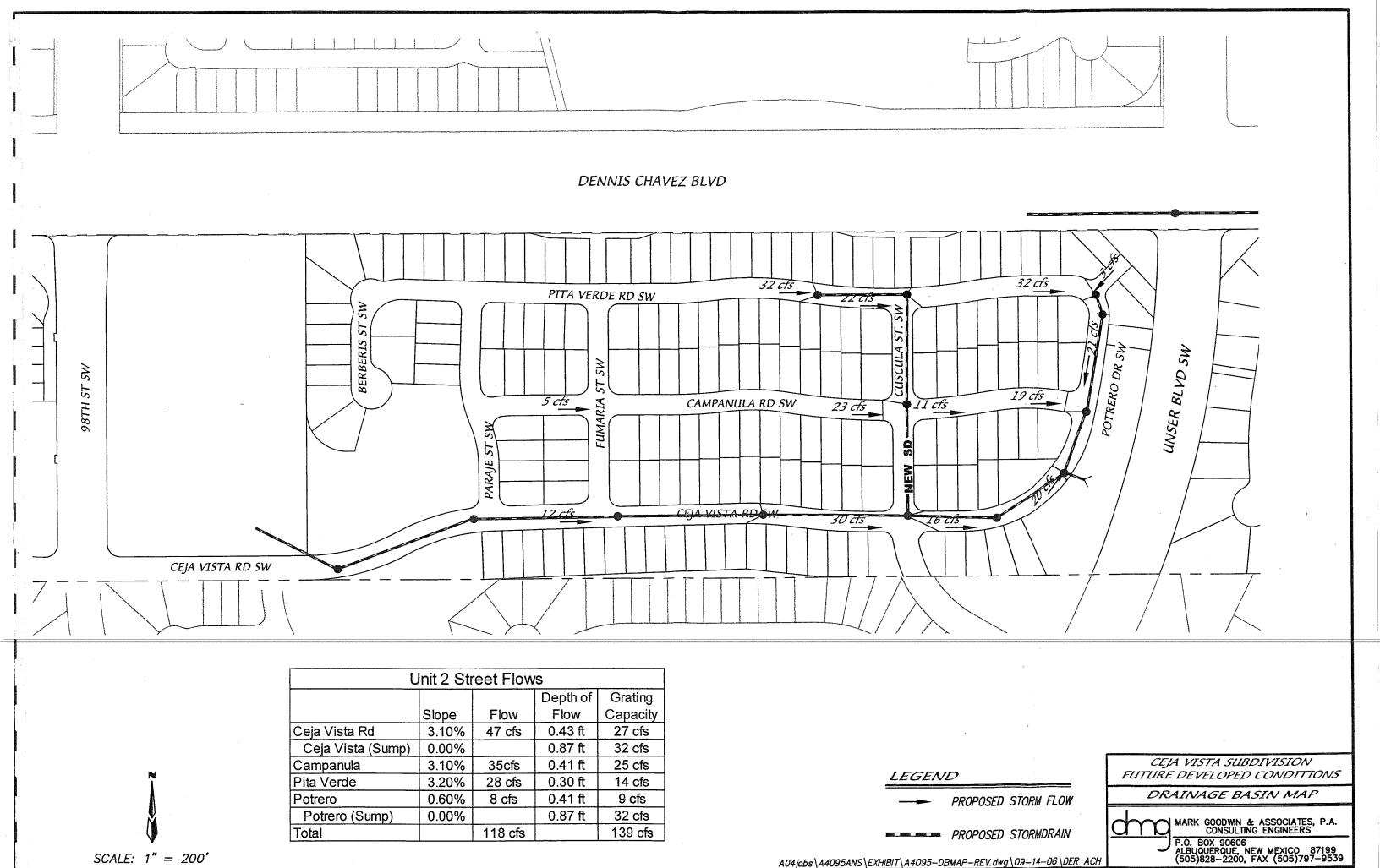



PLATE 22.3 D-5


STREET CAPACITY

Céja Vista - Unit 2

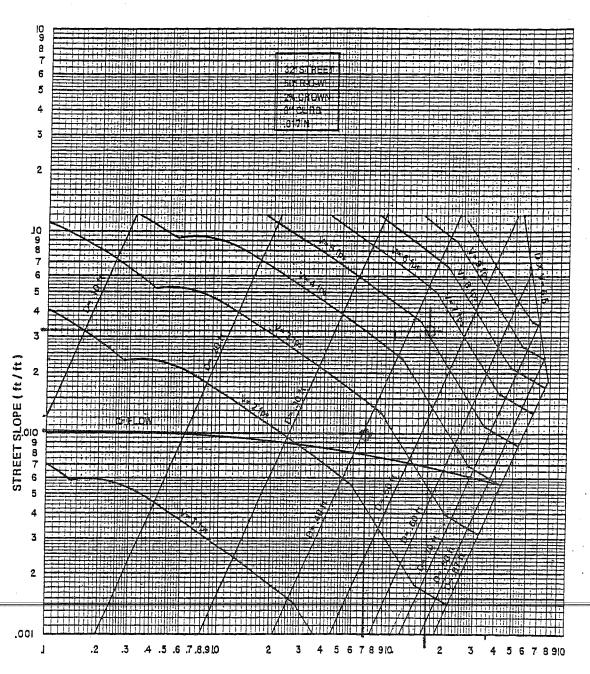
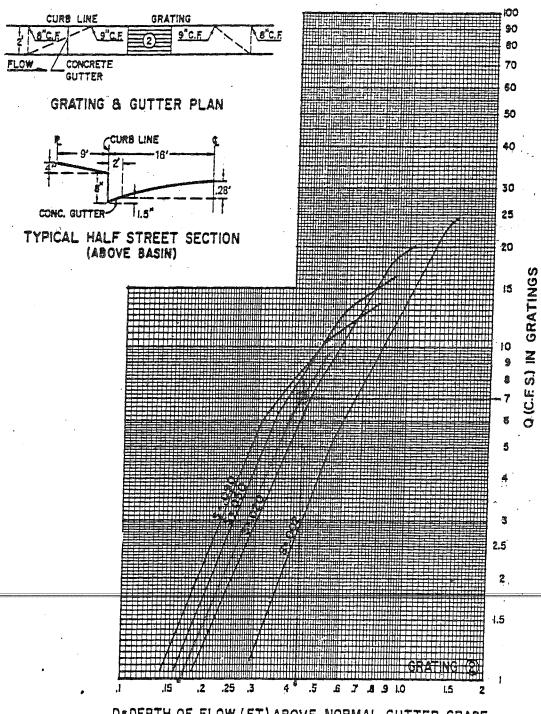

ONE HALF STREET FLOWS (cfs)

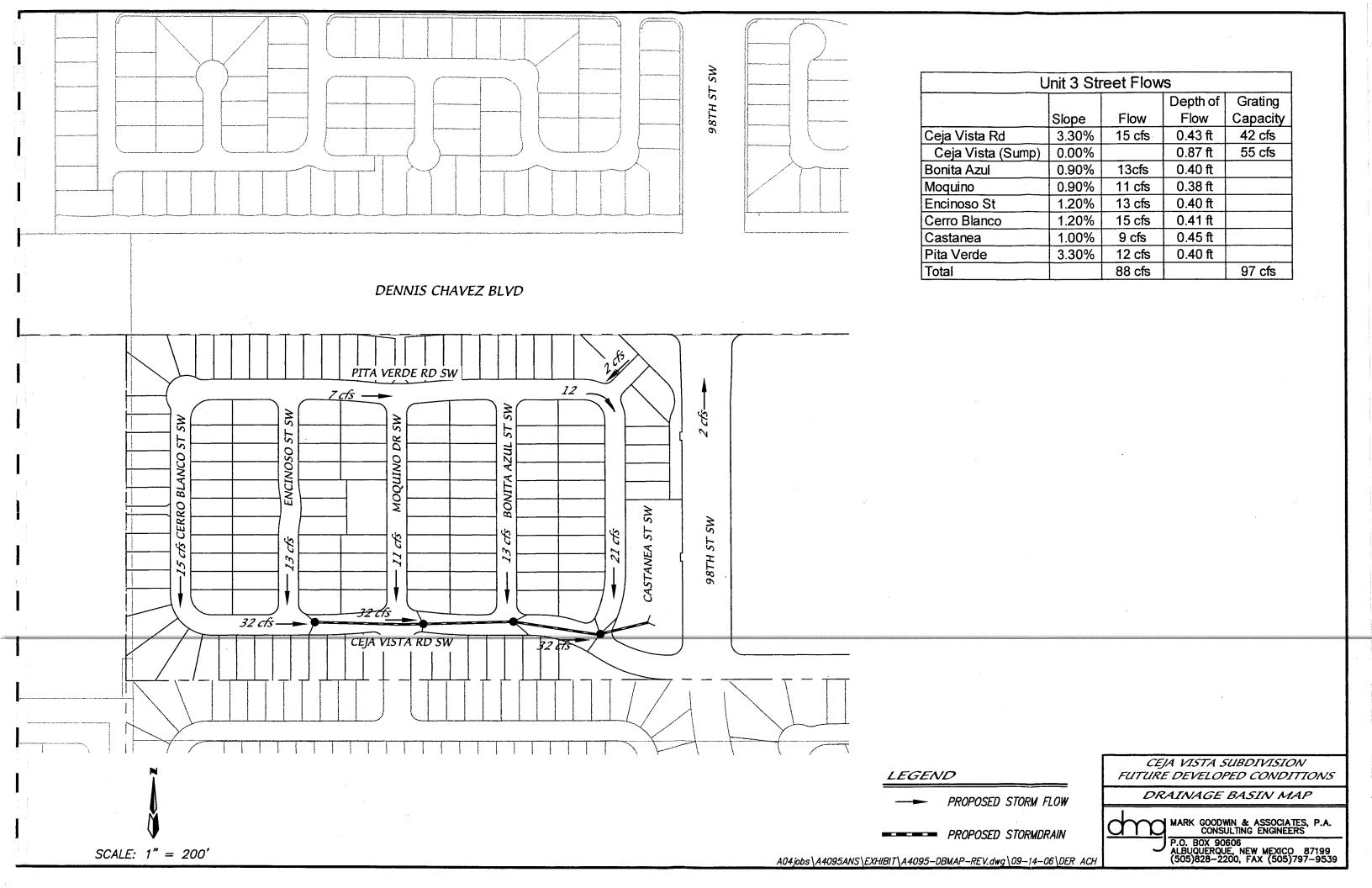
PLATE 22.3 D-1

A04jobs\A4095ANS\EXHIBIT\A4095-DBMAP-REV.dwg\09-14-06\DER ACH

STREET CAPACITY Ceja Vista - Unit 3



ONE HALF STREET FLOWS (cfs)


PLATE 22.3 D-1

Ceja Vista - Unit 3

GRATING CAPACITIES FOR TYPE "A" , "C" and "D"

D*DEPTH OF FLOW (FT.) ABOVE NORMAL GUTTER GRADE

DRAINAGE AND TRANSPORTATION INFORMATION SHEET

(REV. 1/28/2003rd)

PROJECT TITLE: Ceja Vista Unit 3 DRB #: 1004428 EPC#:	ZONE MAP/DRG. FILE #:P-9/DEDZ WORK ORDER#:			
LEGAL DESCRIPTION: <u>Town of Artrisco Grant, Tracts RR-3A, RR-3-B, R</u> CITY ADDRESS:	R-3-C, RR-3-D, RR-3-E			
ENGINEERING FIRM: Mark Goodwin & Associates, PA ADDRESS: PO Box 90606 CITY, STATE: Albuquerque, NM	CONTACT Scott Medina PHONE: 828-2200 ZIP CODE: 87199			
OWNER: Albuquerque Rio Bravo Partners, LLC ADDRESS: 6330 Riverside Plaza Lane NW, Suite220 CITY, STATE: Albuquerque, NM	CONTACT: <u>Bill Allen/Mike Adams</u> PHONE: <u>440-7262</u> ZIP CODE: <u>87120</u>			
ARCHITECT: ADDRESS: CITY, STATE:	CONTACT: PHONE: ZIP CODE: E CO E I V E			
SURVEYOR: ADDRESS: CITY, STATE: Albuquerque, NM	CONTACT: HONE: AUG 1 4 2007			
CONTRACTOR: ADDRESS: CITY, STATE:	CONTACT: HYDROLOGY SECTION PHONE: ZIP CODE:			
CHECK TYPE OF SUBMITTAL:	CHECK TYPE OF APPROVAL SOUGHT:			
 □ DRAINAGE REPORT □ DRAINAGE PLAN 1st SUBMITTAL, <i>REQUIRES TCL or equal</i> ☑ DRAINAGE PLAN RESUBMITTAL □ CONCEPTUAL GRADING & DRAINAGE PLAN □ GRADING PLAN □ EROSION CONTROL PLAN □ ENGINEER'S CERTIFICATION (HYDROLOGY) □ CLOMR/LOMR □ TRAFFIC CIRCULATION LAYOUT (TCL) □ ENGINEERS CERTIFICATION (TCL) □ ENGINEERS CERTIFICATION (DRB APPR. SITE PLAN) □ OTHER 	SIA / FINANCIAL GUARANTEE RELEASE PRELIMINARY PLAT APPROVAL S. DEV. PLAN FOR SUB'D. APPROVAL S. DEV. PLAN FOR BLDG. PERMIT APPROVAL SECTOR PLAN APPROVAL FINAL PLAT APPROVAL FOUNDATION PERMIT APPROVAL BUILDING PERMIT APPROVAL CERTIFICATE OF OCCUPANCY (PERM.) CERTIFICATE OF OCCUPANCY (TEMP.) GRADING PERMIT APPROVAL PAVING PERMIT APPROVAL WORK ORDER APPROVAL OTHER (SPECIFX)			
WAS A PRE-DESIGN CONFERENCE ATTENDED: ☐ YES				
NO □ COPY PROVIDED	John Mary			
DATE SUBMITTED: 8/14/2007	BY: Scott Medina			
Requests for approvals of Site Development Plans and/or Subdivision Plats shall be accompanied by a drainage submittal.				

Requests for approvals of Site Development Plans and/or Subdivision Plats shall be accompanied by a drainage submittal. The particular nature, location and scope of the proposed development defines the degree of drainage detail. One or more of the following levels of submittal may be required based on the following:

- 1. Conceptual Grading and Drainage Plan: Required for approval of Site Development Plans greater than five (5) acres and Sector Plans.
- 2. **Drainage Plans**: Required for building permits, grading permits, paving permits and site plans less than five (5) acres.
- 3. **Drainage Report**: Required for subdivisions containing more than ten (10) lots or constituting five (5) acres or more.

D. Mark Goodwin & Associates, P.A. Consulting Engineers

P.O. BOX 90606, ALBUQUERQUE,NM 87199 (505) 828-2200 FAX 797-9539

August 14, 2007

Mr. Brad Bingham, City Hydrologist City of Albuquerque P.O. Box 1293 Albuquerque, NM 87103

Re: Ceja Vista Unit 3

Dear Mr. Bingham:

On behalf of Albuquerque Rio Bravo Partners, LLC, we are submitting a revised grading plan for Ceja Vista Unit 3. The Drainage and Grading plan has been revised to accommodate offsite flows from the adjacent Albuquerque Public School site (APS). The design allows for the 10-day, 100-yr storm event for existing conditions for off-site flows and developed conditions for Ceja Vista Unit 3. The storm drain is designed to accept a peak flow of 25 cfs from the APS site for developed conditions. This flow rate was agreed upon with AMAFCA and APS. The Ceja Vista Unit 3 storm drain system will not accommodate developed flows until the outfall has been constructed in Ceja Vista Phase II, currently being processed through Bernalillo County for special use permit. The Southwest Mesa High School is schedule to be completed in the fall of 2009.

Attached is a copy of the Bernalillo County approved grading plan for the APS site. The approved grading plan identifies a temporary retention pond designed to accommodate their interim condition flow rates.

Please contact if you have any questions.

Sincerely,

MARK GOODWIN & ASSOCIATES, P.A.

Scott Medina, PE

Project Engineer

ASM/la

Attachments

Tim Eichenberg - Chair Danny Hernandez - Vice Chair Daniel F. Lyon - Scoretary - Treasurer Flonald D. Brown - Assislant Secretary -Treasurer Janet Saiers - Director

> John P. Kelly, P.E. Exocutivo Engineer

Albuquerque **M**etropolitan

Апоуо

Flood

Control

Authority

2400 Frospect N.E., Albuquerque, NM 87107 Phane: [505] 884-2215 Fax: (505) 884-0214

Post-it® Fax Note 7671	Date 2-11 pages > 1
To Brad Bingham	From Lynn Mazur
Co./Dept. Hudra 10 94	CO. AMAFCA
Phone #	Phone #
Fax #	Fax #

December 11, 2006

Mr. Scott Medina, P.E.
D. Mark Goodwin & Associates, P.A.
P.O. Box 90606
Albuquerque, NM 87199

Rc:

Coja Vista Subdivision Drainage Report, ZAP P-9

Engineer's Stamp Dated December 6, 2006

Dear Mr. Medina:

AMAFCA has reviewed the referenced report and approves the Grading and Drainage Plan for Preliminary Platting action. I would like to point out that, per our previous discussion, AMAFCA will accept free discharge from Unit 1 of Phase I, which is located at the southeast corner of Unser and Dennis Chavez. The total combined flow rate from the Dennis Chavez right-of-way and Unit 1 will be approximately 126 cfs to the Hubbell Channel and Dam system. Onsite detention will not be required for Unit 1.

AMAFCA will review and sign the work order plans. A water quality manhole to treat the first flush of debris and pollutants will be required for the Unit 1 storm drain system. The connection to the Hubbell Channel will also require a three-party license among the developer (builder), the City (for maintenance) and AMAFCA (licensor). This document is prepared by AMAFCA staff.

If you have any questions, please call me at 884-2215.

Sincerely,

AMAFCA

Lynn M. Mazur, P.E., C.F.M. Development Review Engineer

Lymm mayon

Cc:

Brad Bingham, City Hydrology

Jerry Lovato, AMAFCA

Ceja Vista Temporary Pond Volumes

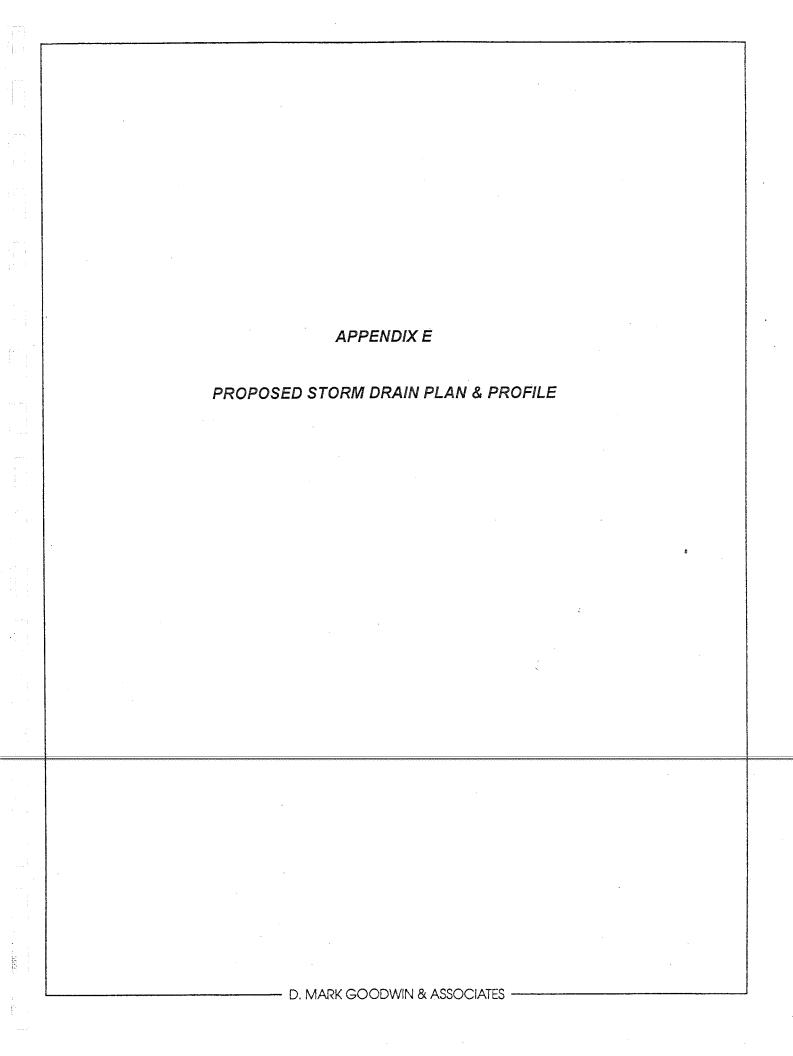
	D	1.97	
Excess Precip 6-hr	Э	0.99	
Excess P	В	19.0	
	А	0.44	
)			
		Zone 1	

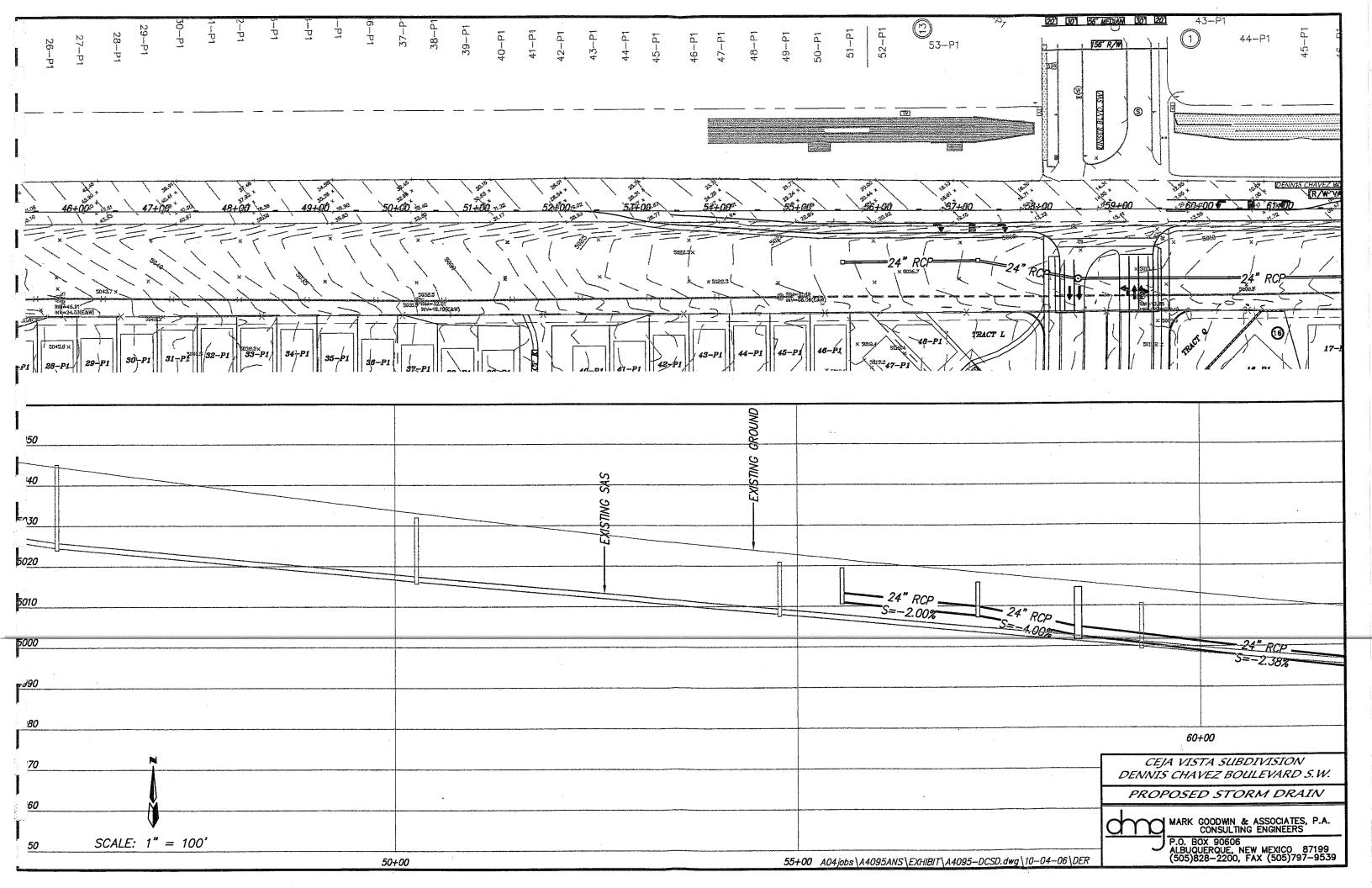
Ad	15.09	9.22	0.00	1.44	25.75
Op	47.46	19.52	1.28	2.93	71.19
	41.4%	85.0%	%0.0	92.9%	
S	29.3%	7.5%	%0.0	3.6%	
В	29.3%	7.5%	%0.0	3.6%	
٧	%0	%0	100%	0%	
ea (mi^2)	0.057	0.017	0.005	0.002	
Ā					L
Area (ac)	36.46	10.85	2.92	1.55	51.78
Basin	Unit 2	98th SVComm.	Open Space	Unser	Total
	Area (ac) Area (mi^2) A B C D Qp	Area (ac) Area (mi^2) A B C D Qp 36.46 0.057 0.0	Area (ac) Area (mi^2) A B C D Qp 36.46 0.057 0% 29.3% 29.3% 41.4% 47.46 10.85 0.017 0% 7.5% 7.5% 85.0% 19.52	Area (ac) Area (mi^2) A B C D Qp 36.46 0.057 0% 29.3% 29.3% 41.4% 47.46 10.85 0.017 0% 7.5% 7.5% 85.0% 19.52 2.92 0.005 1006 100% 0.0% 0.0% 1.28	Area (ac) Area (ac) Area (mi^2) A B C D Qp 36.46 0 057 0% 29.3% 29.3% 41.4% 47.46 10.85 0 017 0% 7.5% 7.5% 85.0% 19.52 2.92 0 005 100% 0.0% 0.0% 1.28 1.28 1.55 0 002 0% 3.6% 3.6% 92.9% 2.93

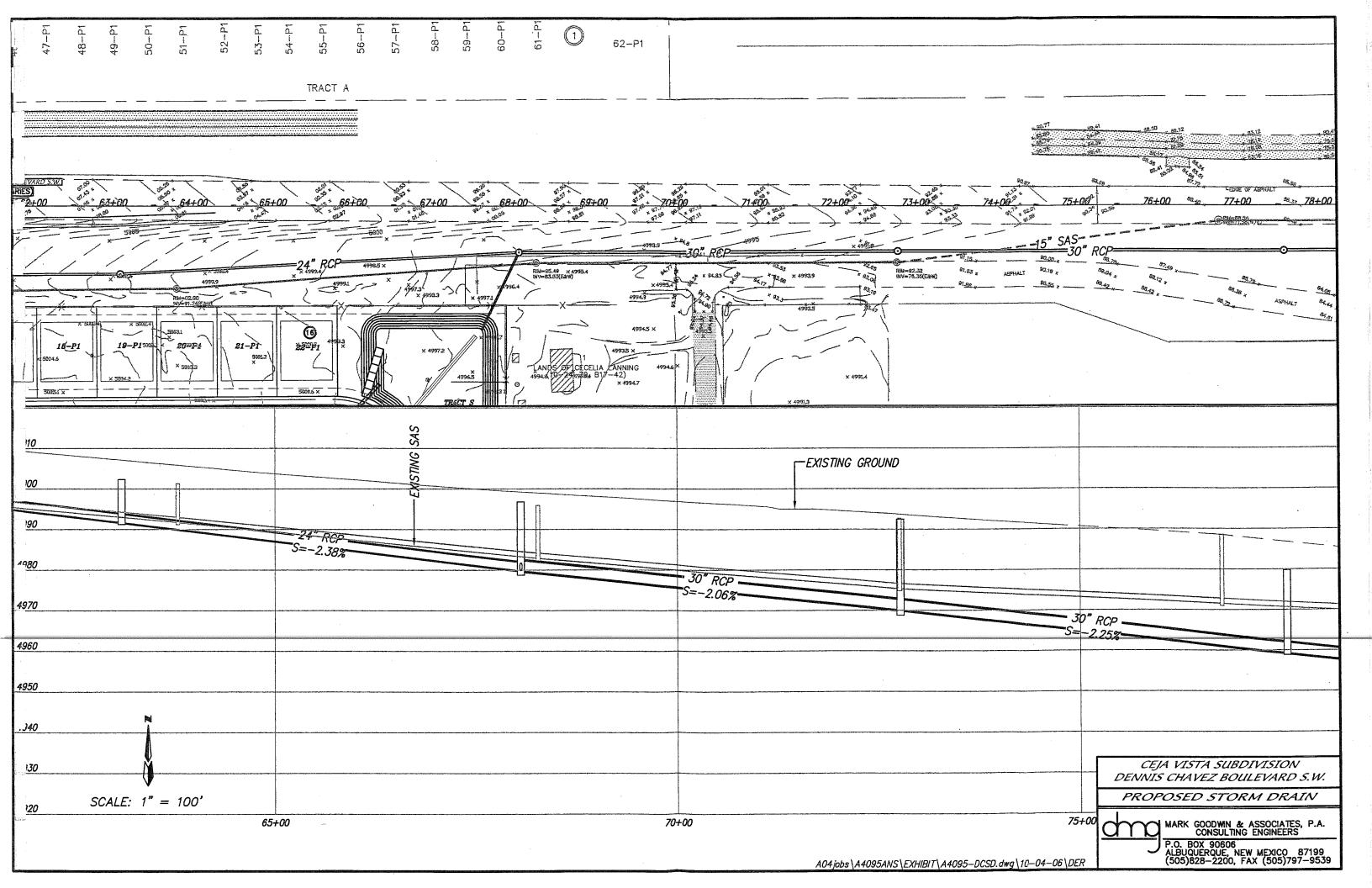
	Ad	11.68
	Qp	35.63
	Q	43.5%
nent	ပ	28.3%
Land Treatmen	В	28.3%
	⋖	%0
	rea (mi^2)	0,042
	Area (ac) Ar	26.88
	Basin	Unit 3

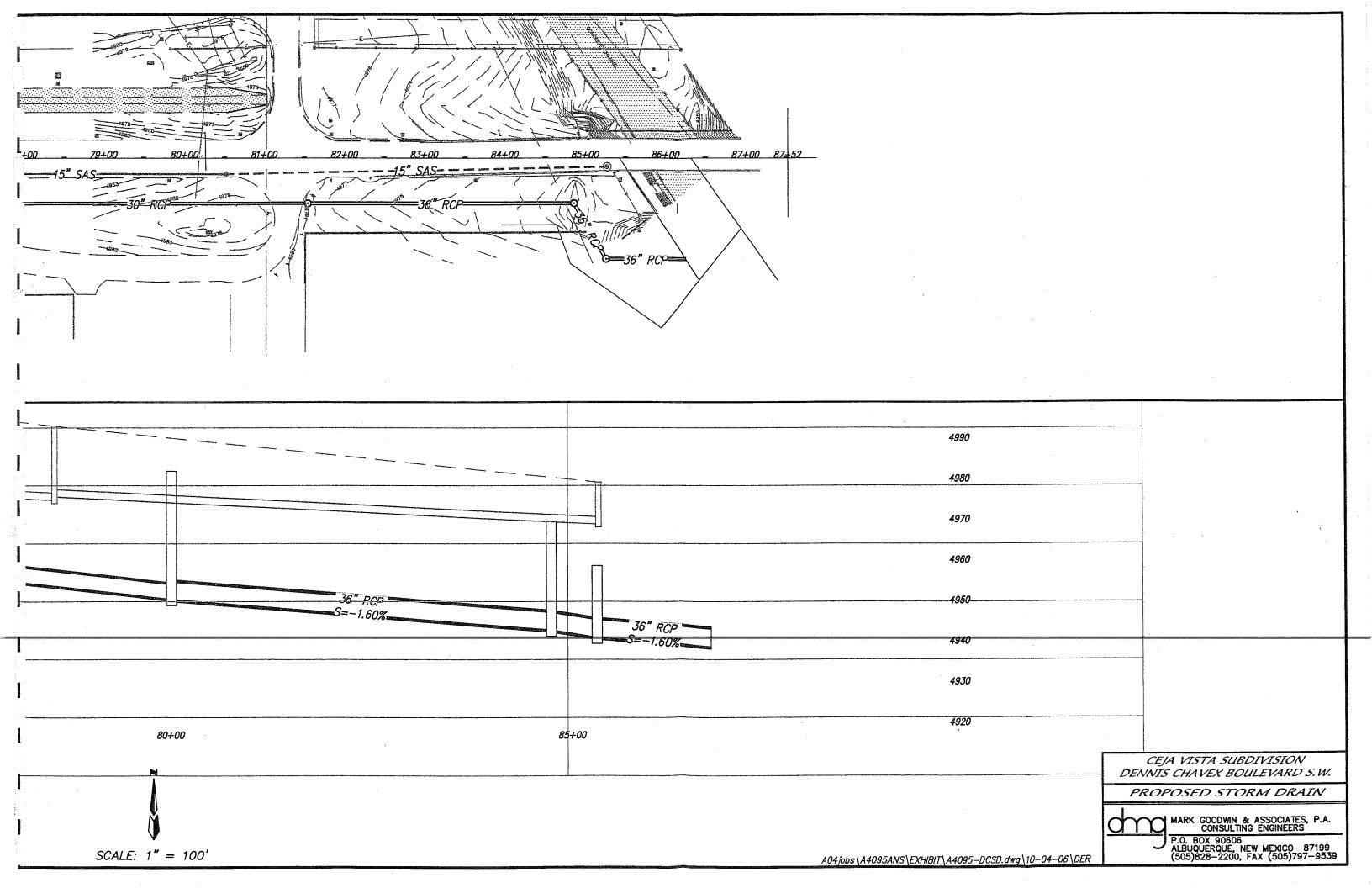
9.087 ac-ft

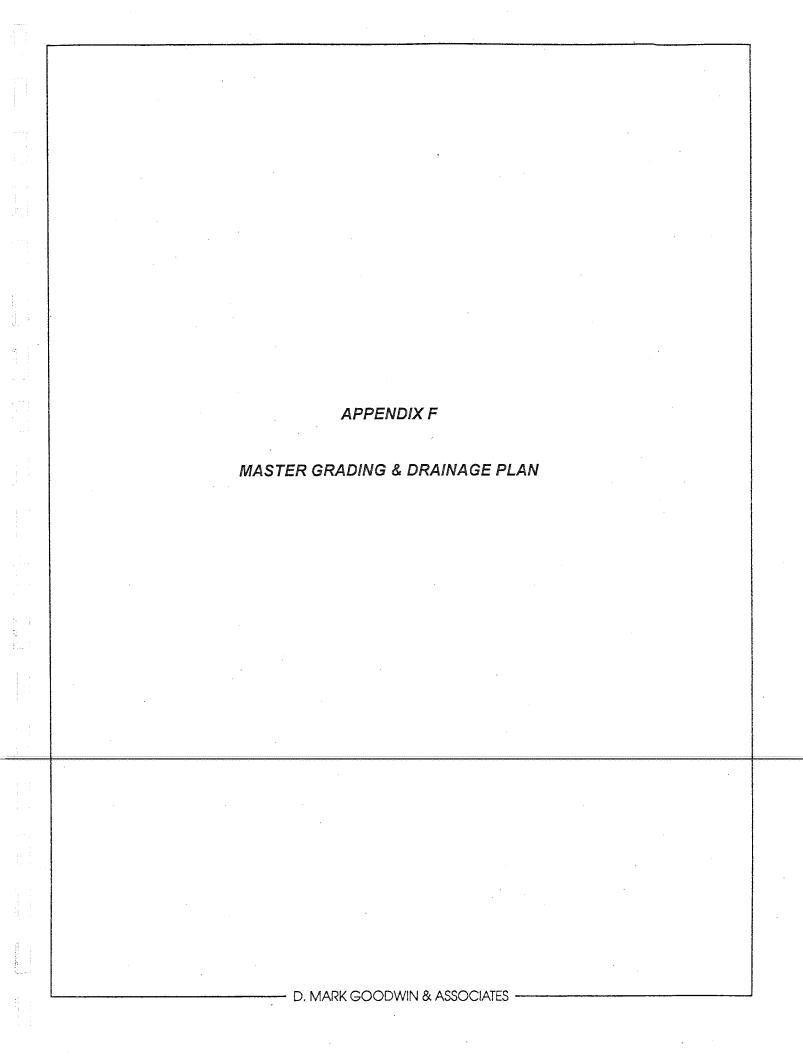
V(10 day)=


5.933 ac-ft


N360=


1.375


Weighted E=


1.325	2.969 ac-ft	4.400 ac-ft
Weighted E=	V360=	V(10 day)≂

