
CITY OF ALBUQUERQUE

Planning Department
David Campbell, Director

June 20, 2019

Mike Balaskovits, PE Bohannan Huston, Inc. 7500 Jefferson St NE Albuquerque, NM 87109

RE: Mesa Del Sol Montage Unit 3B

Revised Grading Plan Stamp Date: 6/6/19 (Sheets 1 & 5)

Grading Plan Stamp Date: 2/15/19 Drainage Report Stamp Date: 1/18/19

Hydrology File: R16D006

Dear Mr. Balaskovits:

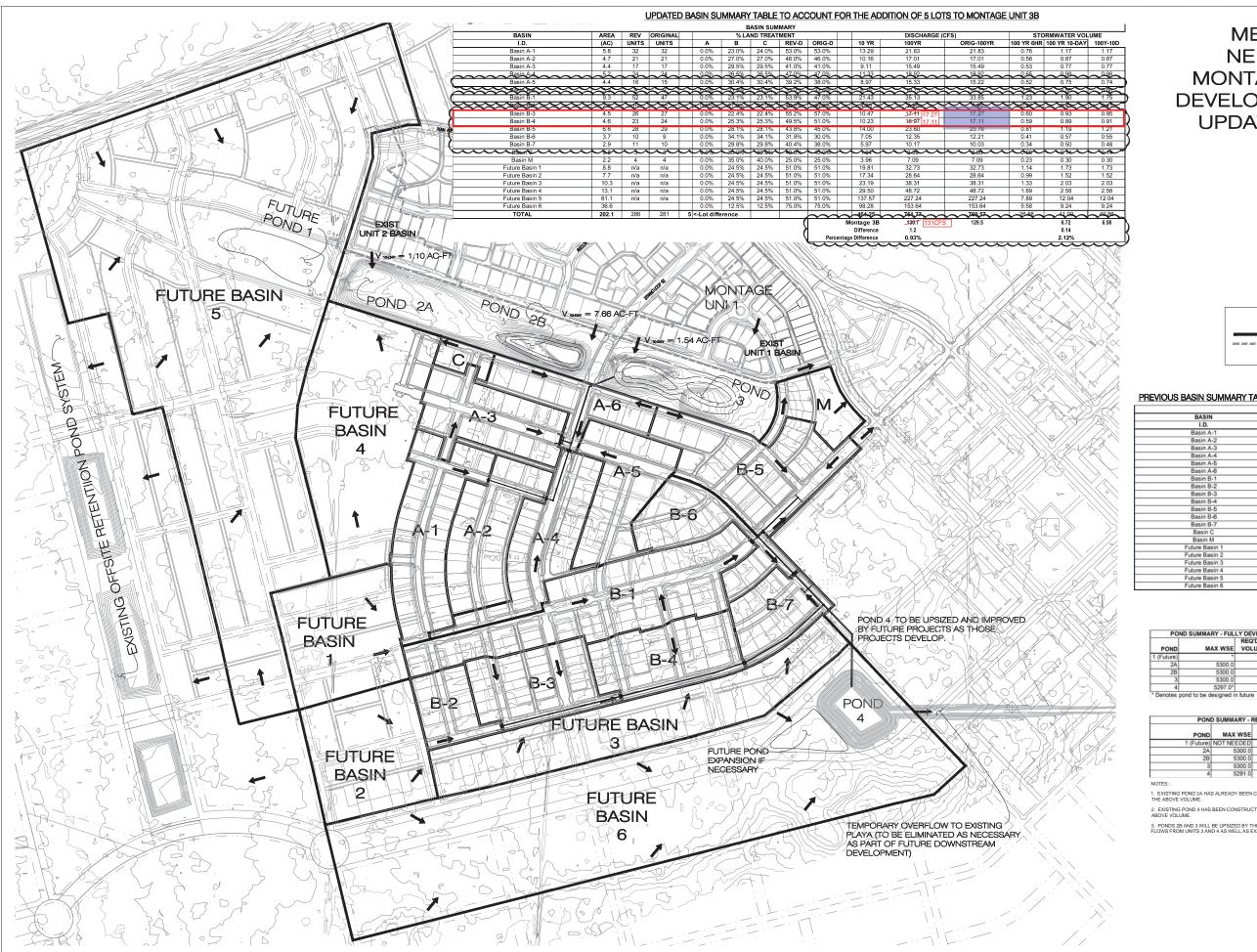
Based on the submittal received on 6/7/19 the above-referenced Grading Plan and Drainage

Report are re-approved for Preliminary Plat, Grading Permit & Work Order.

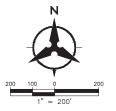
If you have any questions, please contact me at 924-3695 or dpeterson@cabq.gov.


Albuquerque

Sincerely,


NM 87103

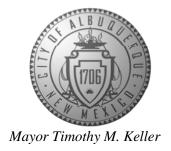
www.cabq.gov Dana M. Peterson


Senior Engineer, Planning Dept. Development Review Services

MESA DEL SOL **NEIGHBORHOOD MONTAGE UNITS 3 & 4 DEVELOPED CONDITIONS UPDATED BASIN MAP** 10/2018

PREVIOUS BASIN SUMMARY TABLE FROM 2014

	BASIN SUMM	IARY	CV.	
BASIN	AREA	DISCHARGE (CFS)	STORMWA	TER VOLUME
I.D.	(AC)	100YR	100 YR 6HR	100 YR 10-DAY
Basin A-1	5.8	21.83	0.76	1.17
Basin A-2	4.7	17.01	0.58	0.87
Basin A-3	4.4	15.49	0.53	0.77
Basin A-4	5.2	18.92	0.65	0.98
Basin A-5	4.4	15.22	0.51	0.74
Basin A-6	3.2	10.75	0.36	0.50
Basin B-1	9.3	33.85	1.16	1.75
Basin B-2	2.2	7.96	0.27	0.41
Basin B-3	4.5	17.27	0.61	0.95
Basin B-4	4.6	17.11	0.59	0.91
Basin B-5	6.6	23.76	0.81	1.21
Basin B-6	3.7	12.21	0.40	0.55
Basin B-7	2.9	10.03	0.34	0.48
Basin C	0.8	2.80	0.09	0.14
Basin M	2.2	7.09	0.23	0.30
Future Basin 1	8.8	32.73	1.14	1.73
Future Basin 2	7.7	28.64	0.99	1.52
Future Basin 3	10.3	38.31	1.33	2.03
Future Basin 4	13.1	48.72	1.69	2.58
Future Basin 5	61.1	227.24	7.89	12.04
Future Basin 6	36.6	153.64	5.58	9.24


POND	MAX WSE	REQ'D STORAGE VOLUME (AC-FT)	MAX DEPTH (FT)
1 (Future)		12.04	
2A	5300.0	3.98	5.5
2B	5300.0	7.82	11.0
3	5300.0	8.54	11.0
4	5297.0°	19.04	14*

PON	ID SUMMARY - F	REQUIRED VOLUME	S FOR UNITS 3 AND) 4
PONE	MAX WSE	REQ'D STORAGE VOLUME (AC-FT)	MAX DEPTH (FT)	MAX AVAILABLE VOLUME (AC-FT)
1 (Future	NOT NEEDED	0.00	N/A	N/A
2A	5300.0	3.98	N/A	4.1
2E	5300.0	7.82	11.0	10.1
- 3	5300.0	8.54	11.0	10.1
	E201 0	6.26	9.0	10.5

CITY OF ALBUQUERQUE

Planning Department
David Campbell, Director

February 15, 2019

Mike Balaskovits, PE Bohannan Huston, Inc. 7500 Jefferson St NE Albuquerque, NM 87109

RE: Mesa Del Sol Montage Unit 3B

Grading Plan Stamp Date: 2/15/19 Drainage Report Stamp Date: 1/18/19

Hydrology File: R16D006

Dear Mr. Balaskovits:

Based on the submittal received on 1/23/19 the above-referenced Grading Plan and Drainage Report are approved for Grading Permit & Work Order.

PO Box 1293

If you have any questions, please contact me at 924-3695 or dpeterson@cabq.gov.

Albuquerque

Sincerely,

NM 87103

Dana M. Peterson

www.cabq.gov

Senior Engineer, Planning Dept. Development Review Services

City of Albuquerque

Planning Department

Development & Building Services Division

DRAINAGE AND TRANSPORTATION INFORMATION SHEET (REV 6/2018)

Project Title: MDS Montage Unit 3B	Building Perm	nit #: Hydrology File #: R16/D006
		Work Order#:
Legal Description:		
City Address:		
Applicant: BHI Address: 7500 Jefferson St. NE		Contact: Mike Balaskovits
Phone#: 505-798-7891	Fax#:	E-mail: Bhinc.con
Other Contact:		Contact:
Address:		
		E-mail:
TYPE OF DEVELOPMENT: X (135) _{PLAT}	(# of lots)	RESIDENCE DRB SITE ADMIN SITE
IS THIS A RESUBMITTAL? Yes DEPARTMENT TRANSPORTATION		OLOGY/DRAINAGE
Check all that Apply: TYPE OF SUBMITTAL: ENGINEER/ARCHITECT CERTIFICATION CONCEPTUAL G & D PLAN GRADING PLAN (Resubmittal) DRAINAGE REPORT (Resubmittal) DRAINAGE MASTER PLAN FLOODPLAIN DEVELOPMENT PERMIT ELEVATION CERTIFICATE CLOMR/LOMR TRAFFIC CIRCULATION LAYOUT (TCI TRAFFIC IMPACT STUDY (TIS) STREET LIGHT LAYOUT OTHER (SPECIFY) PRE-DESIGN MEETING?	APPLIC	TYPE OF APPROVAL/ACCEPTANCE SOUGHT: BUILDING PERMIT APPROVAL CERTIFICATE OF OCCUPANCY X PRELIMINARY PLAT APPROVAL SITE PLAN FOR SUB'D APPROVAL SITE PLAN FOR BLDG. PERMIT APPROVAL FINAL PLAT APPROVAL SIA/ RELEASE OF FINANCIAL GUARANTEE FOUNDATION PERMIT APPROVAL X GRADING PERMIT APPROVAL SO-19 APPROVAL PAVING PERMIT APPROVAL GRADING/ PAD CERTIFICATION WORK ORDER APPROVAL CLOMR/LOMR FLOODPLAIN DEVELOPMENT PERMIT OTHER (SPECIFY)
DATE SUBMITTED: 01/23/2019	By:Mil	ke Balaskovits, PE (Kelly Klein, PE)
COA STAFF:	ELECTRONIC S	UBMITTAL RECEIVED:

FEE PAID:_____

Courtyard I 7500 Jefferson St. NE Albuquerque, NM 87109-4335

www.bhinc.com

voice: 505.823.1000 facsimile: 505.798.7988 toll free: 800.877.5332

January 23, 2017

Mr. Shahab Biazar, P.E. Principal Engineer, Planning Department Development and Review Services 600 2nd St. NW Albuquerque, NM 87103

Re: Project No 775782: Mesa Del Sol, Montage Unit 3B - Re-Submittal

-Drainage Report for Mesa del Sol Residential Montage Unit 3 and 4 (Prior Stamp Date:

4/25/2014) New Stamp Date 01/18/2019

-Grading & Drainage Plan (Prior Stamp Date 8/29/2018) New Stamp Date 01/182019

Dear Mr. Biazar:

Enclosed for your review is a copy of the revised Mesa de Sol, Montage Unit 3B Drainage Report and Grading and Drainage Plan. The revisions are based on comments that you provided in your letter dated October 24,2018. Below is our response to each of your comments (your original comments in underlined italics below):

- An Erosion and Sediment Control Plan must be submitted to Storm Water Quality prior to approval for Grading Permit. An ESC Plan has been submitted and approved. Reference: Mesa de Sol Unit 3B Erosion Sediment Control Plan Engineer's stamp date 12-19-18 (RE16E006).
- The revised hydrology calculations shown on the updated Basin Map must be stamped and signed by a professional engineer licensed in the state of New Mexico.
 A revised Drainage Report is submitted with this letter in support of our responses to hydrology comments and contains the revised Basin Maps. The revised stamped and signed Drainage Report satisfies this comment.
- 3. The pond volume summary on the revised Basin Map is not adequate for review.

 Since this plan is revising the previous design of the ponds, a complete presentation of all related calculations is required. Detailed pond volume calculations are required including hydrology calculations and basin maps of all areas that drain to the ponds and volume calculations that show the area of each contour and the associated volume calculated using the conic equation. The Drainage Report for Mesa del Sol Residential Montage Unit 3 and 4 has been revised to address these comments. The existing volumes from Montage Units 1 and 2 entering the Ponds 2B and 3 is 7.75 ac-ft and was taken from the Approved Drainage Report Mesa del Sol Residential Montage Unit 1 and 2, revised 01/14/2011, COA Record Number R16D003A. The proposed development for Units 3 and 4 increases the pond volume requirements by 8.61 ac-ft. The total required pond volume is 16.36 ac-ft. The design capacity of the ponds is 19.71 ac ft. The ponds therefore have adequate capacity for existing and proposed conditions in their current design. Details of these calculations are discussed in Section V, Exhibits 5 and 6, and Engineering

Spatial Data A

Appendix E of the drainage report. The volume of the ponds was determined with the grading design software.

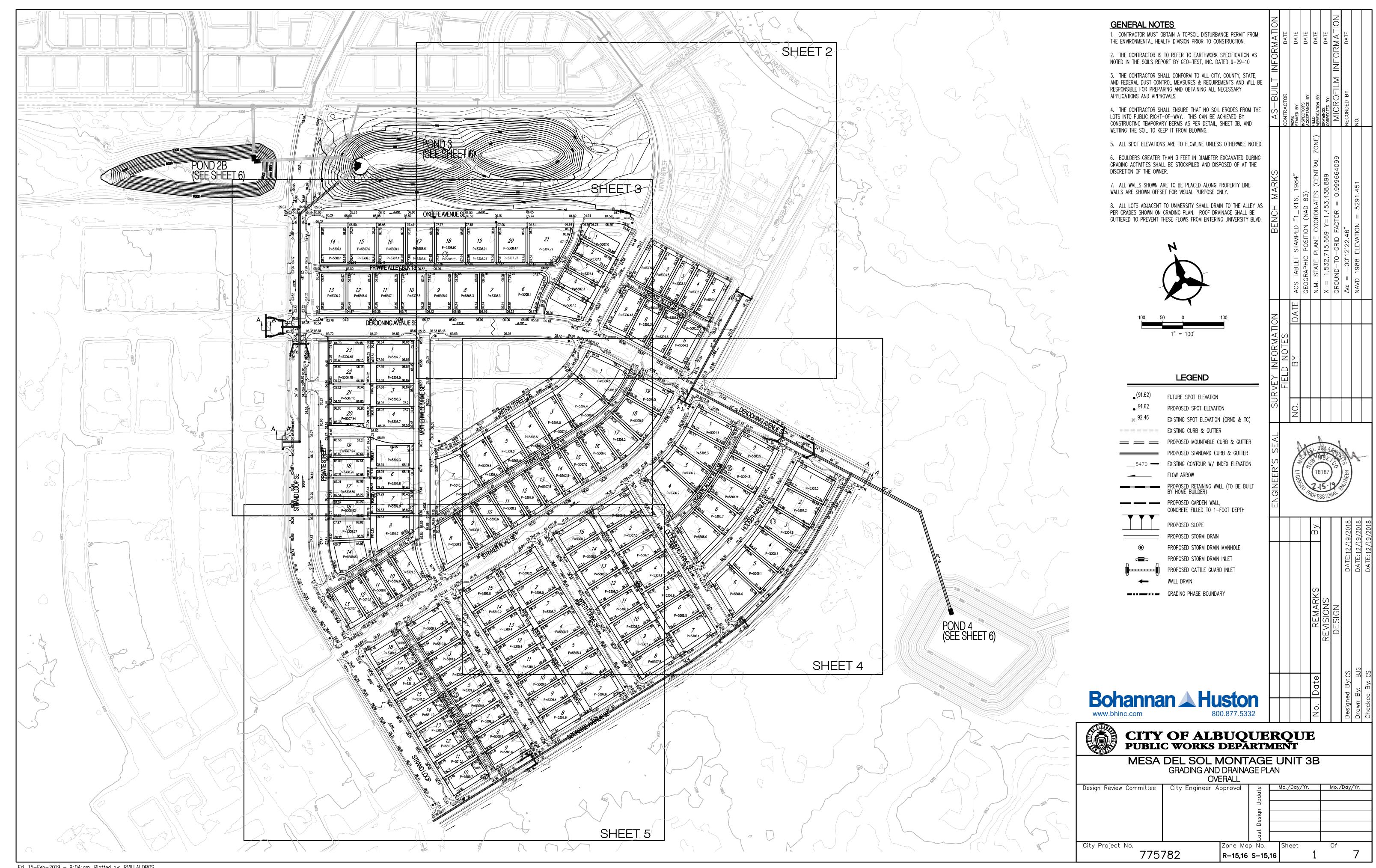
Show all pipes connecting to the ponds and provide HGL calculations for the pipes.

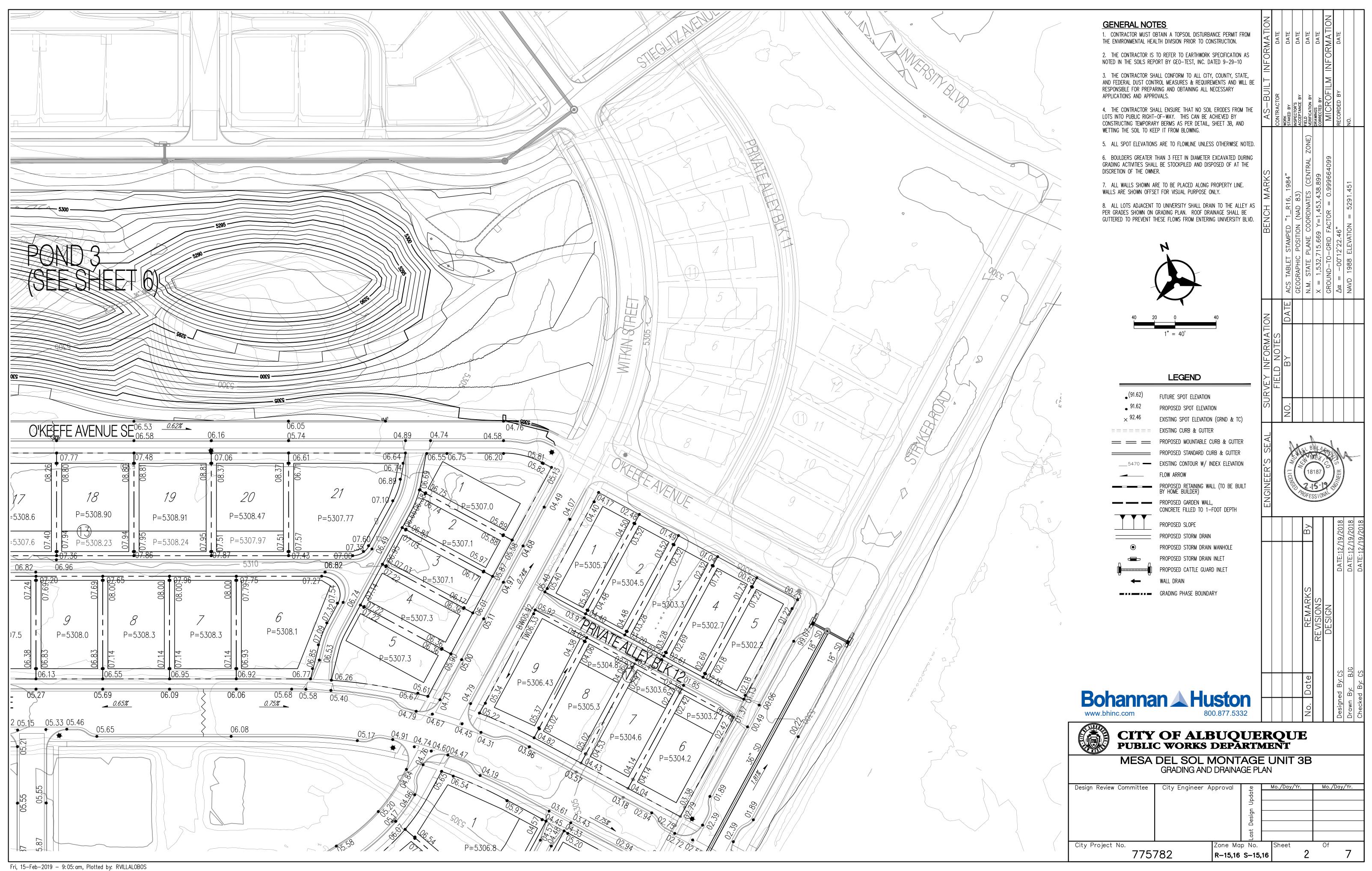
<u>Label 1 00-year water surface elevations and associated volumes of the ponds.</u>

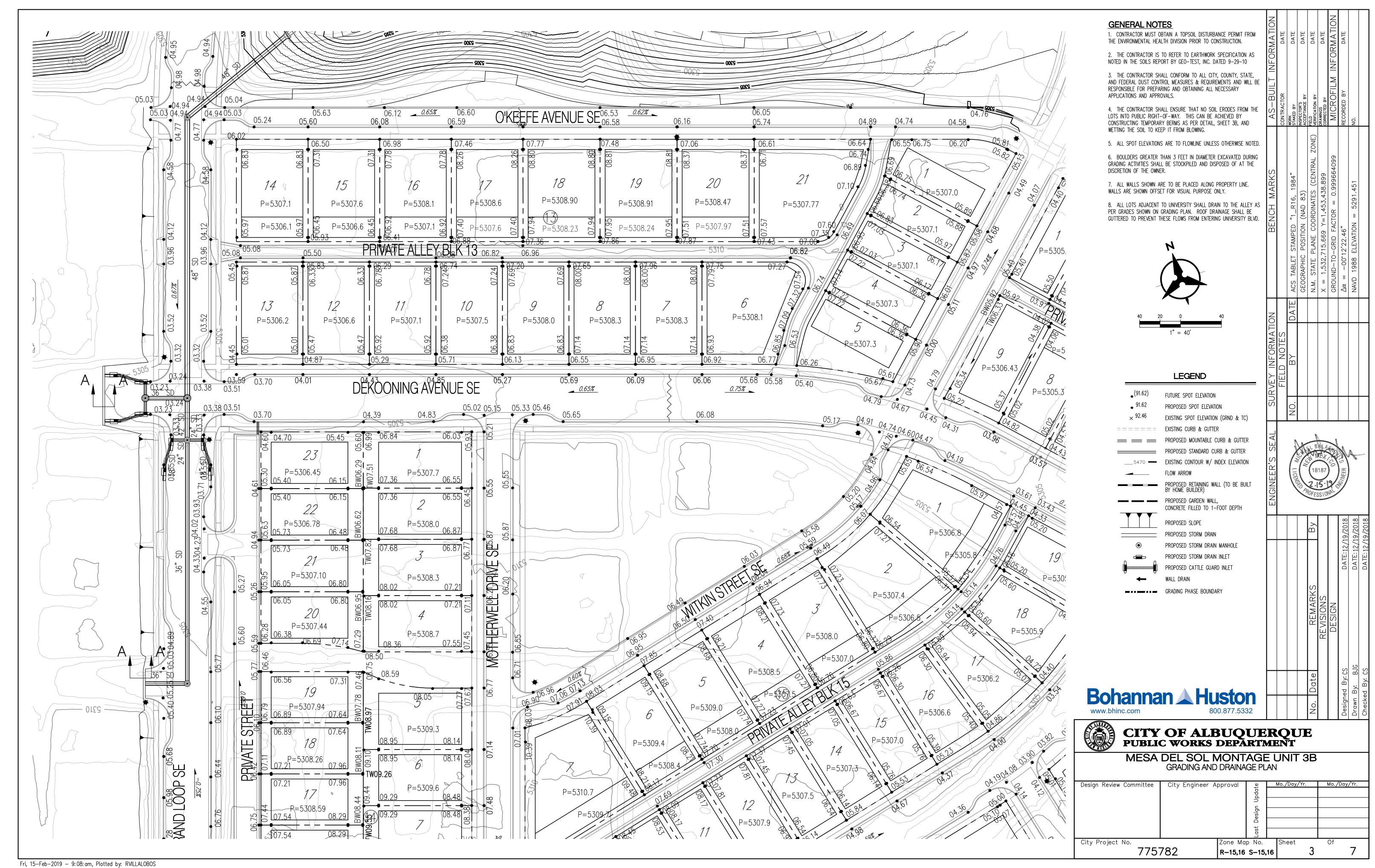
<u>Additional pond comments may be forthcoming after the design calculations are provided.</u> The pipes are shown on the attached grading and drainage plan and updated on the Basin Maps within the drainage report. Per conversations with City Hydrology, HGL calculations have been checked in areas that have been considered critical and adjusted as necessary. In addition, the 100 year water surface elevations are also noted on the Developed Basin Maps within the Drainage Report.

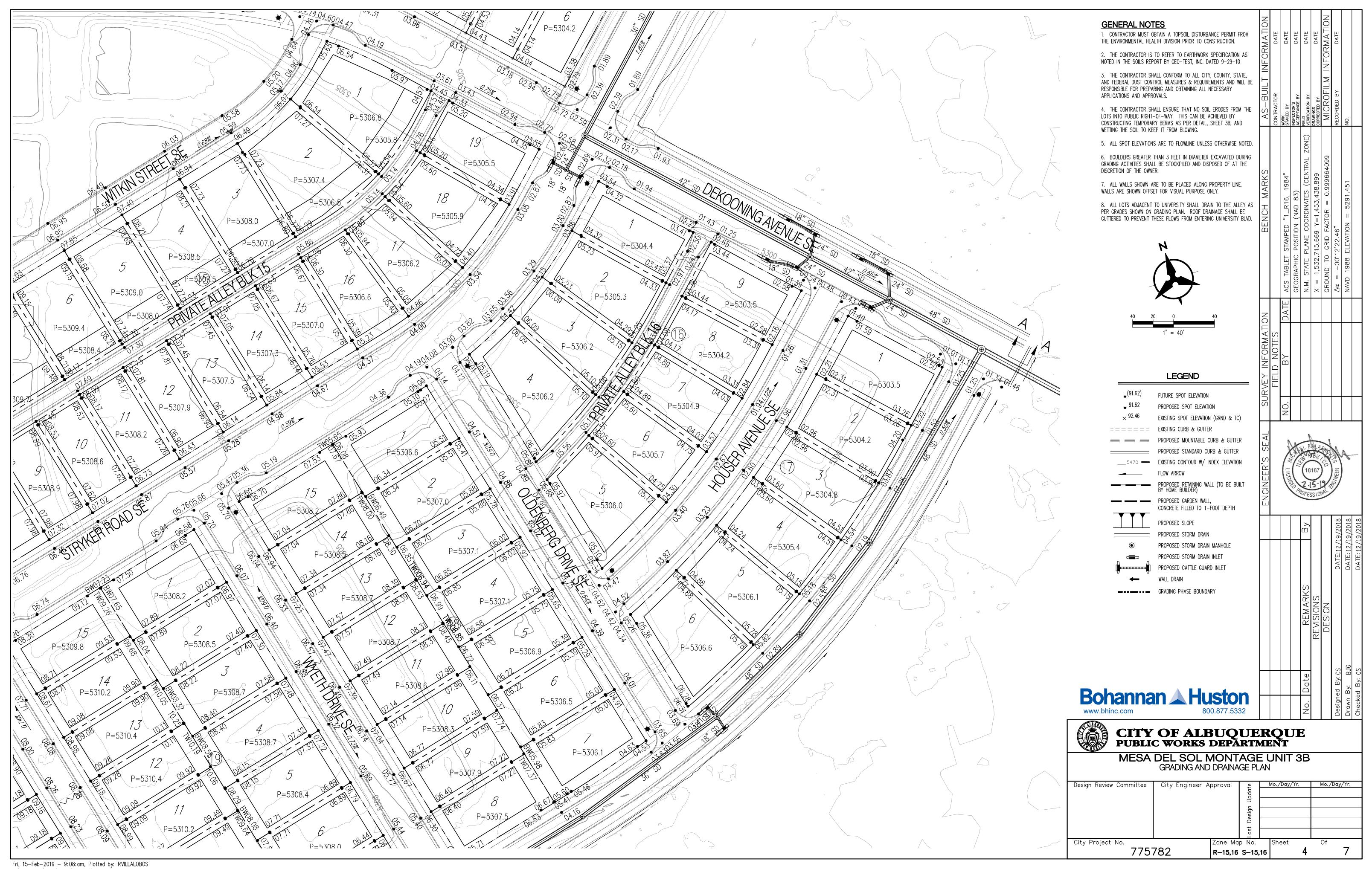
- 4. Provide HGL calculations per DPM and profiles showing HGL. The In Roads calculations in the report do not account for the minor losses using the DPM equations. An overall plan view and profiles should be included with the hydrology submittal and must agree with the G&D Plan. Profiles of all pipes, including the laterals, are required both in the Hydrology submittal and on the DRC plans... Per conversations with City Hydrology, HGL calculations are not required to be shown on the re-submitted Grading and Drainage plan set. However, BHI reviewed the HGL calculations and have shown the pipe design to be within acceptable standards and adjusted on the plans as necessary. See Attached "Hydraulic Analysis for Storm Drain using StormCAD for HGL Calculations" for the critical storm drain system out falling into Pond 3.
- 5. Show all retaining walls including those less than 2' and differentiate walls to be constructed by developer from walls to be deferred to builders. See Revised Grading Plan. All walls within the proposed design are 2' tall or under. Where walls near the 2' height, additional spot elevations TW (top of wall) and BW (bottom of wall) were added. Wall sections are detailed on Sheet 7 of 7 in the revised Grading and Drainage Plan.
- 6. Show typical sections at the walls showing both the interim grading that will be certified on the Engineer's Certification after the developer's work is complete and the future grading that will occur after the walls are built by the home builder. The typical sections should show the property lines and horizontal and vertical dimensions (maximum and minimum). See Revised Grading Plan Sheet 7 of 7.
- 7. Show how the side yard walls will terminate, detailing the transition from 1.9' height to 0.0' height of retaining. Show that the grade is the same on both sides of the wall at the termination point. For example, there is a 1.9' grade difference between lots 8 and 9 in block 12 and lot 9 is 2' higher than the alley to the north. Show how the grade of lot 8 ties into the grade of the alley. Added to the Revised Grading Plan.
- 8. <u>Add typical sections at walls, both retaining and garden walls, where they are next to right of ways showing that the footer does not encroach into the right of way.</u> Added to the Revised Grading Plan on Sheet 7 of 7
- 9. <u>Add the standard private maintenance note to the preliminary plat note regarding the drainage easement on the alleys.</u> The attached Preliminary Plat includes this note.

- 10. More grading detail is needed on the interface between the alleys, the streets, and the lots. For example, the side yard swale elevations at the rear of lot 9 block 12 and the right of way elevation of Witkin Street next to lot 9 is about 0.5' higher than the pad, and the pad is about 1.3' higher than the adjacent grade in the alley which seems to indicate that some drainage is going to the alley. Grading Plan revised and spot elevation corrected on the attached Revised Grading Plan.

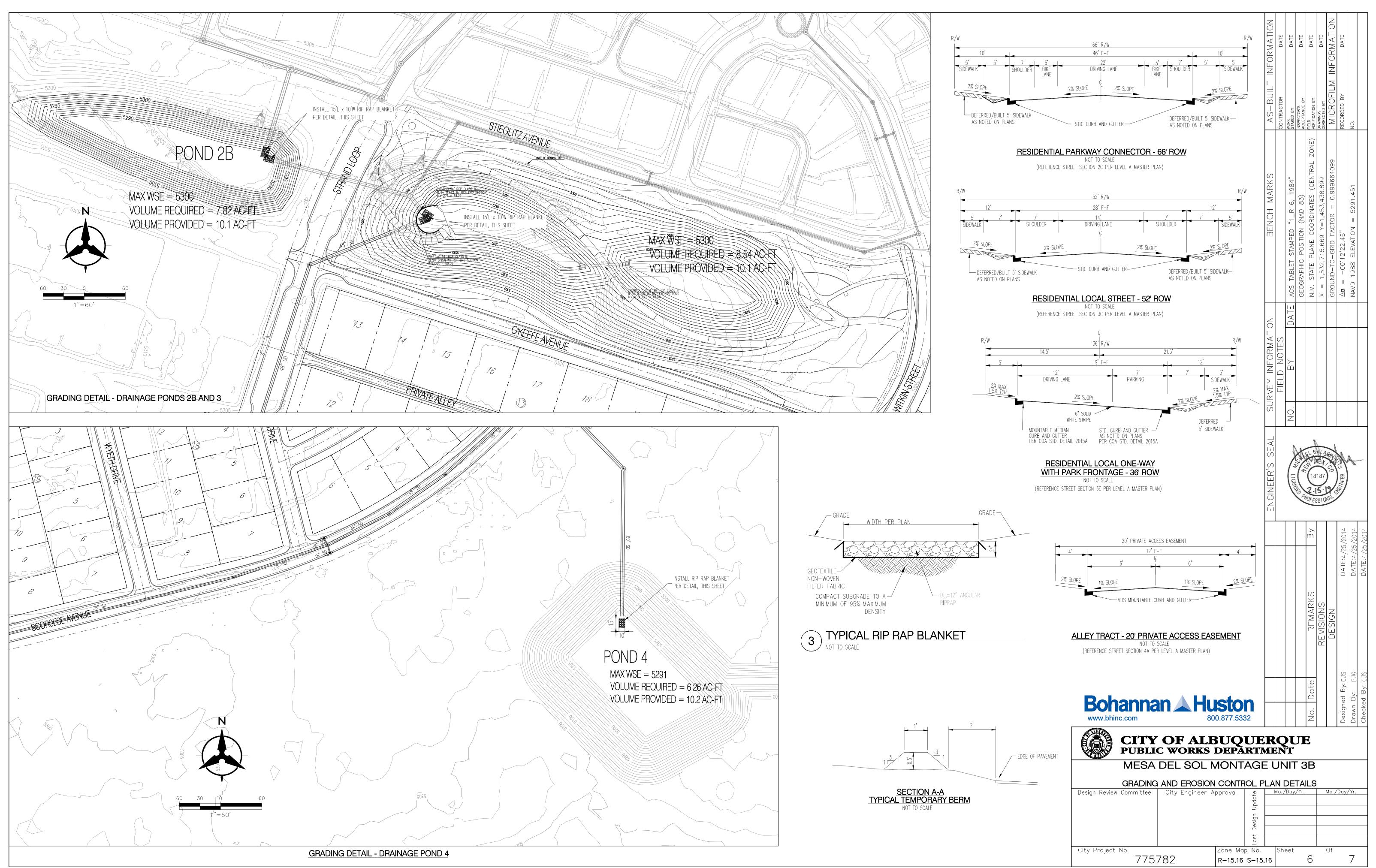

 Show the sidewalks on sheet 3. Added to the Grading Plan.
- 11. <u>Several spot elevations on sheet 2 appear to be incongruous with the surrounding elevations.</u> The sub comments a-e under item 11 have been addressed and revised on the attached Grading Plan. All of the remaining grading sheets were reviewed and the spot elevations were also revised as necessary.

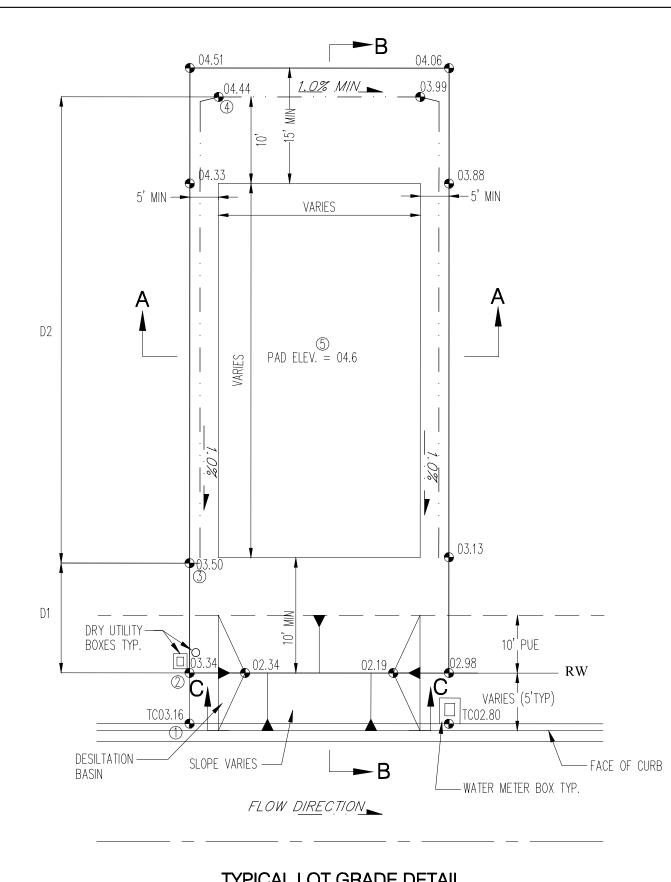

Sincerely,

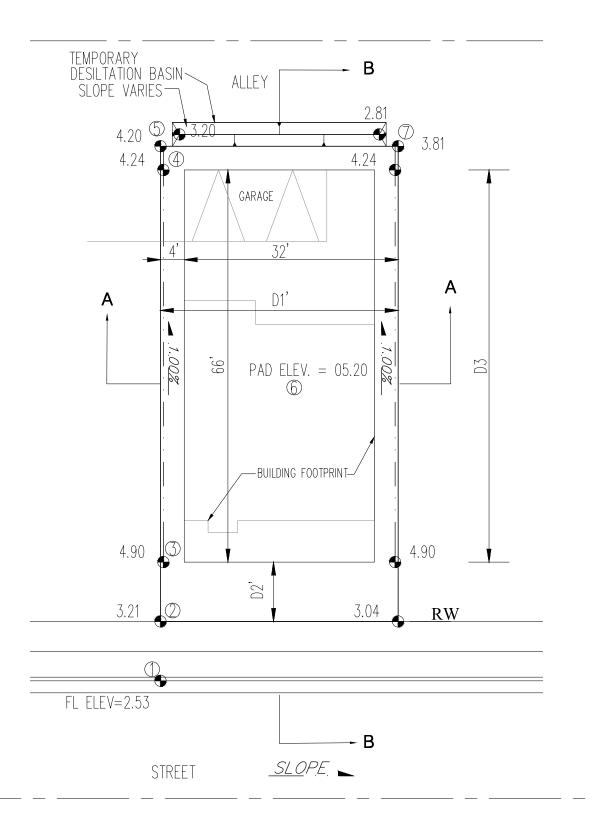

Mike Balaskovits, PE


Vice President

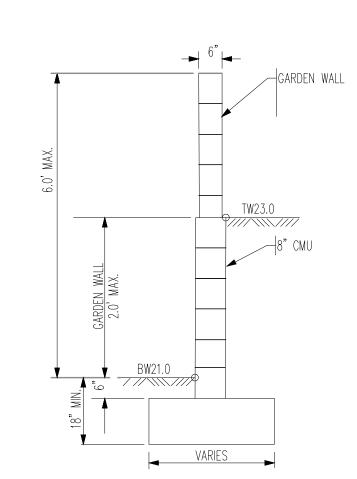
Community Development and Planning





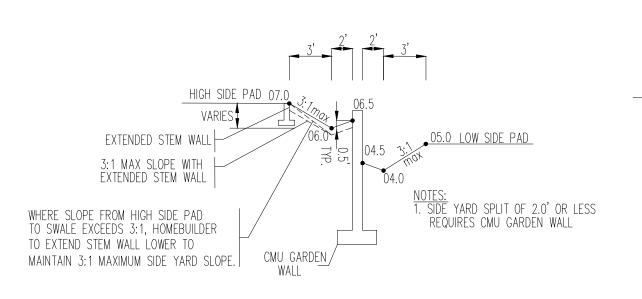


TYPICAL LOT GRADE DETAIL TYPICAL LOT GRADE DETAIL WITH DESILTATION BASIN FOR SEDIMENTATION CONTROL NOT TO SCALE


O - ADD 0.17' TO SPOT①
O - MULTIPLY D1 BY 1.0% AND ADD TO SPOT②
O - MULTIPLY D2 BY 1.0% AND ADD TO SPOT③
O - ADD 0.2' TO SPOT④

BOTTOM OF BASIN IS 1' BELOW PROPERTY LINE ELEVATION. SEE GRADING PLANS FOR EXACT ELEVATIONS. CONTRACTOR SHALL CONSTRUCT TEMPORARY DESILTATION BASIN AT EACH LOT.

WITH DESILTATION BASIN FOR SEDIMENTATION CONTROL STREET PRODUCT TYPE w/ALLEY

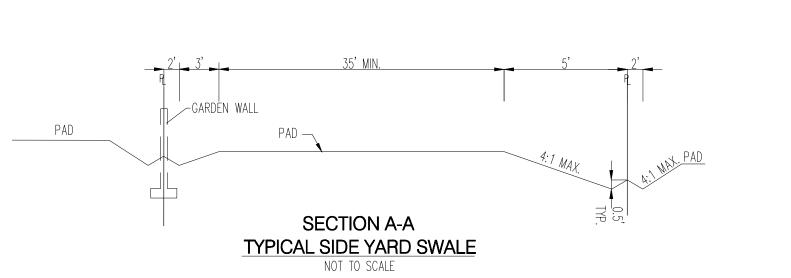

TO SET SPOT — ADD 0.30 TO SPOT
TO SET SPOT — MULTIPLY D3 BY 1.00% AND ADD TO SPOT
TO SET SPOT — ADD 1.05' TO SPOT
TO SET SPOT — SUBTRACT .04 FROM SPOT
TO SET SPOT — ADD 0.3' TO SPOT
TO SET SPOT — MULTIPLY D1 BY 1.00% AND SUBTRACT FROM SPOT

TW=FINISHED GRADE ELEVATION AT TOP OF RETAINING WALL BW=FINISHED GRADE ELEVATION AT BOTTOM OF RETAINING WALL

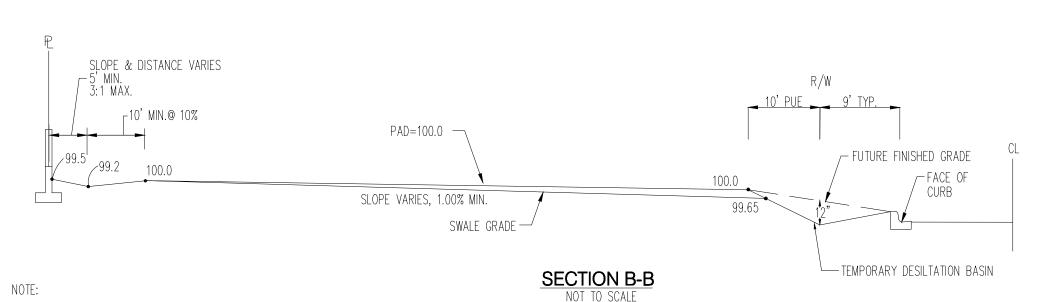
TYPICAL GARDEN WALL NOMENCLATURE

(RETAINING HEIGHT IS TAKEN TO BE DIFFERENCE IN FINISHED GRADES ON LEFT AND RIGHT SIDE OF WALL.)

SIDE YARD GARDEN WALL DETAIL NOT TO SCALE

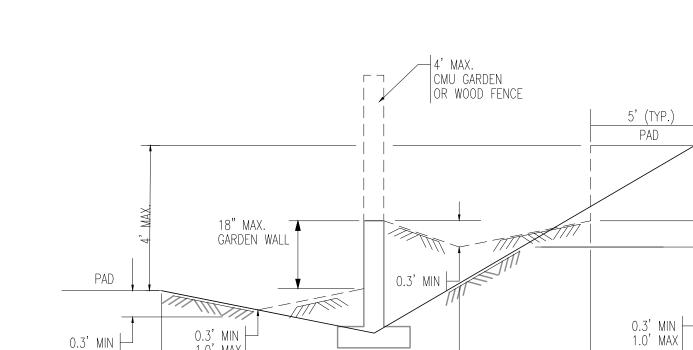

4'MAX. STEM WALL SIDE YARD SPLIT OF GREATER THAN

PRIVACY PERIMETER & VIEW FENCE


RETAINING WALL

TYPICAL CROSS SECTION OF WALL AT ROW

NOT TO SCALE



1. CONTRACTOR IS TO MASS GRADE ROADS TO 2' BEYOND FUTURE CURB. EXCESS FROM DRY UTILITY TRENCH IS TO BE USED TO BACK FILL BEHIND

2. FRONT YARDS ARE TO BE GRADED AS SHOWN ON THIS DETAIL FOR FINAL GRADING AND CERTIFICATION THIS DETAIL TO BE COORDINATED WITH. 3. HOME BUILDER TO BRING FRONT YARD TO ULTIMATE FRONT YARD GRADES AFTER HOME CONSTRUCTION IS COMPLETED. SEE ULTIMATE FRONT YARD

GRADING DETAIL ON THIS SHEET.

TYPICAL SIDE LOT LINE SECTION

NOTE: DASHED LINES IN TYP. SIDE LOT LINE SECTIONS REPRESENT THE FINAL CONDITION AFTER THE GARDEN, STEM, AND PRIVACY WALLS HAVE BEEN CONSTRUCTED. THE INTERIM CONDITION, WHICH IS TO BE CONSTRUCTED BY THE GRADING CONTRACTOR AND CERTIFIED BY THE ENGINEER, IS REPRESENTED BY THE SOLID LINES. RETAINING WALLS WILL BE CONSTRUCTED PRIOR TO GRADING CERTIFICATION.

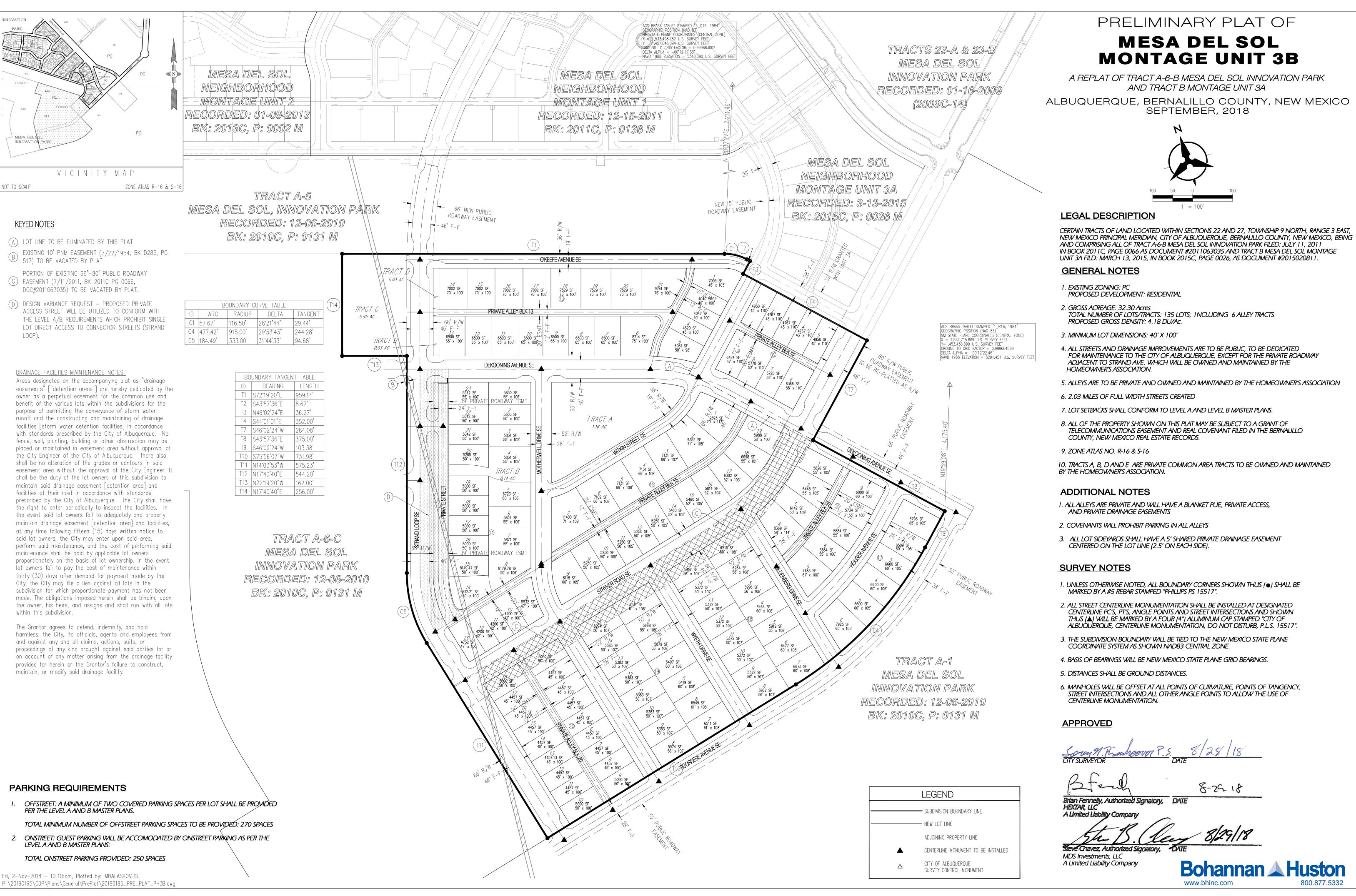
GENERAL NOTES

1. CONTRACTOR MUST OBTAIN A TOPSOIL DISTURBANCE PERMIT FROM THE ENVIRONMENTAL HEALTH DIVISION PRIOR TO CONSTRUCTION.

2. THE CONTRACTOR IS TO REFER TO EARTHWORK SPECIFICATION AS NOTED IN THE SOILS REPORT BY GEO-TEST, INC. DATED 9-29-10

3. THE CONTRACTOR SHALL CONFORM TO ALL CITY, COUNTY, STATE, AND FEDERAL DUST CONTROL MEASURES & REQUIREMENTS AND WILL BE RESPONSIBLE FOR PREPARING AND OBTAINING ALL NECESSARY APPLICATIONS AND APPROVALS.

4. THE CONTRACTOR SHALL ENSURE THAT NO SOIL ERODES FROM THE LOTS INTO PUBLIC RIGHT-OF-WAY. THIS CAN BE ACHIEVED BY CONSTRUCTING TEMPORARY BERMS AS PER DETAIL, SHEET 3B, AND WETTING THE SOIL TO KEEP IT FROM BLOWING.


5. ALL SPOT ELEVATIONS ARE TO FLOWLINE UNLESS OTHE 6. BOULDERS GREATER THAN 3 FEET IN DIAMETER EXCAV GRADING ACTIVITIES SHALL BE STOCKPILED AND DISPOSED DISCRETION OF THE OWNER.

7. ALL WALLS SHOWN ARE TO BE PLACED ALONG PROPE WALLS ARE SHOWN OFFSET FOR VISUAL PURPOSE ONLY.

8. ALL LOTS ADJACENT TO UNIVERSITY SHALL DRAIN TO PER GRADES SHOWN ON GRADING PLAN. ROOF DRAINAGE GUTTERED TO PREVENT THESE FLOWS FROM ENTERING UNIV

BOULDERS GREATER T RADING ACTIVITIES SHALL SCRETION OF THE OWNEI ALL WALLS SHOWN AF ALLS ARE SHOWN OFFSE ALL LOTS ADJACENT TER GRADES SHOWN ON O	S ARE TO FLOWLINE UNLESS OTHERWISE NOTED. THAN 3 FEET IN DIAMETER EXCAVATED DURING BE STOCKPILED AND DISPOSED OF AT THE R. RE TO BE PLACED ALONG PROPERTY LINE. IT FOR VISUAL PURPOSE ONLY. TO UNIVERSITY SHALL DRAIN TO THE ALLEY AS GRADING PLAN. ROOF DRAINAGE SHALL BE HESE FLOWS FROM ENTERING UNIVERSITY BLVD.	BENCH MARKS		ACS TABLET STAMPED "1_R16, 1984"	GEOGRAPHIC POSITION (NAD 83)	N.M. STATE PLANE COORDINATES (CENTRAL ZONE)	$X = 1,532,715.669 \ Y=1,453,438.899$	GROUND-TO-GRID FACTOR = 0.999664099	$\Delta \alpha = -00^{\circ}12'22.46"$	NAVD 1988 ELEVATION = 5291.451	
	LEGEND	EY INFORMATION	IELD NOTES	BY DATE							
(91.62) • 91.62 × 92.46 = = = = = = =	FUTURE SPOT ELEVATION PROPOSED SPOT ELEVATION EXISTING SPOT ELEVATION (GRND & TC) EXISTING CURB & GUTTER	SURVEY		O Z							
	PROPOSED MOUNTABLE CURB & GUTTER PROPOSED STANDARD CURB & GUTTER EXISTING CONTOUR W/ INDEX ELEVATION FLOW ARROW PROPOSED RETAINING WALL (TO BE BUILT BY HOME BUILDER) PROPOSED GARDEN WALL, CONCRETE FILLED TO 1-FOOT DEPTH	ENGINEER'S SEAL		I CENO		18 2.1 80FE	187 15-1 5510	CO CO	MOINEER SY		
	PROPOSED SLOPE PROPOSED STORM DRAIN PROPOSED STORM DRAIN MANHOLE PROPOSED STORM DRAIN INLET PROPOSED CATTLE GUARD INLET WALL DRAIN					By			DATE:4/25/2014	DATE:4/25/2014	DATE:4/25/2014
	GRADING PHASE BOUNDARY					REMARKS	REVISIONS	DESIGN			
						9.			/: CJS	BJG	: CJS

ELICA	OF ALE C WORKS DEL SOL N GRADING P	TONT	AGE		}
Design Review Committee	City Engineer A	pproval	Last Design Update	Mo./Day/Yr.	Mo./Day/Yr.
City Project No.		Zone Ma	p No.	Sheet	Of
775	782	R-15,16	S-15,	16 7	7

CITY OF ALBUQUERQUE

December 24, 2018

Mike Balaskovits, P.E. Bohannan Huston, Inc. 7500 Jefferson St NE Courtyard 1 Albuquerque, NM 87114

Re: Mesa Del Sol Unit 3B

Erosion Sediment Control Plan

Engineer's Stamp Date 12-19-18 (R16E006)

Dear Mr. Balaskovits,

Based upon the information provided in your submittal received 12-21-18, the above referenced plan is approved to be included in the SWPPP and to apply for an ESC Permit for grading and Building Permit and Work Order.

In the future:

- 1. Provide existing and proposed grades. The best way to accomplish this may be to superimpose the BMPs on the grading plan.
- PO Box 1293 2. Show all areas of disturbance.

Happy Holidays!

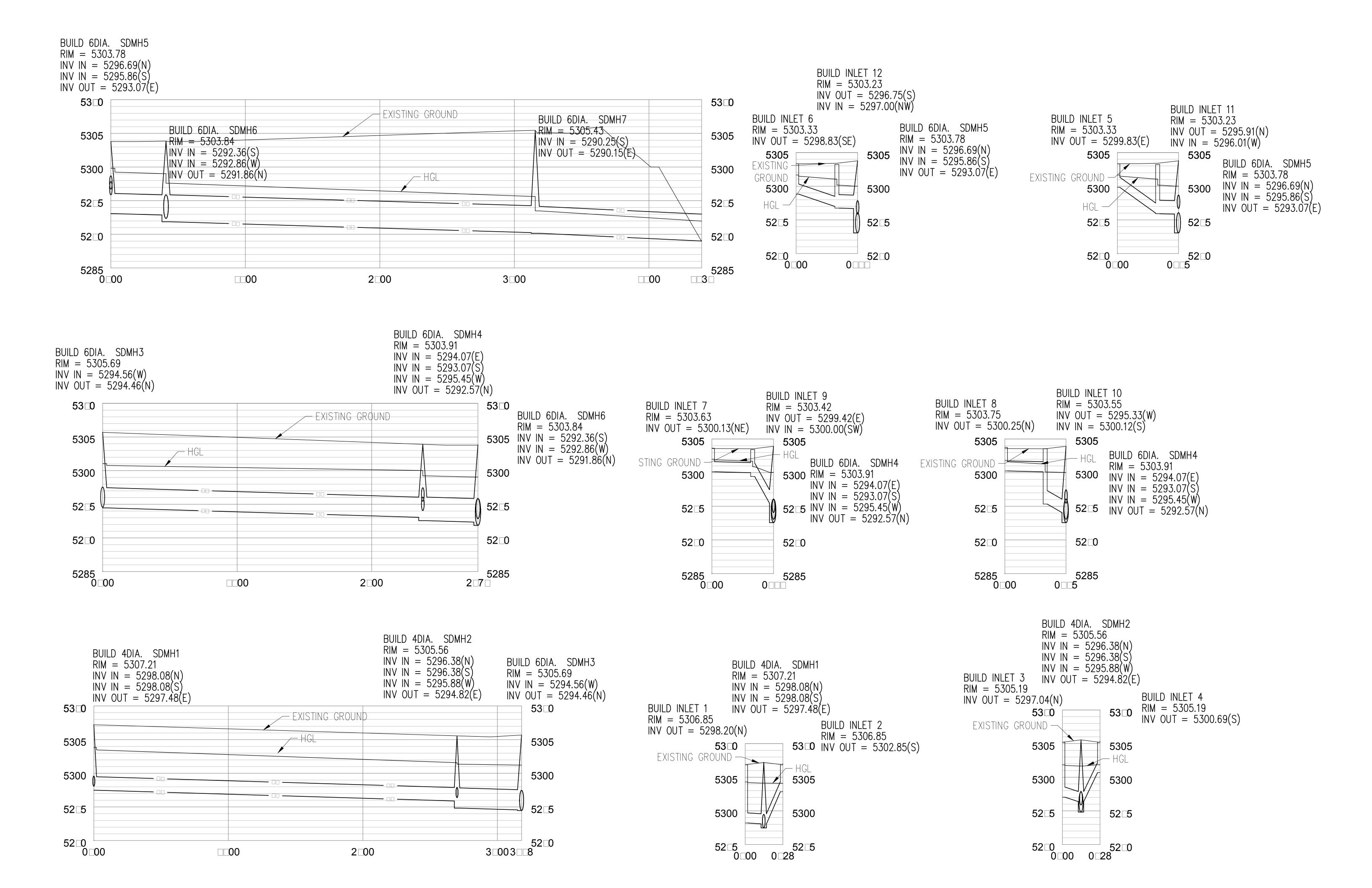
Albuquerque

If you have any questions, you can contact me at 924-3420.

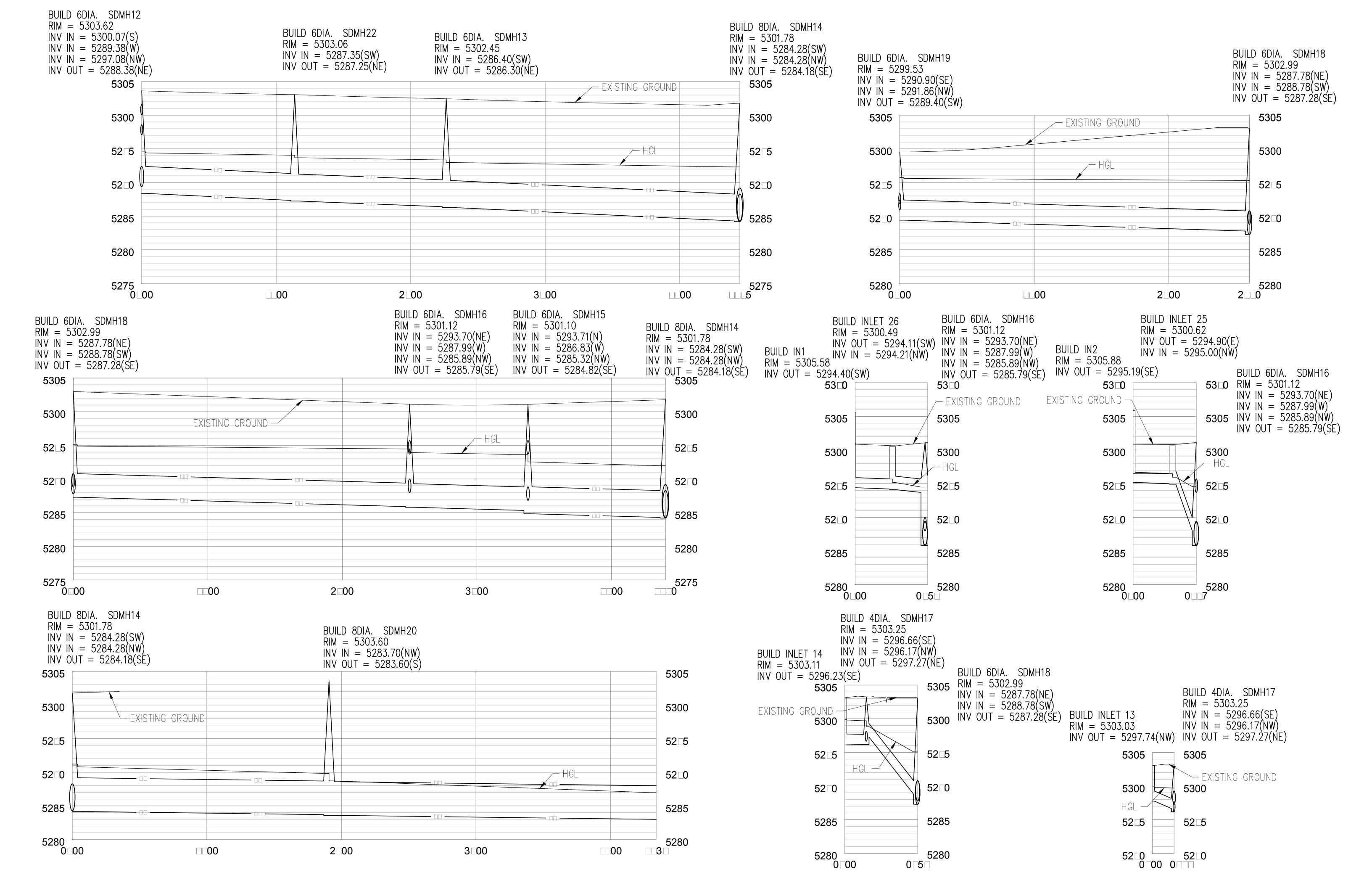
New Mexico 87103

Sincerely,

www.cabq.gov


Curtis Cherne, P.E.

Cento a chene


Principal Engineer, Stormwater Quality

Planning Dept.

C: email

BUILD INLET 30 RIM = 5300.49 INV OUT = 5294.15(S) INV IN = 5294.25(NW) BUILD INLET 29 RIM = 5300.49 INV OUT = 5294.66(E) INV IN = 5296.80(NW) BUILD INLET 27 RIM = 5300.43BUILD INLET 28 INV I RIM = 5300.43INV OUT = 5296.93(SE)BUILD 6DIA. SDMH15 RIM = 5301.10 5305 INV IN = 5293.71(N) INV IN = 5286.83(W) INV IN = 5285.32(NW) 5300 INV OUT = 5284.82(SE) INV OUT = 5296.93(SE)_ EXISTING GROUND 5305 BUILD 6DIA. SDMH15
RIM = 5301.10
INV IN = 5293.71(N)
5300 INV IN = 5286.83(W)
INV IN = 5285.32(NW)
INV OUT = 5284.82(SE) 5305 5305 EXISTING GROUND -5300 5300 52 □5 52 □ 5 52 □ 5 52 □ 5 HGL HGL — 52 □0 52 □0 52 □0 52 □0 5285 5285 5285 5285 5280 0□00 __ 5280 0⊑57 5280 0□00 ___5280 0□50

DRAINAGE REPORT FOR MESA DEL SOL RESIDENTIAL MONTAGE UNIT 3 AND 4

JANUARY 2019

Prepared for:

Corazon del Mesa 3B, LLC 9600 Tennyson St. NE Albuquerque, NM 87122

Prepared by:

Bohannan A Huston

Engineering
Spatial Data
Advanced Technologies

DRAINAGE REPORT FOR MESA DEL SOL RESIDENTIAL MONTAGE UNIT 3 AND 4

JANUARY 2019

Prepared for:

MESA DEL SOL, LLC 5700 UNIVERSITY BLVD WEST SE - SUITE 310 ALBUQUERQUE, NM 87106

Prepared by:

BOHANNAN HUSTON, INC.
COURTYARD I
7500 JEFFERSON STREET NE
ALBUQUERQUE, NM 87109

Prepared By:			
Brian C. Patterson, P.E.	Date	Mike Balaskovits, P.E.	Date
Design Engineer		Project Manager	

TABLE OF CONTENTS

I.					
II.	CO	NCE	EPTS	AND METHODOLOGIES	1
III.	SIT	EL	OCA	TION AND CHARACTERISTICS	2
IV.	EXI	STI	NG F	HYDRAULIC AND HYDROLOGIC CONDITIONS	2
				D HYDRAULIC AND HYDROLOGIC CONDITIONS	
	A.			ent Storm Water Detention Ponds	
	B.	On	site [Developed Basins	5
	1.			A'	
	2.			B'	
VI.	CO			ON	
					•
				APPENDICES	
API	PENI	DIX	A –	BASIN CALCULATIONS	
API	PENI	DIX	В –	STREET HYDRAULICS, STORM DRAIN INLET ANALYSIS HYDRAULICS	, AND ALLE
API	PENI	DIX	C –	INROADS STORM DRAIN OUTPUT FILES	
API	PENI	DIX	D –	INFILTRATION CALCULATIONS	
API	PENI	DIX	E –	POND VOLUME CALCULATIONS	
				EXHIBITS	
EXI	HIBIT	Г1	_	PRELIMINARY PLATS	
EXI	HIBIT	Γ2	_	LEVEL B PLANNING ZONES	
ΓVI	шыг	гο		LEVEL DOVEDALL STODMWATED DLAN	

EXHIBIT 2	_	LEVEL B PLANNING ZONES
EXHIBIT 3	_	LEVEL B OVERALL STORMWATER PLAN
EXHIBIT 4	_	LEVEL B RESIDENTIAL AREAS DRAINAGE MANAGEMENT PLAN
EXHIBIT 5	_	EXISTING CONDITIONS BASIN MAP
EXHIBIT 6	_	DEVELOPED CONDITIONS BASIN MAP
EXHIBIT 7	_	INLET AND STORM DRAIN ANALYSIS
EXHIBIT 8	_	TYPICAL PERMANENT STORM POND DETAIL
EXHIBIT 9	_	GRADING PLAN

I. PURPOSE

This drainage report is for Mesa del Sol Residential Montage Unit 3 and 4. The proposed development consists of approximately 277 single family detached and attached residential lots on approximately 67 acres which will be developed in two units (Unit 3 and 4). This project is located within Mesa del Sol, in southeast Albuquerque south of the intersection of Bobby Foster Road and University Blvd. The Mesa del Sol Residential Montage Unit 3 and 4 is part of a larger phase of residential development which will occur in the future; however, the fully developed drainage for the ultimate future condition as well as the interim developed conditions are addressed by this report. This report is submitted in support of grading approval and preliminary plat approval by the DRB.

II. CONCEPTS AND METHODOLOGIES

Drainage conditions were analyzed utilizing the 100-year, 6-hour storm event in accordance with the City of Albuquerque Drainage Ordinance and the *Development Process Manual (DPM), Volume 2 Design Criteria, Section 22.2, Hydrology, The City of Albuquerque*, January 2002. Basins, as referenced later in this report are less than 40 acres, therefore Part A of the DPM, Section 22.2, which provides a simplified procedure for projects with subbasins smaller than 40 acres, was used. The results are included in Appendices A through C. Street capacity and storm drain inlet calculations supporting this study are located in Appendix B.

The overall drainage concept for this project will be onsite and offsite ponding of storm water in the developed conditions. Onsite runoff will be captured by retention ponds, which are designed to retain and infiltrate approximately the 2-year storm volume, as well as the 100-year 10-day storm volume. These ponds will be owned and maintained by Mesa del Sol with agreement and covenants with the City of Albuquerque.

In Albuquerque, approximately 90% of the annual runoff is generated by rainfall events that are 1 inch or less, which equates to approximately the 2-year storm; therefore, this was the basis for sizing the infiltration basins within the retention ponds. The infiltration time utilizing the infiltration basins as well as the surrounding ponding area, will be 96 hours or less. Offsite flows affecting this project from the west will be captured by temporary retention ponds until development to the west occurs.

The following document was referenced in the preparation of this report:

 Technical Appendices for the Level B Plan for Mesa del Sol, prepared by Calthorpe Associates, dated October 2006.

The Level B Plan contains a conceptual Drainage Management Plan (DMP), which outlines both existing and developed drainage conditions. Retention ponding of the 10-day developed storm volume is proposed by this report both by proposed ponding areas as well as the existing playa area located to the south within Zone 'A' as designated by FEMA, which has historically captured and retained storm water from the Mesa del Sol area. In addition, the Level B DMP states a volume capacity of the existing playa of 2,300 ac-ft., which is far in excess of the developed runoff volume of 480 ac-ft. for the entire Mesa del Sol development; therefore, the DMP demonstrates adequate downstream capacity. The Level B DMP also allows for a modified approach for regional ponding area, which consists of infiltrating the volumes smaller than the 10-day storm volume and bleeding off the remaining volume through a storm drain pipe, which will ultimately discharge into the existing playa. Therefore, the proposed concept for this report is in conformance with the Level B DMP.

 Drainage Report for Mesa del Sol Residential Montage Unit 1 and 2, prepared by Bohannan Huston, Inc., dated January 2011. COA Record # R16D0034

This drainage report provides drainage analysis for Units 1 and 2, which is located just north of Units 3 and 4. This report provides detailed analysis for the retention ponds that will accept flows from this development.

III. SITE LOCATION AND CHARACTERISTICS

Mesa del Sol Residential Montage Unit 3 and 4 will be developed in two units, Unit 3 and 4. Unit 3 will consist of the eastern portion of the project and the Unit 4 will comprise the remaining western half. Access to both units will be from University Blvd. SE.

The site has been previously graded with relatively flat slopes and generally slopes from west to east at an average grade of about 0.5%.

IV. EXISTING HYDRAULIC AND HYDROLOGIC CONDITIONS

The land comprising Mesa del Sol Residential Montage Unit 3 and 4 is currently undeveloped, but was graded several years ago. Ponds 2A, 2B, 3 and 4 are currently graded and accept developed runoff from existing Units 1 and 2, as well as undeveloped runoff to the west of these ponds. Runoff generated by the project site in its present state

drains toward the existing ponding areas. The existing playa represents the historic runoff capture point for the project site as well as the surrounding areas, and again, this flow has been historically retained and infiltrated within the existing playa.

V. DEVELOPED HYDRAULIC AND HYDROLOGIC CONDITIONS

A. PERMANENT STORM WATER DETENTION PONDS

Originally, Ponds 1, 2A, 2B, and 3 were anticipated to be constructed as detention ponds in the future. However, it is now proposed that these ponds function as retention ponds for this project and in the future, which is consistent with the drainage concept throughout the Mesa del Sol area, both commercial and residential. Existing ponds 2B and 3 will be upsized to accept developed runoff from this project. Existing Pond 4 will remain in its current configuration, and certified as part of the Financial Guaranty Release for this project. However, it is likely that Pond 4 will be reconfigured at some time in the future to accommodate the future adjacent improvements and will need upsizing based upon future plans. Again, all permanent retention ponds (Ponds 2A, 2B, and 3) will be designed to evacuate storm water through infiltration within 96 hours, and the infiltration basins serve to infiltrate the more frequent 2-yr (90th percentile) storms.

Ponds 2B and 3 were originally designed to assist in accommodating flows from Montage Units 1 and 2 with the intent to upgrade and increase the capacity of the ponds, as needed, when further development of the Mesa Del Sol area is completed. The original pond size estimates for 2B and 3 were 3.45 ac-ft and 4.30 ac-ft, respectively (Approved Drainage Report Mesa del Sol Residential Montage Unit 1 and 2, by Bohannan Huston Inc dated 01/14/2011, COA Record Number R16D003A). The proposed drainage design for Montage Units 3 and 4 increases the required capacity of the ponds. The needed composite volume required for Ponds 2B and 3 is 16.36 ac-ft. The updated design of the ponds as part of this project is 19.71 ac-ft.

POND	REQUIRED POND VOLUME FOR EXISTING CONDITIONS (AC-FT)	REQUIRED POND VOLUME FOR PROPOSED CONDITIONS (AC-FT)**	CALCULATED DESIGN POND VOLUME (AC-FT)
2B*	3.45	7.82	6.84
3*	4.30	8.54	12.87

^{*}Pond 2B and 3 operate as a single pond with a 54" pipe that connects the two beneath Strand Loop.

^{**} Required Volume includes Units 1, 2, 3 and 4.

The permanent storm ponds (Ponds 1-4) will each consist of a forebay, primary storage zone, infiltration basin, and pond outlet (please see Exhibit 9). The forebay will be located at the pipe inlet into the pond and its purpose is to dissipate energy and deposit sediment from the storm water. The infiltration basin consisting of a bed of gravel and/or riprap will assist in infiltrating the 2-year storm volume, and in concert with infiltration occurring in the remaining earthen portions of the pond, has been designed to drain the 100-year, 10-day storm water volume in 96 hours or less. The infiltration basins will be located a sufficient distance from the forebays in order to minimize the amount of silt entering the infiltration basins. Only Ponds 2A, 2B, and 3 are proposed to be graded to their near final configuration which will exclude constructing infiltration basins and forebays. These improvements will be provided at a later date with a separate grading submittal.

Infiltration calculations were based on an average of percolation test results performed by Geo-Test, Inc. on a permanent pond immediately north of Albuquerque Studios Mesa del Sol, New Mexico dated May 17, 2007, File No. 1-61211 (see summary tables below). A percolation rate of 0.3 in/hr. was recorded for 24" above ground surface, which was neglected for our average in our infiltration calculations. This was based on the assumption that the ponds would be cleaned and maintained before the point of virtually no infiltration was reached. A factor of safety of 1.1 was then used for the infiltration basin and a factor of safety of 2.0 was used for the remaining area of the pond to determine the time to infiltrate the required storm water volume, which is approximately the 2-year storm water volume in **Equation 1**.

```
Equation 1. Torain=Vol req/ ((i pond(Aeff)) + (i infiltration basin (Aeff)))

Where: Vol req= Storm Volume (cf)

i pond = Pond Infiltration rate = i/2.0 (in/hr)

i infiltration basin= Infiltration basin rate= i/1.1 (in/hr)

Infiltration basin = Area Infiltration Basin (sf)

Aeff = Avq Pond Area Minus Infiltration basin (sf)
```

POND INFILTRATION SUMMARY

POND	100-YR 10-DAY RETENTION VOLUME (AC- FT)	2-YR RETENTION VOLUME (AC- FT)	AREA OF INFILTRATION BASIN (SF)	AVG AREA OF POND (SF)	TIME TO INFILTRATE 100-YR 10-DAY VOLUME (HR)	TIME TO INFILTRATE 2- YR VOLUME (HR)
1						
(Future)	N/A	N/A	N/A	N/A	N/A	N/A
2A	5.50	2.39	1500	100000	33	14
2B	7.82	3.39	1500	50000	92	40
3	8.54	3.71	1500	70000	72	31
4*	19.04	8.26	5000	130000	85	37

^{*}denotes possible future configuration

B. ONSITE DEVELOPED BASINS

1. OUTFALL 'A'

Outfall 'A' consists of Basins A-1, A-2, A-3, A-4, A-5 and A-6, as well as a portion of Future Basin 1, as shown on the Developed Conditions Basin Map. These flows will enter proposed storm drain inlets within these basins and ultimately discharge into Pond 3. Ponds 2B and 3 are interconnected with a 54" pipe beneath Strand Loop. This pipe was constructed as part of the Unit 1 project to the north. Therefore, these ponds act as a single pond with the water surfaces equilibrating. See Appendix B for street hydraulics and storm drain inlet analysis.

2. OUTFALL 'B'

Outfall 'B' consists of Basins B-1, B-2, B-3, B4, B-5, B-6, B-7, Future Basin 2 and Future Basin 3, as well as a portion of Future Basin 1, as shown on the Developed Conditions Basin Map. These flows will enter proposed storm drain inlets within these basins and ultimately discharge into Pond 4. See Appendix B for street hydraulics and storm drain inlet analysis.

The proposed pond system as well as the storm drain system has been designed to accommodate the future developed condition of this project. The existing playa will accept runoff leaving the site under the future developed conditions scenario in conformance with the Level B Drainage Management Plan.

3. OUTFALL TO UNIVERSITY BLVD.

This outfall consists of Basin M. Previously approved drainage reports allowed all of Existing Basin M to drain into University Blvd. This plan cuts this basin approximately in

half; therefore, much less flow will be directed into University Blvd. from this basin than was previously permitted.

VI. CONCLUSION

Onsite developed runoff generated by the site will be conveyed to retention ponds utilizing surface street flows in conjunction with underground public storm drain pipe networks. The drainage concept outlined by this report consists of retention ponding of developed runoff consistent with existing development throughout Mesa del Sol, and in conformance with previously approved Level A and Level B Master Plan drainage concepts. These ponds will hold water for 96 hours or less utilizing infiltration, also consistent with existing development plans throughout Mesa del Sol.

APPENDICES

APPENDIX A: BASIN CALCULATIONS

APPENDIX B: STREET HYDRAULICS, STORM

DRAIN INLET ANALYSIS AND

ALLEY HYDRAULICS

APPENDIX C: INROADS STORM DRAIN OUTPUT

FILES

APPENDIX D: INFILTRATION CALCULATIONS

APPENDIX E: POND VOLUME CALCULATIONS

APPENDIX A BASIN CALCULATIONS

STORMWATER VOLUME	DISCHARGE (CFS)	LAND TREATMENT	% LAND	-	UNITS	AREA	BASIN
		MARY	BASIN SUM				
		MARY	BASIN SUM				

HYRDOLOGICAL VOLUMETRIC & DISCHARGE DATA (EXISTING CALCULATED)

Ą	16.00		50.31	0.71	0.71
В	30.64		96.38	1.35	1.35
T	7.17		19.31	0.32	0.32
-	5.53		14.83	0.24	0.24
٦	2.01		6.31	60'0	60.0
M	3.32		10.42	0.15	0.15
OFFSITE 1	95.65		155.97	4.22	4.22
OFFSITE 2	64.46		105.92	2.85	2.85
TOTAL	224.78	0	0.00 459.45	9.93	9.93

HYRDOLOGICAL VOLUMETRIC & DISCHARGE DATA (DEVELOPED CALCULATED)

5.8 32 0.09	4.7 21 0.09	4.4 17 0.09	5.2 24 0.09			9.3 43 0.09	2.2 10 0.09		4.6 24 0.09		3.7 9 0.0%	2.9 10 0.09	0.8 3 0.09	2.2 4 0.09	8.8 n/a 0.09	7	10.3 n/a 0.09	13.1 n/a 0.0%	61.1 n/a 0.0%	36.6 0.09	202.1 277
0.0% 23.0% 24.0%	0.0% 27.0% 27.0%	0.0% 29.5% 29.5%	0.0% 26.5% 26.5%	31.0%	-	0.0% 26.5% 26.5%	0.0% 27.0% 27.0%	-	0.0% 24.5% 24.5%	0.0% 27.5% 27.5%	0.0% 35.0% 35.0%	0.0% 31.0% 31.0%		0.0% 35.0% 40.0%	0.0% 24.5% 24.5%	7	0.0% 24.5% 24.5%	.0% 24.5% 24.5%		0.0% 12.5% 12.5%	
53.0% 13.29	46.0% 10.16	41.0% 9.11	47.0% 11.33	38.0% 8.87	33.0% 6.16	47.0% 20.27	46.0% 4.75	57.0% 10.62	51.0% 10.36	45.0% 14.15	30.0% 6.93	38.0% 5.85	40.0% 1.64	25.0% 3.96	51.0% 19.81	51.0% 17.34	51.0% 23.19	51.0% 29.50	51.0% 137.57	75.0% 98.28	463.15
21.83	17.01	15.49	18.92	15.22	10.75	33.85	96'2	17.27	11.71	23.76	12.21	10.03	2.80	7.09	32.73	28.64	38.31	48.72	227.24	153.64	760.57
0.76	0.58	0.53	0.65	0.51	0.36	1.16	0.27	0.61	0.59	0.81	0.40	0.34	60.0	0.23	1.14	0.99	1.33	1.69	7.89	5.58	26.52
1.17	0.87	0.77	0.98	0.74	0.50	1.75	0.41	0.95	0.91	1.21	0.55	0.48	0.14	0.30	1.73	1.52	2.03	2.58	12.04	9.24	40.86

APPENDIX B

STREET HYDRAULICS, STORM DRAIN INLET ANALYSIS, AND ALLEY HYDRAULICS

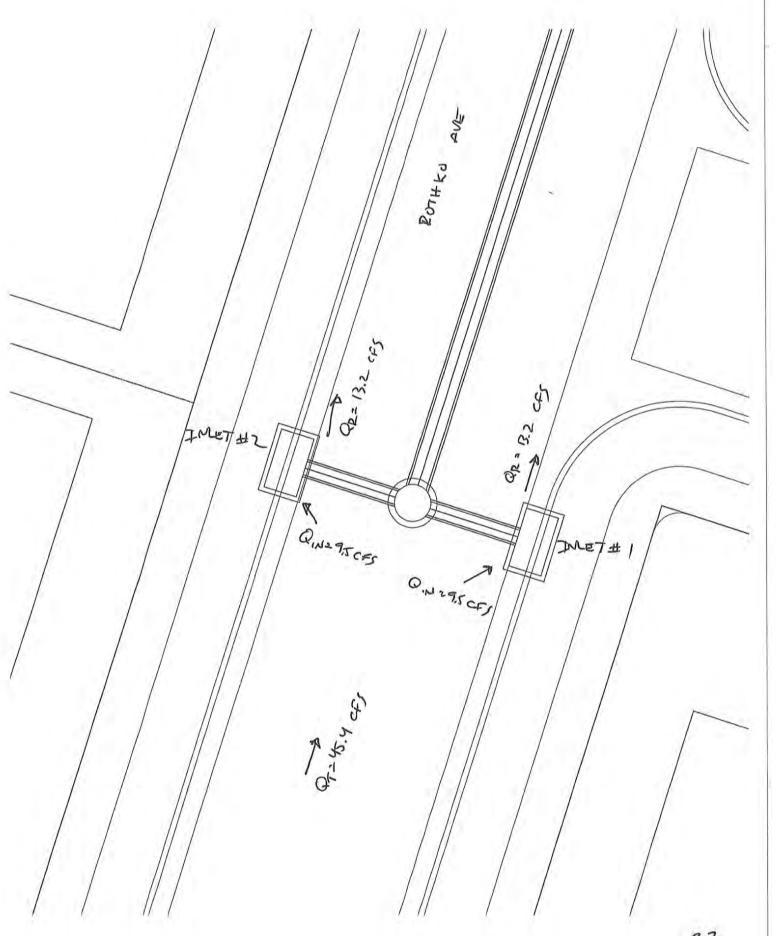
				MANNI	NG'S N	= 0.01	7 SLOPE	= 0.006			
	1.0 2.0 3.0 4.0	0.0 11.4 11.8 12.0	0.9 0.7 0.7	P	5.0 6.0 7.0 8.0	DIST 14.0 26.0 38.0 40.0	0.1 0.4 0.1 0.0	1	9.0 9.0 0.0 1.0	DIST 40.2 40.6 52.0	0.7 0.7 0.7 0.9
	WS FT	-77	DEPTH	FLOW AREA SQ.FT.	FLC RAT (CF	TE.	WETTED PER (FT)	FLOW VEL (FPS)	P	PWID LUS RUCTIONS	TOTAL ENERGY (FT)
1	0.01 0.12 0.33 0.44 0.55 0.66	.00 50 50 50 50 60 50 60 50 60 60 60 60 60 60 60 60 60 60 60 60 60	0.050 0.100 0.150 0.200 0.250 0.350 0.400 0.450 0.500 0.550 0.650	0.039 0.156 0.366 0.795 1.476 2.408 3.591 4.981 6.391 7.803 9.217 10.631 12.047	0.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	139 371 391 396 773 377 458 311 399 365	1.645 3.290 6.318 11.423 16.527 21.631 26.735 28.839 29.045 29.148 29.251 29.354	0.560 0.889 1.013 1.146 1.353 1.567 1.776 2.100 2.474 2.819 3.143 3.448 3.739	4 6 12 17 22 27 29 29 29 29	.484 .048 .996 .021 .047 .072 .098 .123 .148 .174 .199 .224	0.055 0.112 0.166 0.220 0.278 0.338 0.399 0.469 0.545 0.624 0.704 0.785 0.867
	0.7 0.7 0.8 0.8	00 50 00	0.700 0.750 0.800 0.850	13,536 15,271 17,253 19,482	50.2 56.0 63.3 72.3	085 181	33.282 38.227 43.171 48.116	3.717 3.673 3.674 3.706	32 37 42	.226 .170 .113 .057	0.915 0.960 1.010 1.064

INLEIS #1 & #2

OF ROTHKO & NAUMAN

3ASIN A-1 - 232 CFS 2/3 FUTURE BASIN 1 - 222 CFS 45.4 CFS

STREET CAPACITY
X=0.87'(0.90' VOL


INCET CAPACITY

d = 0.65'

@ 5=0.240 - 8.2 cfs 5=240 - 14 cfs

 $\frac{2-0.2}{14-8.2} = \frac{2-0.6}{14-x} \Rightarrow \frac{1.8}{5.9} = \frac{1.4}{14-x} \Rightarrow 8.12 = 25.2 - 1.8x$ $\frac{2-0.2}{14-8.2} = \frac{2-0.6}{14-x} \Rightarrow \frac{1.8}{5.9} = \frac{1.4}{14-x} \Rightarrow 8.12 = 25.2 - 1.8x$

YSIY CFS - Z (9.5 CFS) = 26.4 CFS

Rothko-sta 16+50.txt

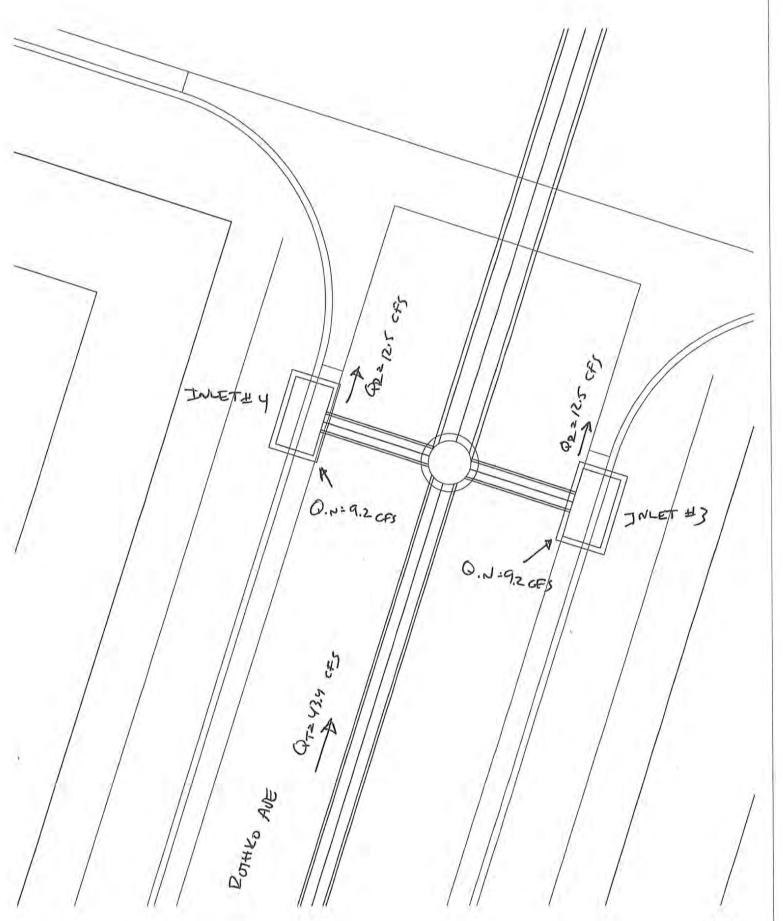
							140 611110	-	max n a 1 a 11	
			MANNI	NG'S N	= 0.0	17 SLOPE	- 0,006			
POINT 1.0 2.0 3.0 4.0	0.0 11.4 11.8 12.0	0.7	F	5.0 6.0 7.0 8.0	DIST 14.0 26.0 38.0 40.0	0.1 0.4 0.1 0.0	1	9.0 9.0 0.0	DIST 40.2 40.6 52.0	0.7 0.7 0.9
WSI		DEPTH	FLOW AREA SQ.FT.	FLO RA		WETTED PER (FT)	FLOW VEL (FPS)	P	PWID LUS RUCTIONS	TOTAL ENERGY (FT)
0.01 0.11 0.21 0.32 0.33 0.44 0.44 0.55 0.66 0.67 0.77	00 50 50 50 50 50 50 50 50 50 50 50	0.050 0.100 0.150 0.200 0.250 0.350 0.350 0.400 0.550 0.550 0.600 0.650 0.700 0.750 0.850	0.039 0.156 0.366 0.795 1.476 2.408 3.591 4.981 6.391 7.803 9.217 10.631 12.047 13.536 15.271 17.253 19.482	0. 0. 1.	811 999 965 660 048 311 085 381	1.645 3.290 6.318 11.423 16.527 21.631 26.735 28.942 29.045 29.148 29.251 29.354 33.282 38.227 43.171 48.116	0.560 0.889 1.013 1.146 1.353 1.567 2.100 2.474 2.100 2.474 3.143 3.749 3.717 3.674 3.706	46 127 227 29 29 29 29 29 29 29 29	.484 .048 .996 .021 .047 .072 .098 .123 .148 .174 .199 .224 .250 .226 .170	0.055 0.112 0.166 0.220 0.278 0.338 0.399 0.469 0.545 0.624 0.704 0.704 0.705 0.867
						2 =				

INCERS #3 & #4

OF ROTHKO & STRAND

BASIN 4-2 1- 17.0 CFS

TRESIDUAL - 26.4 CFS JNLETS+1842 43.4 CFS


STREET CAPACITY

INCET CAPACTY

$$\frac{45.048-36.66}{0.65-0.60} = \frac{45.048-43.4-}{0.65-x} \Rightarrow \frac{9.398}{0.05} = \frac{2.348}{0.65-x} \Rightarrow 0.1174 = 5.4522 - 8.798x$$

$$\frac{2-0.2}{13.5-9} = \frac{2-0.6}{13.5-x} \Rightarrow \frac{1.8}{5.5} = \frac{1.4}{13.5-x} \Rightarrow \frac{7.7}{7.7} = \frac{24.3-1.8}{24.3-1.8}$$

$$\frac{2-0.2}{13.5-x} = \frac{7.7}{13.5-x} \Rightarrow \frac{1.8}{13.5-x} \Rightarrow \frac{1.8}{13.5-x}$$

		MANNI	NG S N = O.	OL/ SLOPE	= 0.008			
1.0 2.0 3.0	IST ELE 0.0 0.9 9.4 0.9 9.8 0.0	7	5.0 12. 6.0 33. 7.0 54. 8.0 56.	0 0.1 0 0.6 0 0.1	1	INT DIST 9.0 56.2 0.0 56.6 1.0 66.0	0,7 0.7 0.7 0.9	
WSEL ET.	DEPTH	FLOW AREA SQ. FT.	FLOW RATE (CFS)	WETTED PER (FT)	FLOW VEL (FPS)	TOPWID PLUS OBSTRUCTIONS	TOTAL ENERGY (FT)	
0.050 0.100 0.150 0.200 0.300 0.350 0.400 0.450 0.550 0.600	0.050 0.100 0.150 0.200 0.350 0.350 0.400 0.450 0.550 0.550 0.600	0.039 0.156 0.366 0.795 1.476 2.408 3.591 5.026 6.771 8.648 10.837 13.151	0.024 0.155 0.414 1.019 2.232 4.218 7.130 11.111 16.297 22.812 30.780 42.438 55.530	1.645 3.290 6.318 11.423 16.527 21.631 26.735 31.839 36.943 42.048 47.152 47.255	0.626 0.993 1.133 1.281 1.512 1.752 1.985 2.211 2.428 2.638 2.840 3.227	2.484 4.048 6.996 12.021 17.047 22.072 27.098 32.123 37.148 42.174 47.199 47.224	0.056 0.115 0.170 0.226 0.286 0.348 0.411 0.476 0.542 0.608 0.675 0.850	
0.700 0.750 0.800 0.850	0.700 0.750 0.800 0.850	17.856 20.490 23.371 26.499	66.904 79.153 93.182 109.087	51.279 56.211 61.144 66.077	3.747 3.863 3.987 4.117	50.219 55.151 60.082 65.014	0.918 0.982 1.047 1.114	

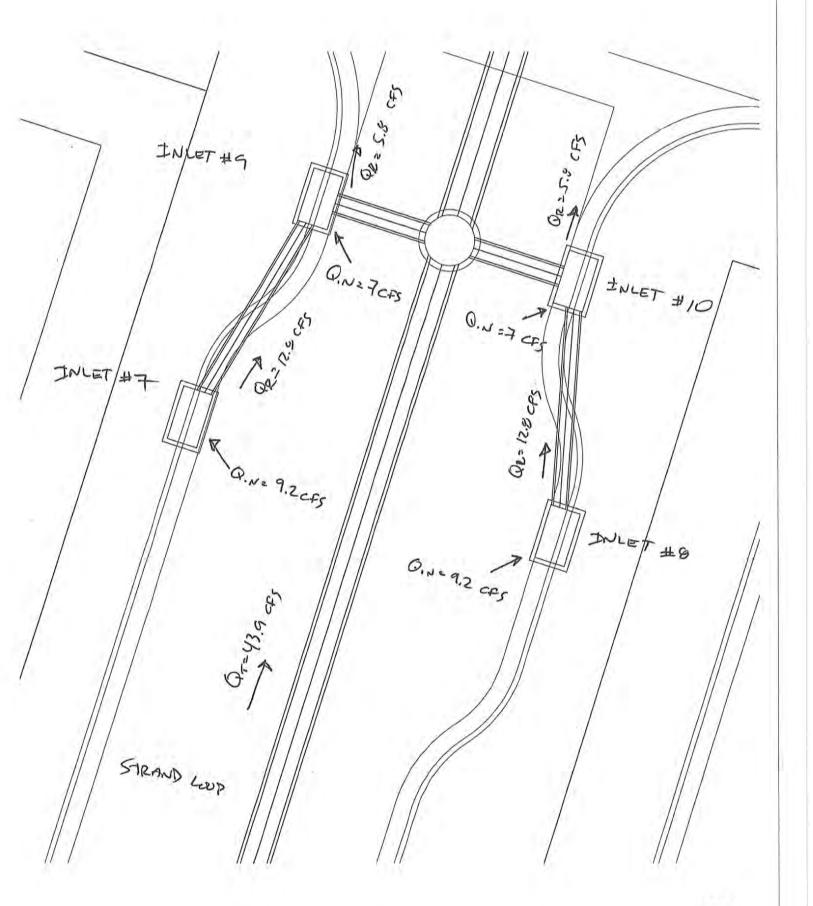
LOCATED & DUTERSEQT. IN

INCER #7 & #8

BASIN A-4 - 18.9 CFS
RES. DUAL - 25.0 CFS
43.9 CFS

STREET CAPACITY
X=0.76' < 0.90' VOL

INLET CAPACTIY


d= 06'

@ 5=0.759g d=0.6'

0.2% - 7.5 CFS 2.0% - 13 CFS

$$\frac{13-7.5}{2-0.2} = \frac{13-x}{2-0.75} = \frac{5.5}{1.8} = \frac{17-x}{1.25} \Rightarrow \frac{6.275=23.4-1.8x}{d=9.2 \text{ CF5}} \text{ (PER DURIE: A.)}$$

			and Loop-sta 22+5	0.txt		
DINT DIST ELEV 1.0 0.0 0.9 2.0 9.4 0.7 3.0 9.8 0.7 4.0 10.0 0.0	5.0 6.0 7.0	= 0.017 SLOPE = DIST ELEV 12.0 0.1 33.0 0.6 54.0 0.1 56.0 0.0	0.008 POINT DIST 9.0 56.2 10.0 56.6 11.0 66.0	0.7 0.7 0.7 0.9	INLETS #9	\$ #10
WSEL DEPTH INC FT. 0.050 0.050 0.100 0.100 0.150 0.150 0.250 0.250 0.350 0.350 0.350 0.450 0.450 0.450 0.450 0.450 0.550 0.550 0.650 0.650 0.750 0.750 0.750 0.750 0.750 0.850 0.850 0.850 0.850	FLOW AREA RATE RATE RATE RATE RATE RATE RATE	OW WETTED FR PER (FT) 024 1.645 0.155 3.290 0.144 6.318 0.19 11.423 0.22 1.6527 0.22 18 21.631 0.26 7.35 0.11 1.31 8.39 0.7 1.52	TOPWID PLUS (FPS) OBSTRUCTIO 0.626 2.484 0.993 4.048 1.139 6.996 1.281 12.021 1.512 17.047 1.752 22.072 1.985 27.098 2.211 32.123 2.428 37.148 2.638 42.174 2.840 47.199 3.227 47.224 3.590 47.250 3.747 50.219 3.863 55.151 3.987 60.082 4.117 65.014	0.056		Wrersect w
PERIODA NEK#7## STERET C 30.75-27	APACITY		7,9	= 5.28 = 3.636	0.44046=5	7.77975-7.97× 0.62'40.90\
INLET C	APACITY					
0.55 -	50	0.55->	->_0	05 0.5	22-× × ×	= 4.3835 - 7.57 ×
@ S= 0.	asolu, d:	0.51'				
0.20	1-5.5	CFS		25	625 = 13.9-1.2	×
2-0.7	= 2-	0.75 => 5-x	5 70	5-× 3	X = 7 cf	> (SES PRIDIE ,

JAVER 45, 46, 411. 84 12 - SUMP

LUCATED @ INTERSECTION OF

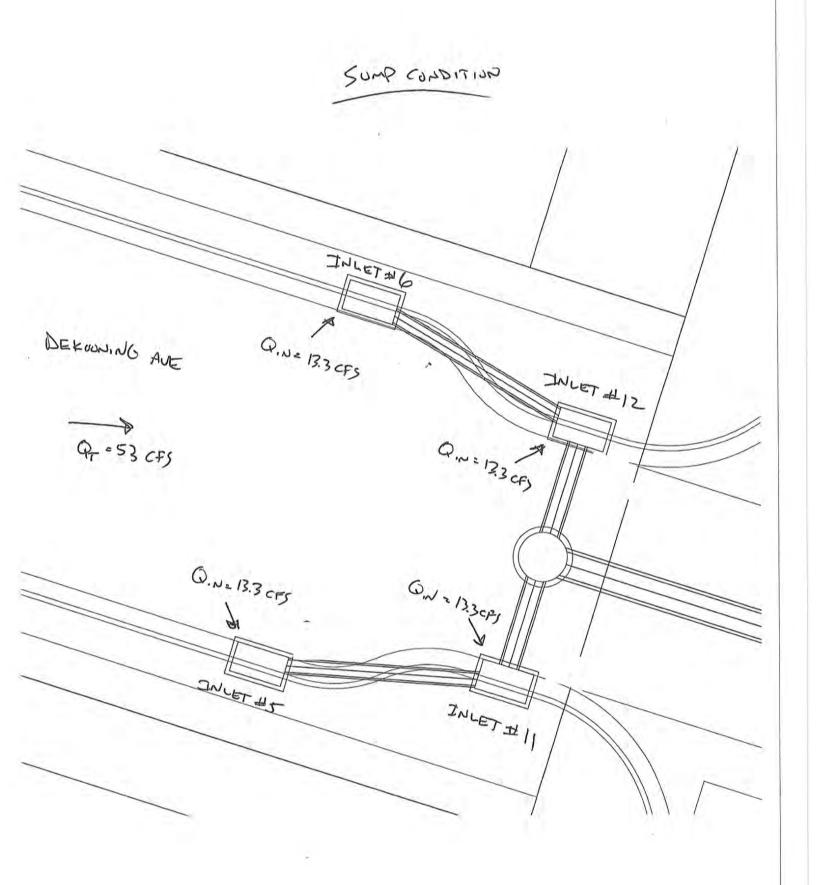
2000 13.888889 -5.083333

-115.625 -0.802951

-0.694444

70.5 0.4895833 1122.875 7.7977431

DEKONING A SPRAND


Head Head Welr Q Orifice Q Sgl Wing Dbl Wing Calculation of open area:			Double A Inter, in sun Open Area (for orifice o Length of Weir (feet): Orifice Coeficient Weir Coeficient	net, in sum (for orifice c /eir (feet): ficient	A intet, in sump condition: rea (for orifice calc in sq. ft.): of Weir (feet): Coeficient		7.7977431 7.9791667 0.6		
Head Weir G Weir G Orifice G Sgl Wing Dbl Wing (In) (cfs) (1 Wing	Č	a to	Cont	rol O		
(in) (cfs) (Head	Head	Weir Q	Weir Q	Orifice Q	Sgl Wing	Dbl Wing	Calculation of open area:	
0.6 0.13 0.27 8.40 0.40 0.54 Total Grate Area 2000 1.2 0.38 0.76 11.87 1.14 1.52 Cross Bar Area 7.32 1.50 0.70 1.39 1.45 1.20 2.09 2.78 Supports (middle) 1.105 0.50 1.87 1.44 1.52 Cross Bar Area 7.23 1.50 2.99 18.77 4.49 5.99 Areas Counted Twice 1.122.875 3.24 6.06 2.2.27 7.44 9.83 Areas Counted Twice 1.122.875 1.24 8.46 26.55 1.2.74 16.95 Supports of Length of Weir. 6 4.24 8.46 26.55 1.2.77 16.95 Supports of Length of Weir. 6 4.24 8.46 26.55 1.2.77 16.95 Supports of Length of Weir. 7.2 5.58 11.13 29.08 16.70 22.28 Supports Sup	(ff)	(in)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)		
1.2 0.38 0.76 11.87 1.14 1.52 Cross Bar Area 7.32	0.05	9.0	0.13	0.27	8.40	0.40	0.54	Total Grate Area	
1.8 0.70 1.39 14,54 2.09 2.78 Supports (ends) -115,625 2.4 1.07 2.14 16.79 3.21 4.29 (middle) -100 3 1.50 2.99 18.77 4.49 5.99 Areas Counted Twice (122.875 4.8 3.04 6.06 22.21 7.44 9.83 6.6 4.24 8.46 26.55 12.71 16.95 6.6 4.29 3.02 12.84 16.70 22.28 7.2 5.58 11.13 22.08 16.70 22.28 8.0 6.54 13.04 30.66 19.58 26.11 End Supports 8.4 7.03 14.02 31.41 21.05 28.08 Middle Supports 9 7.79 15.55 32.54 17.31 34.30 10.2 9.40 18.76 34.62 28.16 44.39 11.4 11.11 22.16 36.60 33.28 44.39 12.6 12.30 29.34 37.57 34.30 12.6 12.30 29.34 37.57 36.89 40.39 12.6 12.30 29.34 37.55 35.94 47.39 12.6 12.30 29.34 37.55 35.94 47.39 13.6 14.80 29.52 40.26 44.32 59.12 13.8 14.80 29.52 40.26 44.32 59.12 13.8 14.80 29.52 15.31 20.47 13.8 14.80 29.52 15.31 20.47 13.9 20.70 15.34 20.47 13.9 14.80 29.52 40.26 44.32 59.12 13.9 14.80 29.52 40.26 44.32 59.12	0.1	1.2	0.38	92.0	11.87	1,14	1.52	Cross Bar Area	
2.4 1.07 2.14 16.79 3.21 4.29 (middle) -100 3 1.50 2.99 18.77 4.49 5.99 Areas Counted Twice 10.2 3.6 1.50 2.99 18.77 4.49 5.99 Areas Counted Twice 10.2 4.8 3.04 6.06 23.75 9.09 12.13 6. 4.24 8.45 22.17 14.4 9.93 6. 4.24 8.45 22.17 16.85 14.47 6. 4.24 8.45 25.19 10.85 14.47 7.2 5.58 11.13 29.08 12.74 16.85 Short Cross Bars -13 8.0 6.54 13.04 30.66 19.58 26.11 End Supports -13 8.4 7.03 14.02 31.41 21.05 28.08 Middle Supports -9.25 9. 7.79 15.55 20.44 35.62 28.16 40.93 19.5.1 10.8 11.11 22.16 36.60 33.28 44.39 11.2 12.00 23.94 37.55 38.47 36.59 11.2 12.00 23.94 37.55 38.47 36.59 11.5 12.00 29.50 12.54 30.68 40.93 19.5.1 11.3 12.16 36.60 33.28 44.39 13.5 13.84 27.62 28.16 55.31 13.84 27.62 28.16 55.31 13.84 27.62 28.16 55.31 13.84 27.62 28.16 55.31 13.84 27.62 28.17 13.84 27.62 28.16 55.31 13.84 27.62 28.17 13.84 20.47 13.84	0.15	1.8	0.70	1.39	14.54	2.09	2.78	Supports (ends)	
3 1.50 2.99 18.77 4.49 5.99 Areas Counted Twice 70.5 3.6 1.97 3.93 20.56 5.91 7.88 Areas Counted Twice 7122.875 4.2 2.48 4.96 22.21 7.44 9.93 4.8 3.04 6.06 23.79 10.85 14.47 6.4 2.4 8.46 26.55 12.71 16.95 Short Cross Bars 7.2 5.58 11.13 29.08 16.70 22.28 Short Cross Bars 8.0 6.54 13.04 30.67 18.83 25.12 Bearing Bars 8.1 7.03 14.02 31.41 21.6 38.68 25.71 34.30 9.6 8.59 17.13 33.58 25.71 34.30 10.2 9.40 18.76 38.60 33.28 44.39 11.4 11.11 22.16 38.60 33.28 44.39 12.6 12.91 25.76 38.38 41.46 55.31 13.8 14.80 29.52 40.26 44.32 59.12 13.8 14.80 29.52 40.26 44.32 59.12 13.8 14.80 29.52 28.27 15.34 20.47 13.8 14.80 29.52 40.26 44.32 59.12 13.8 14.80 29.52 28.27 15.34 20.47 13.8 14.80 29.52 40.26 44.32 59.12 13.8 14.80 29.52 40.26 44.32 59.12 13.8 14.80 29.52 28.77 15.34 20.47	0.2	2.4	1.07	2.14	16.79	3.21	4.29	(middle)	
3.6 1.97 3.93 20.56 5.91 7.88 1122.875 4.2 2.48 4.96 22.21 7.44 9.93 12.13 4.8 3.04 6.06 23.75 9.09 12.13 Calculation of Length of Weir: 6 4.24 8.46 26.55 12.71 16.95 Total Perimeter of Grafe 130 7.2 5.58 11.13 29.08 16.75 22.28 Short Cross Bars -7 7.8 6.29 12.54 30.27 18.83 26.12 Bearing Bars -13 8.0 6.54 13.04 30.66 19.58 26.11 End Supports -9.25 8.4 7.03 14.02 31.41 21.05 28.08 Niddle Supports -5.5 9 7.79 16.56 32.52 23.34 31.14 21.05 22.13 34.59 10.2 20.44 36.62 23.34 31.44 34.65 23.44 47.94 34.54 36	0.25	8	1.50	2.99	18.77	4.49	5.99	Areas Counted Twice	.04
4.2 2.48 4.96 22.21 7.44 9.93 4.8 3.04 6.06 23.75 9.09 12.13 6.4 4.84 26.55 12.71 16.95 Total Perimeter of Grate 130 6.5 4.24 8.46 26.55 12.71 16.95 Short Cross Bars -7 7.2 5.58 11.13 29.08 16.70 22.28 Short Cross Bars -7 7.2 5.58 12.74 18.83 26.11 End Supports -7 8.0 6.54 13.04 30.66 19.58 26.11 End Supports -9.25 8.4 7.03 14.02 31.41 21.05 28.08 Middle Supports -9.25 9.6 8.59 17.13 33.58 25.71 34.30 146.50 37.57 140 10.2 9.40 18.76 28.36 40.93 13.64 47.94 34.30 10.8 10.25 20.44 35.62 20.48 47.94 34.34 34.34 34.34 34.34 34.34 35	0.3	3.6	1.97	3.93	20.56	5.91	7.88		5
4.8 3.04 6.06 23.75 9.09 12.13 Calculation of Length of Weir: 5.4 3.62 7.23 25.19 10.85 14.47 Calculation of Length of Weir: 6 4.24 8.46 26.55 12.71 16.95 Total Perimeter of Grate 130 7.2 5.58 11.13 29.08 16.70 22.28 Short Cross Bars -7 7.8 6.29 12.54 30.27 18.83 25.12 Bearing Bars -73 8.0 6.54 13.04 30.27 18.83 25.12 Bearing Bars -73 8.4 7.03 14.02 31.41 21.05 28.08 14.05 14.14 14.05 14.14 14.05 14.14 14.05 14.14 14.05 14.14 14.05 14.14 14.05 14.14 14.05 14.14 14.05 14.14 14.05 14.14 14.05 14.14 14.14 14.14 14.14 14.39 14.24 14.39 14.24	0.35	4.2	2.48	4.96	22.21	7.44	9.93		
5.4 3.62 7.23 25.19 10.85 14.47 Calculation of Length of Weir: 6 4.24 8.46 26.55 12.71 16.95 Total Perimeter of Grate 130 6.6 4.89 9.76 27.84 14.66 19.55 Short Cross Bars -7 7.2 5.58 11.13 29.08 16.70 22.28 Short Cross Bars -7 7.8 6.29 12.54 30.27 18.83 25.12 Bearing Bars -7 8.0 6.54 13.04 30.66 19.58 26.11 End Supports -9.25 8.4 7.03 14.02 31.41 21.05 28.08 Middle Supports -9.25 9.6 8.59 17.13 33.58 25.71 34.30 745.2 4.7 10.2 9.40 18.76 34.62 30.68 40.93 75.2 4.7 11.4 11.11 22.16 36.0 33.28 44.39 74.34 74.34	0.4	4.8	3.04	90.9	23.75	60.6	12.13		
6 4.24 8.46 26.55 12.71 16.95 6.6 4.89 9.76 27.84 14.66 19.55 7.2 5.58 11.13 29.08 16.70 22.28 8.0 6.54 13.04 30.66 19.58 26.11 8.4 7.03 14.02 31.41 21.05 28.08 9 7.79 15.55 32.52 23.34 31.14 9 7.79 15.55 32.52 23.34 31.14 10.2 9.40 18.76 34.62 28.16 37.57 11.4 11.11 22.16 36.60 33.28 44.39 12 12.00 23.94 37.55 35.94 47.94 12 12.01 23.94 37.55 35.94 47.94 13.2 13.84 27.62 39.38 41.46 55.31 13.8 14.80 29.52 40.26 44.32 59.12 6.80.4 5.12 10.22 28.27 15.34 20.47	0.45	5.4	3.62	7.23	25.19	10.85	14.47	Calculation of Length of M	'eir:
6.6 4.89 9.76 27.84 14.66 19.55 Total Perimeter of Grate 130 7.2 5.58 11.13 29.08 16.70 22.28 Short Cross Bars -7 7.8 6.29 12.54 30.27 18.83 25.12 Bearing Bars 8.0 6.54 13.04 30.66 19.58 26.11 End Supports 8.4 7.03 14.02 31.41 21.05 28.08 Middle Supports 9 7.79 15.55 32.52 23.34 31.14 10.2 9.40 18.76 34.62 28.16 37.57 145	0,5	9	4.24	8.46	26.55	12.71	16.95		
7.2 5.58 11.13 29.08 16.70 22.28 Short Cross Bars -7 7.8 6.29 12.54 30.27 18.83 25.12 Bearing Bars 8.0 6.54 13.04 30.66 19.58 26.11 End Supports 8.4 7.03 14.02 31.41 21.05 28.08 Middle Supports 9 7.79 15.55 32.52 23.34 31.14 10.2 9.40 18.76 34.62 28.16 37.57 74.57 75.5 CF. 10.8 10.25 20.44 35.62 30.68 40.93 75.7 75.2 CF. 11.4 11.11 22.16 36.60 33.28 44.39 75.7 75.2 CF. 12.6 12.91 25.76 38.47 38.67 51.58 13.14 12.6 12.91 25.76 38.47 38.67 51.58 13.14 13.2 14.80 29.52 40.26 44.32 59.12 13.8 14.80 29.52 28.27 15.34 20.47 20.47	0.55	9.9	4.89	9.76	27.84	14.66	19.55	Total Perimeter of Grate	
7.8 6.29 12.54 30.27 18.83 25.12 Bearing Bars -13 8.0 6.54 13.04 30.66 19.58 26.11 End Supports -9.25 8.08 19.68 26.11 End Supports -9.25 9.4 15.55 32.52 23.34 31.14 Middle Supports -110 15.55 32.52 23.34 31.14 34.30 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8	9.0	7.2	5.58	11.13	29.08	16.70	22.28	Short Cross Bars	
8.0 6.54 13.04 30.66 19.58 26.11 End Supports -9.25 8.4 7.03 14.02 31.41 21.05 28.08 Middle Supports -9.25 9.6 8.59 17.13 33.58 25.71 34.30 14.02 9.40 18.76 34.62 28.16 37.57 10.8 10.25 20.44 35.62 30.68 40.93 11.4 11.11 22.16 36.60 33.28 44.39 12.6 12.91 25.76 38.47 38.67 51.58 13.2 13.84 27.62 39.38 41.46 55.31 13.8 14.80 29.52 40.26 44.32 59.12 6.804 5.12 10.22 28.27 15.34 20.47 20.40 28.27 15.34 20.47 20.41 20.41 20.41 20.47 38.67 51.58 20.42 20.43 30.38 20.44 20.47 30.47 13.60 29.52 20.44 20.47	0.65	7.8	6.29	12.54	30.27	18.83	25.12	Bearing Bars	
8.4 7.03 14.02 31.41 21.05 28.08 Middle Supports 5.10 110 2.15 32.52 23.34 31.14 14.02 15.55 32.52 23.34 31.14 14.11 22.16 36.60 33.28 44.39 14.39 12.6 12.91 25.76 38.47 38.67 51.58 14.80 29.52 40.26 44.32 59.12 13.84 27.62 39.38 41.46 55.31 22.0 29.52 40.26 44.32 59.12 13.84 5.12 10.22 28.27 15.34 20.47 51.54 20.47 5.12 10.22 28.27 15.34 20.47 53.25 1	0.667	8.0	6.54	13.04	30.66	19.58	26.11	End Supports	
9 7.79 15.55 32.52 23.34 31.14 9.6 8.59 17.13 33.58 25.71 34.30 10.2 9.40 18.76 34.62 28.16 37.57 19.8. 1.6.2 cf.f 10.8 10.25 20.44 35.62 30.68 40.93 19.8. 1.6.2 cf.f 11.4 11.11 22.16 36.60 33.28 44.39 19.8. 1.6.2 cf.f 12.6 12.91 25.76 38.47 38.67 51.58 11.58 14.80 29.52 40.26 44.32 59.12 13.8 14.80 29.52 40.26 44.32 59.12 6.804 5.12 10.22 28.27 15.34 20.47	0.7	8.4	7.03	14.02	31.41	21.05	28.08	Middle Supports	
9.6 8.59 17.13 33.58 25.71 34.30 TAS. A -3 - 15.5 CF5 10.2 9.40 18.76 34.62 28.16 37.57 TAS. A -3 - 15.5 CF5 10.8 10.25 20.44 35.62 30.68 40.93 TAS. A -5 - 15.2 CF5 11.44 11.11 22.16 36.60 33.28 44.39 TAS. A -6 - 10.8 CF5 12.90 23.94 37.55 35.94 47.94 TAS. A -6 - 10.8 CF5 12.90 23.94 27.62 38.47 38.67 51.58 TAS. A -1.46 55.31 TAS. A -	0.75	6	7.79	15.55	32.52	23.34	31.14		
10.2 9.40 18.76 34.62 28.16 37.57 19.55 <th< td=""><td>0.8</td><td>9.6</td><td>8.59</td><td>17.13</td><td>33.58</td><td>25.71</td><td>34,30</td><td>300 1 20 1 20 1 30 8</td><td></td></th<>	0.8	9.6	8.59	17.13	33.58	25.71	34,30	300 1 20 1 20 1 30 8	
10.8 10.25 20.44 35.62 30.68 40.93 R.K) A.S 15.2 CFJ 11.4 11.11 22.16 36.60 33.28 44.39 12.6 12.91 25.76 38.47 38.67 51.58 13.2 13.84 27.62 39.38 41.46 55.31 Resolution in Lesis Light 2.9.52 40.26 44.32 59.12 6.804 5.12 10.22 28.27 15.34 20.47	0.85	10.2	9.40	18.76	34,62	28.16	37.57	(4) CC (4)	
11.4 11.11 22.16 36.60 33.28 44.39 3.45. 9-6 - 10.8 cfg 12 12.00 23.94 37.55 35.94 47.94 3.45. 9-6 - 10.8 cfg 12.6 12.91 25.76 38.47 38.67 51.58 13.2 13.84 27.62 39.38 41.46 55.31 25.30 25.3 40.26 44.32 59.12 13.8 14.80 29.52 40.26 44.32 59.12 6.804 5.12 10.22 28.27 15.34 20.47	6.0	10.8	10.25	20.44	35.62	30.68	40.93	A.5- 15.2	
12 12.00 23.94 37.55 35.94 47.94 3As.J A-L-12.7 3.847 38.67 51.58 25.31 25.76 38.47 38.67 55.31 25.31	0.95	11.4	11.11	22.16	36.60	33.28	44.39	10.8	
12.6 12.91 25.76 38.47 38.67 51.58 25.31 25.31 25.31 25.31 25.31 25.31 25.31 25.31 25.31 13.8 14.80 29.52 40.26 44.32 59.12 6.804 5.12 10.22 28.27 15.34 20.47	-	12	12.00	23.94	37.55	35.94	47.94	19-6- V	
13.2 13.84 27.62 39.38 41.46 55.31 VESTOUR 13.67 19.67 19.67 19.6 14.80 29.52 40.26 44.32 59.12 6.804 5.12 10.22 28.27 15.34 20.47	1.05	12.6	12.91	25.76	38,47	38.67	51.58		
13.8 14.80 29.52 40.26 44.32 59.12 6.804 5.12 10.22 28.27 15.34 20.47	1.1	13.2	13.84	27.62	39.38	41.46	55.31	RESOURT INCETS 上午をか	
6.804 5.12 10.22 28.27 15.34 20.47	1.15	13.8	14.80	29.52	40,26	44.32	59.12		
	0.567	6.804	5.12	10.22	28.27	15.34	20.47		53 CF5 4

-9.25 -0.770833 -5 -0.416667 110 7.9791667

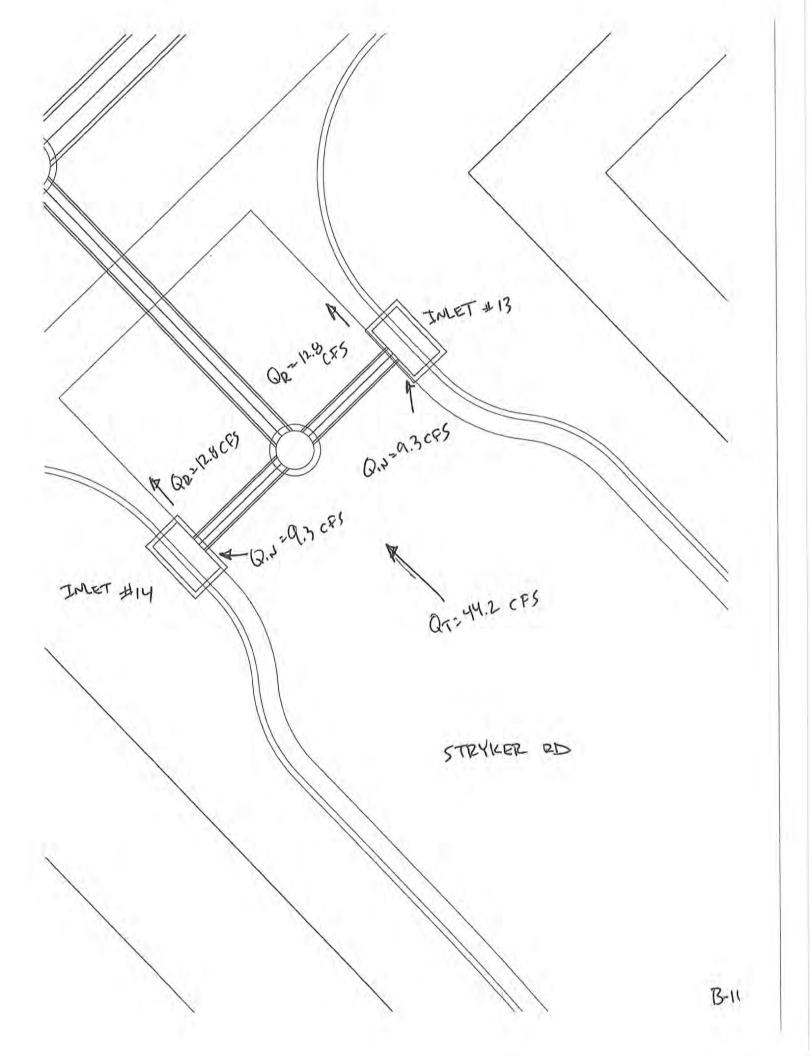
130 10.833333 -0.583333 -13 -1.083333

2 X 100 48 = 26.5 CB (Jave T

53 CFS /4 = 13.25 CFS/12/VET

			MANNA	140 2 W	m 0.0.	L/ SLOPE	0.000			
POINT 1.0 2.0 3.0 4.0	0.0 9.4 9.8 10.0	0.9 0.7 0.7 0.0	P	5.0 6.0 7.0 8.0	DIST 12.0 33.0 54.0 56.0	0.1 0.6 0.1 0.0	1	9.0 0.0 1.0	56.2 56.6 66.0	0.7 0.7 0.7 0.9
WS		DEPTH	FLOW AREA SQ. FT.	FLC RAT		WETTED PER (FT)	FLOW VEL (FP5)	P	PWID LUS RUCTIONS	TOTAL ENERGY (FT)
0.0 0.1 0.1 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.7	00 50 50 50 50 50 50 50 50 50 50	0.050 0.100 0.150 0.200 0.250 0.300 0.350 0.400 0.450 0.550 0.650 0.650	0.039 0.156 0.366 0.795 1.476 2.408 3.591 5.026 6.711 8.648 10.837 13.151 15.467 17.856 20.490	6.	139 371 391 396 773 377 338 576 404 530 538 576 404 530	1.645 3.290 6.318 11.423 11.423 21.631 26.735 31.839 36.943 42.048 47.152 47.152 47.358 55.279	0.560 0.889 1.014 1.3567 1.776 1.978 2.172 2.3540 2.886 3.211	4 6 12 17 22 27 32 37 42 47 47	.484 .048 .996 .021 .047 .072 .098 .123 .148 .174 .199 .224 .250	0,055 0.112 0.166 0.220 0.278 0.338 0.399 0.461 0.523 0.650 0.730 0.810
0.8	00	0.800	23.371 26.499	83.	344	61.144 66.077	3.566	60	.082	0.998

LOCATED C DITERSECTION OF STRYKER & DEKONING

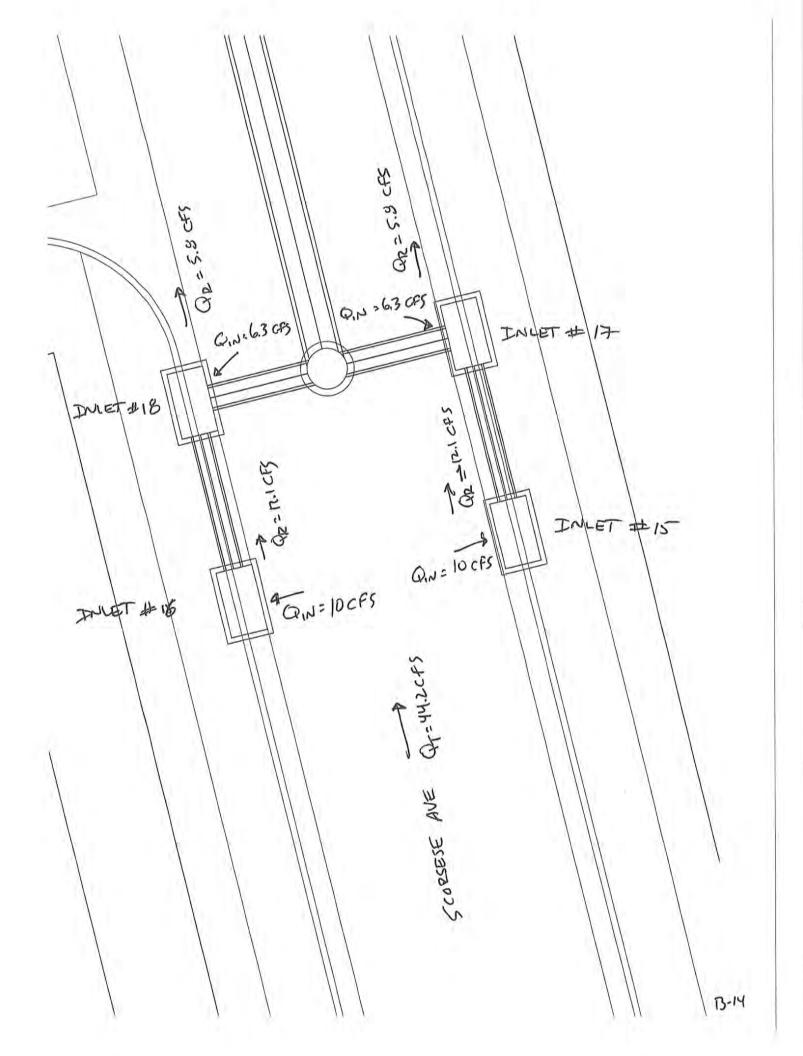

BASIN B: 1 - 37.9 CFS

1/3 FUTURE BASIN 1-10.3 CFS

44.2 CFS

INVET CAPACIN

@ 5=0.6%, d=0.63



Scorsese-sta 13+50.txt

		MANNIN	G'S N = 0.0	17 SLOPE	= 0.005				
1.0 2.0 3.0	0.0 0.9 11.4 0.7 11.8 0.7	PO	INT DIST 5.0 14.0 6.0 26.0 7.0 38.0 8.0 40.0	0.1	PO 1 1	INT DIST 9.0 40.2 0.0 40.6 1.0 52.0	0.7 0.7 0.7 0.9	MEIS 开以 年一	
4.0 3 WSEL FT.	DEPTH INC	FLOW AREA SQ.FT.	FLOW RATE (CFS)	WETTED PER (FT)	FLOW VEL (FPS)	TOPWID PLUS OBSTRUCTIONS	TOTAL ENERGY (FT)	LOCATES Q INTERSECTION O	1
0.050 0.100 0.150 0.250 0.350 0.350 0.450 0.450 0.500 0.550 0.600	0.100 0.150 0.200 0.250 0.300 0.350 0.400 0.500 0.550 0.600 0.650	0.039 0.156 0.366 0.795 1.476 2.408 3.591 4.981 6.391 7.803 9.217 10.631 12.047 13.536	0.020 0.127 0.338 0.832 1.823 3.444 5.822 9.547 14.433 20.082 26.441 33.466 41.123 45.927	1.645 3.290 6.318 11.423 16.527 21.631 26.735 28.839 28.942 29.148 29.148 29.251 29.354 33.282	0.511 0.925 1.046 1.235 1.430 1.621 1.917 2.258 2.574 2.869 3.148 3.413 3.393	2.484 4.048 6.996 12.021 17.047 22.072 27.098 29.123 29.123 29.174 29.179 29.224 29.225 32.226	0.054 0.110 0.163 0.217 0.274 0.332 0.391 0.457 0.529 0.603 0.678 0.754 0.831 0.925		
0.750 0.800 0.850	0.750	15.271 17.253 19.482	51,199 57,859 65,907	38.227 43.171 48.116	3.353 3.354 3.383	42.113 47.057	0.925 0.975 1.028		

FUTURE BASIN 2- 25.6 CFS
BASIN B-2 - 9.0 CFS
1946 FUTURE RASIN 3-76 CFS
44.2 CFS

				MANNIN	IG'S N = 0.0	017 SLOPE	Scorses	e-sta 13+50.t	xt	
P	1.0 2.0 3.0 4.0	0.0 11.4 11.8 12.0	0.9 0.7 0.7 0.7		5.0 14.0 6.0 26.0 7.0 38.0 8.0 40.0	0.1 0 0.4 0 0.1	PC 1	9.0 40.2 0.0 40.6 11.0 52.0	0.7 0.7 0.9	INCELS #14 8 #18
	WSE		DEPTH	FLOW AREA	FLOW	WETTED	FLOW	TOPWID PLUS	TOTAL ENERGY	COCATED @ INTERECT.IN O
	0.05	0	0.050	5Q.FT. 0.039	0.020	PER (FT) 1.645 3.290	(FPS)	OBSTRUCTIONS 2.484 4.048	0.054 0.110	SCORSESE & NAUMAN
	0.10 0.15 0.20 0.25	00	0.100 0.150 0.200 0.250 0.300	0.156 0.366 0.795 1.476	0.127 0.338 0.832 1.823	11.423 16.527	0.511 0.811 0.925 1.046 1.235 1.430	6.996 12.021 17.047	0.163 0.217 0.274	
	0.30 0.35 0.40 0.45	10	0.300 0.350 0.400 0.450	2.408 3.591 4.981 6.391	3.444 5.822 9.547 14.433	21.631 26.735 28.839 28.942	1.430 1.621 1.917 2.258 2.574	22.072 27.098 29.123 29.148	0.332 0.391 0.457 0.529	
1	0.50 0.55 0.60 0.65	00	0.500 0.550 0.600 0.650	7.803 9.217 10.631	20.082 26.441 33.466	28.942 29.045 29.148 29.251	3 1/18	29.148 29.174 29.199 29.224	0.603 0.678 0.754 0.831	
	0.65 0.70 0.75 0.80 0.85	00 00	0.650 0.700 0.750 0.800 0.850	12.047 13.536 15.271 17.253 19.482	41.123 45.927 51.199 57.859 65.907	29.354 33.282 38.227 43.171 48.116	3.413 3.393 3.353 3.354 3.383	29:224 29:250 32:226 37:170 42:113 47:057	0.879 0.925 0.975 1.028	
Ø	1811	SUA	L -	24.2	CFS					
INLE	_				3 45					
-0P	PT	06	PAC I	74				- 214	l star	3248-6.36x=0.1792 X=0.65' de
					-24.2	6	.36	= 2.21	- 7 4.	1651 / de
264			- =-	0.60.	- X	≥ 0.	99	5,65	4	K 2 0:03
0.63-										
- \	-	C	ARAG	,74	6,44-7		1			3498-6.36>
72				7	6.44-6	24.2	>6	36 , 2.0	- =>	0,112 = 3,498-6.36x
26	.44-	-21.	08	- = -	ss -×	7 = 1	0.0	5 0.55-	×	X= 0.53
0	.55 -	0.5	0	0.	35 A					
	(3 5	0.5	ols, d	- 0.53					
	0	120	10 -	10.5	CFS					
	6	0.2	10 -	5.5	CFS				1.1.0	
		1	06-5	.5	= 125	->	>	5 2	10.5	7.5 = 10.00
		2	-9.3		2-0	.5		1.9	1.5	X = 6.5 C+3
										$7.5 = 189 - 1.8 \times $ $X = 6.3 \text{ CFS}$ $CPER DWRLE'A'$
										SCOT THE SAME
	RE	5.0	JAL					ist its		

Scorsese-sta 19+50.txt

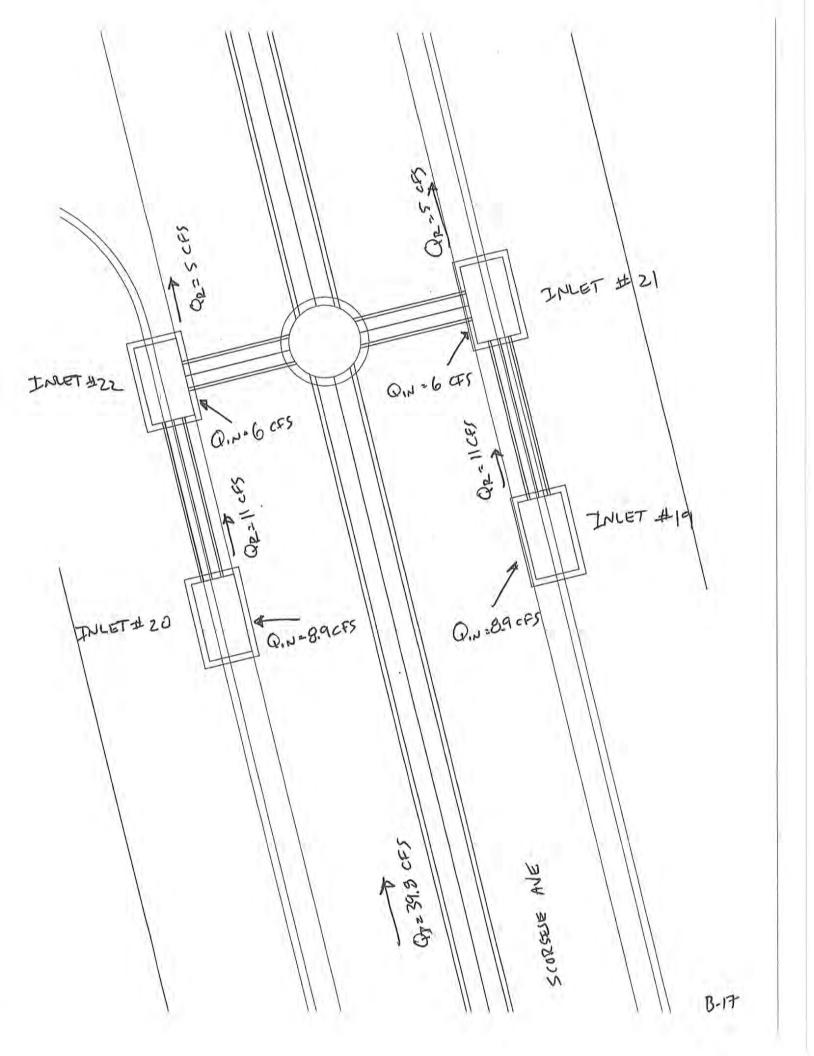
				MANN	ING'S N =	0.017 SLOP	E = 0.005	5			
PO	INT 1.0 2.0 3.0 4.0	0.0 11.4 11.8 12.0	0.9 0.7 0.7 0.7		5.0 1 6.0 2 7.0 3	AST ELEV 4.0 0.1 5.0 0.4 8.0 0.1 0.0 0.0		9.0 40 10.0 40 11.0 52	.2 0.7 .6 0.7	INCELS :	上日村出口
	WSI		DEPTH	FLOW AREA SQ.FT.	FLOW RATE (CFS)	WETTED PER (FT)	FLOW VEL (FPS)	TOPWID PLUS OBSTRUCT	TOTAL ENERGY IONS (FT)	LOCATED C	
	0.01 0.11 0.22 0.31 0.31 0.44 0.55 0.66 0.77 0.78 0.88	00 50 50 50 50 50 50 50 50 50 50	0.050 0.100 0.150 0.200 0.250 0.350 0.350 0.400 0.550 0.500 0.650 0.650 0.700 0.850 0.850	0.039 0.156 0.366 0.795 1.476 2.408 3.591 4.981 6.391 7.803 9.106 12.047 13.536 15.271 17.253 19.482	0.127 0.338 0.832 1.823 3.444 5.822 9.547 14.433 20.082 26.441 33.466 41.123 45.927 51.199	1.645 3.290 6.318 11.423 16.527 21.631 28.839 28.942 29.045 29.148 29.251 29.354 33.282 38.227 43.171	0.511 0.811 0.925 1.046 1.235 1.430 1.621 1.917 2.258 2.574 2.869 3.148 3.313 3.353 3.353	2.484 4.048 6.996 12.021 17.047 22.072 27.098 29.123 29.148 29.174 29.199 29.224 29.250 32.226 37.170 42.134 47.057	0.603 0.678 0.754 0.831	SCURSEIF	\$ MOTHER WELL

INLET CAPACITY

Page 1

Scorsese-sta 19+50.txt

1.0 2.0 3.0 4.0	DIST 0.0 11.4 11.8 12.0	0.7	1.7	INT DIS 5.0 14. 6.0 26. 7.0 38. 8.0 40.	0 0.1 0 0.4 0 0.1	1	INT DIST 9.0 40.2 0.0 40.6 1.0 52.0	0.7 0.7 0.7 0.9
WS F1	SEL r.	DEPTH INC	FLOW AREA SQ.FT.	FLOW RATE (CFS)	WETTED PER (FT)	FLOW VEL (FPS)	TOPWID PLUS OBSTRUCTIONS	TOTAL ENERGY (FT)
0.0	100 150 200 250 300 350 400 450 550	0.050 0.100 0.150 0.200 0.250 0.300 0.350 0.400 0.450 0.550	0.039 0.156 0.366 0.795 1.476 2.408 3.591 4.981 6,391 7.803 9.217	0.020 0.127 0.338 0.832 1.823 3.444 5.822 9.547 14.433 20.082 26.441	1.645 3.290 6.318 11.423 16.527 21.631 26.735 28.839 28.942 29.045 29.148	0.511 0.811 0.925 1.046 1.235 1.430 1.621 1.917 2.258 2.574 2.869	2,484 4,048 6,996 12,021 17,047 22,072 29,123 29,123 29,128 29,174 29,199	0.054 0.110 0.163 0.217 0.274 0.332 0.391 0.457 0.529 0.603 0.678
0.6	500 550 700	0.600 0.650 0.700 0.750 0.800 0.850	10.631 12.047 13.536 15.271 17.253 19.482	33.466 41.123 45.927 51.199 57.859 65.907	29.251 29.354 33.282 38.227 43.171 48.116	3.148 3.413 3.393 3.353 3.354 3.383	29.224 29.250 32.226 37.170 42.113 47.057	0.754 0.831 0.879 0.925 0.975 1.028


WETS # 21 \$ # 22 CATED C ZNABJECT. SW STORSES & MITHERWELL

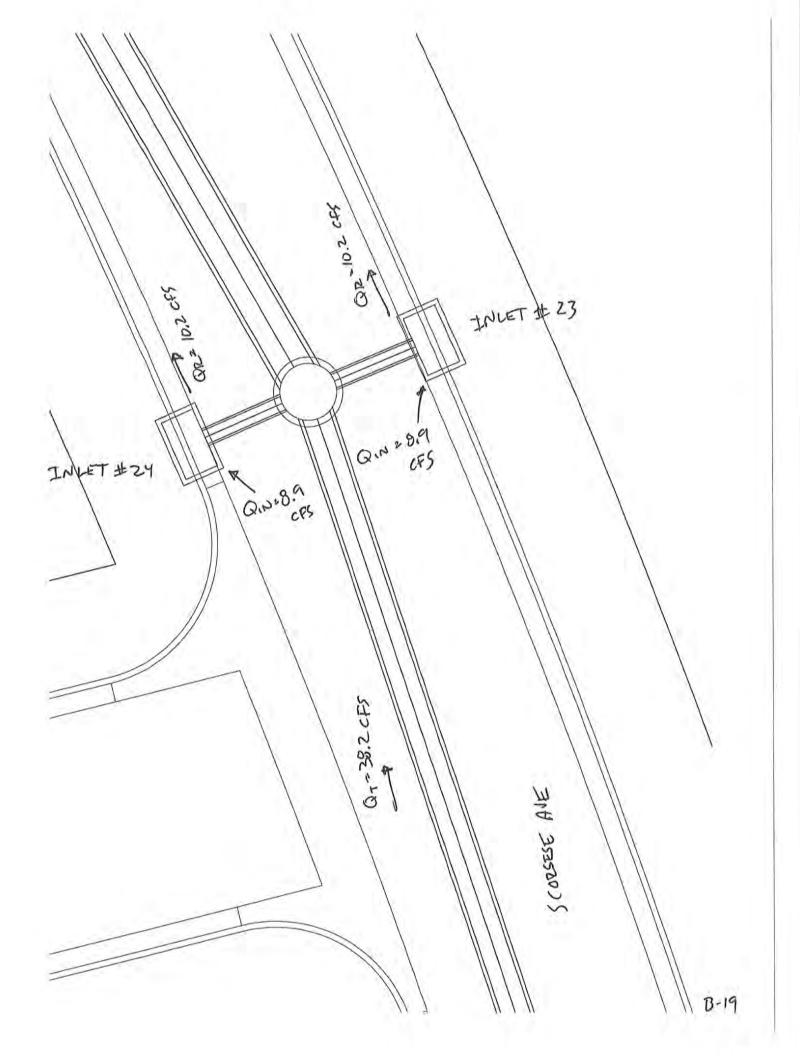
RESIDVAL - 22 CFS THETS #194420

STREET CAPACITY

INLET CAPACITY

$$\frac{2.0\% - 10.0 \text{ cfs}}{2.0\% - 10.0 \text{ cfs}} \Rightarrow \frac{1.8}{4.9} = \frac{1.5}{10-x} = \frac{18-1.5x = 7.2}{x = 6 \text{ cfs}} \left(\text{Per Durke 'A'} \right)$$

			MANNO	ING'S N	· 0.03	L7 SLOPE	= 0.005				
POINT 1.0 2.0 3.0 4.0	0.0 11.4 11.8 12.0	0.9 0.7 0.7 0.0		5.0 6.0 7.0 8.0	DIST 14.0 26.0 38.0 40.0	0.1 0.4 0.1 0.0	PO 1	9.0 0.0 1.0	DIST 40.2 40.6 52.0	0.7 0.7 0.9	INES # 23 # 24
WSE FT.		DEPTH	FLOW AREA SQ.FT.	RA	OW TE (FS)	WETTED PER (FT)	FLOW VEL (FPS)	PI	PWID LUS RUCTIONS	TOTAL ENERGY (FT)	Commes Q INTERSECTUL OF
0.05 0.10 0.20 0.25 0.30 0.35 0.40 0.45 0.55 0.60 0.65 0.70 0.75 0.80	000000000000000000000000000000000000000	0.050 0.100 0.150 0.200 0.250 0.350 0.450 0.550 0.550 0.650 0.750 0.750 0.750 0.750	0.039 0.156 0.366 0.795 1.476 2.408 3.591 7.803 9.217 10.631 12.047 13.536 11.7.253 19.482	0. 0. 0. 1. 3. 5. 14. 20. 26. 33. 41.	020 127 338 832 823 444 5547 433 082 441 466 123 927 927 999 859	1.645 3.290 6.318 11.428 16.527 21.631 26.735 28.839 28.942 29.045 29.045 29.251 33.282 38.227 48.116	0.511 0.811 0.925 1.046 1.235 1.430 1.621 1.917 2.258 2.574 2.869 3.413 3.393 3.353 3.354 3.383	4 12 17 227 29 29 29 29 29 29 29 37 42	.484 .048 .0996 .021 .047 .098 .123 .148 .174 .199 .224 .224 .250 .216 .113 .057	0.054 0.163 0.217 0.274 0.332 0.391 0.457 0.529 0.678 0.754 0.831 0.879 0.975 1.028	SUNESELE & OLDENDERC


STREET CAPACING

INLET CAPACITY

@ 5=0.5%, d=0.63.

$$\frac{2-0.2}{13.5-8} = \frac{2-0.5}{13.5-x} \Rightarrow \frac{1.8}{5.5} = \frac{1.5}{13.5-x} \Rightarrow 9.25 = 24.3 - 1.8x$$

$$\frac{2+0.2}{13.5-8} = \frac{2-0.5}{13.5-x} \Rightarrow \frac{1.8}{5.5} = \frac{1.5}{13.5-x} \Rightarrow 9.25 = 24.3 - 1.8x$$

Located @ Intersection of Dekooning + Houser

MANNING'S	N	=	0.017	SLOPE	=	0.008

ELEV

0.2

DIST

12.0

POINT

4.0

0.9

POINT

1.0

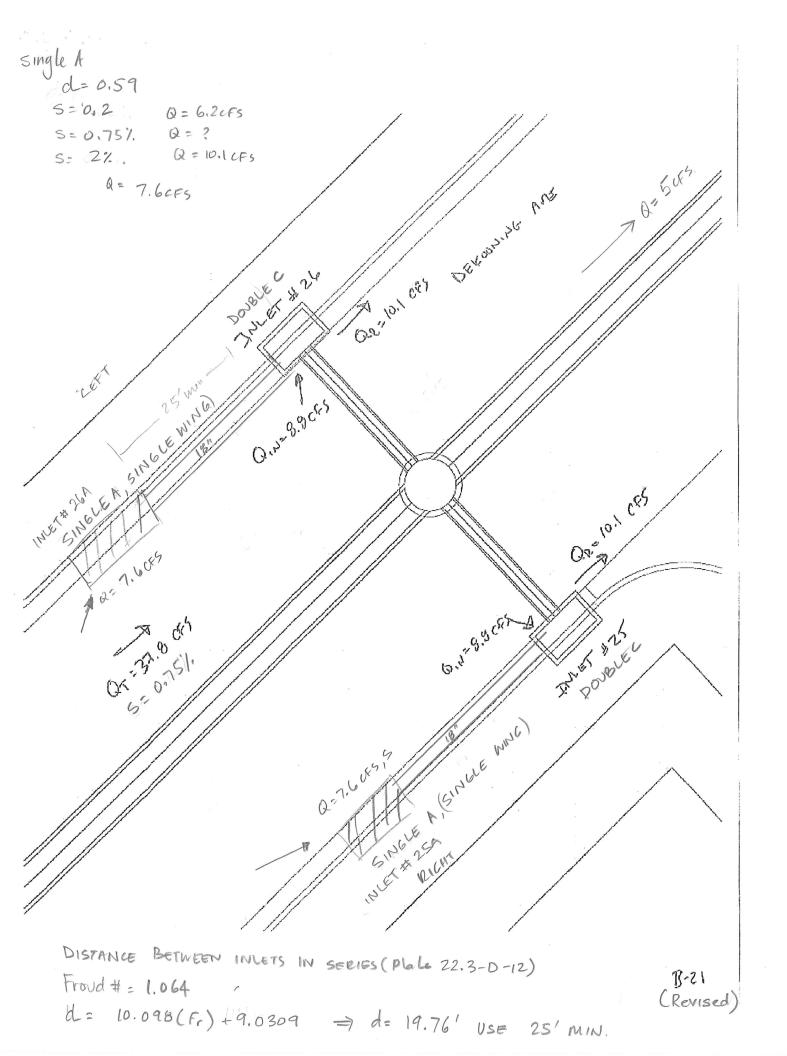
0.0

1.0	0.0	0.9		4.0	12.0	0.2			50.0	0.0			
2.0	9.4	0.7		5.0	33.0	0.5		3.0	56.6	0.7			
3.0	10.0	0.0		6.0	54.0	0.2		9.0	66.0	0.9			
W	SEL	DEPTH	FLOW	FLO	W	WETTED	FLOW	TO:	PWID	TOPWID	TOTAL	FROUDE	
		INC	AREA	RAT	E	PER	VEL	P.	LUS	WATER	ENERGY	NO.	
F'	г.		SQ.FT.	(CF	S)	(FT)	(FPS)	OBST	RUCTIONS		(FT)		
			2										
0.	050	0.050	0.032	0.0	20	1.317	0.632	1	.270	1.270	0.056	0.704	
	100	0.100	0.127	0.1	27	2.635	1.002	2	.540	2.540	0.116	0.790	
	150	0.150	0.286	0.3	75	3.952	1.314	3	.809	3.809	0.177	0.846	
	200	0.200	0.548	0.6		7.967	1.271	7	.779	7.779	0.225	0.844	
	250	0.250	1.082	1.5		13.781	1.388	13	.547	13.547	0.280	0.866	
	300	0.300	1.903	3.0		19.594	1.600	19	.316	19.316	0.340	0.898	
	350	0.350	3.013	5.5		25.407	1.827	25	.085	25.085	0.402	0.930	
	400	0.400	4.412	9.0		31.221	2.054	30	.854	30.854	0.466	0.958	
	450	0.450	6.099	13.8		37.034	2.274	36	.623	36.623	0.530	0.983	
	500	0.500	8.074	20.0		42.847	2.488	42	.392	42.392	0.596	1.005	
	550	0.550	10.332	28.2		47.525	2.737	47	.026	47.026	0.667	1.029	
	600	0.600	12.686	39.7		47.662	3.132	47	.119	47.119	0.753	1.064	
-	650	0.650	15.044	52.6	Mary of the Park Street Company	47.799	3.503	47	.213	47.213	0.841	1.094	-
	700	0.700	17.451	64.7		50.815	3.712	50	.211	50.211	0.914	1.110	
	750	0.750	20.085	76.9		55.750	3.833	55	.145	55.145	0.978	1.120	
	800	0.800	22.965	90.9		60.685	3.961	60	.079	60.079	1.044	1.129	
	850	0.850	26.092	106.8		65.620	4.093	65	.013	65.013	1.111	1.139	
0.		0.000	_0.002										

POINT

7.0

DIST


56.0

0.0

STREET CAPACITY

INLET CAPACITY

RESIDUAL FLOW!

28, 29, 30 - SUMP # INLETS

Located near the intersection of Dekooning + Houser

	7.7977431	7.9791667	9.0	က	
Double A Inlet, in Sump condition:	Open Area (for orifice calc in sq. ft.):	Length of Weir (feet):	Orifice Coeficient	Weir Coeficient	

			`	-732 -5.083333	-115.625 -0.802951	-100 -0.694444		1122.875 7.7977431			ir:		130 10.833333			-9.25 -0.770833		110 7.9791667			1 30 130 1	1 07 407 60	+24 ====================================		11	and the second	
	Calculation of open area:		Total Grate Area	Cross Bar Area	Supports (ends)	(middle)	Areas Counted Twice	~			Calculation of Length of Weir:		Total Perimeter of Grate	Short Cross Bars	Bearing Bars	End Supports	Middle Supports				C 4.26 1 1 264 20	Kesydual Intel Longe	Docude 1 # 23	1010	Basin	1200 D	
0 0	Dbl Wing	(cts)	0.54	1.52	2.78	4.29	5.99	7.88	9.93	12.13	14.47	16.95	19.55 ℝ⊤	22.28	25.12	26.11	28.08	31.14	34.30	37.57 2×100 yr.	40.93	44.39	47.94	51.58	55.31	59.12	20.47
Control Q	Sgl Wing	(cts)	0.40	1.14	2.09	3.21	4.49	5.91	7.44	9.09 LT	10.85	12.71	14.66	16.70	18.83	19.58	21.05	23.34	25.71	28.16	30.68	33.28	35.94	38.67	41.46	44.32	15.34
ate	Orifice Q	(cfs)	8.40	11.87	14.54	16.79	18.77	20.56	22.21	23.75	25.19	26.55	27.84	29.08	30.27	30.66	31.41	32.52	33.58	34.62	35.62	36.60	37.55	38.47	39.38	40.26	28.27
Grate	Weir Q	(cfs)	0.27	0.76	1.39	2.14	2.99	3.93	4.96	90.9	7.23	8.46	9.76	11.13	12.54	13.04	14.02	15.55	17.13	18.76	20.44	22.16	23.94	25.76	27.62	29.52	10.22
1 Wing	Weir Q	(cfs)	0.13	0.38	0.70	1.07	1.50	1.97	2.48	3.04	3.62	4.24	4.89	5.58	6.29	6.54	7.03	7.79	8.59	9.40	10.25	11.11	12.00	12.91	13.84	14.80	5.12
	Head	(in)	0.6	1.2	1.8	2.4	က	3.6	4.2	4.8	5.4	9	9.9	7.2	7.8	8.0	8.4	6	9.6	10.2	10.8	11.4	12	12.6	13.2	13.8	6.804
	Head	(#)	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5	0.55	9.0	0.65	0.667	0.7	0.75	0.8	0.85	0.9	0.95	<u>,</u>	1.05	1.1	1.15	0.567

2 INLETS ON LF SIDE OF DEKOONING = 17.8 = 8.9 eFS SINGLE WING h: 0.51 SIDE OF DELCONING = 17.8cFS I INLET ON RT DOVBLE WING

35.6 cFs/2=17.8cFs

10.2 CFS

5.0cts 20,445

B-22 (Revised)

2x 100yr = 2 (17,8 cts)=35,6 cfs; h= 0.82 / 2 0,9 V

13-23 (Revised)

JUNETS 1 31 末世32

Labored real the Intersections

OF STRIKED & O'VERFE				Calculation of open area:				Supports (ends) -115.625 -0.802951		Areas Counted Twice 70.5 0.4895833	1122.875 7.7977431			Calculation of Length of Weir:		Total Perimeter of Grate 130 10,833333		Bearing Bars -13 -1.083333			110 7,9791667			10 1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(Carrier A. L. A.)	のではんとう		12 . 12 9, Car	はなべ くっかし しから でフーク	(A 12060)
	7.7977431 7.9791667 0.6		Control Q	Dbl Wing	(cts)	0.54	1.52	2.78	4.29	5.99	7.88	9.93	12.13	14.47	16.95	19.55	22.28	25.12	26.11	28.08	31.14	34.30	37.57	40.93	44.39	47.94	51.58	55.31	59.12	20.47
		(Con	Sgl Wing	(cts)	0.40	1.14	2.09	3.21	4.49	5.91	7.44	60.6	10.85	12.71	14.66	16.70	18.83	19.58	21.05	23.34	25.71	28.16	30.68	33.28	35.94	38.67	41.46	44.32	15.34
	Double A inlet, in sump condition: Open Area (for orifice calc in sq. ft.): Length of Weir (feet): Orifice Coeficient		Grate	Orifice Q	(cfs)	8.40	11.87	14.54	16.79	18.77	20.56	22.21	23.75	25.19	26.55	27.84	29.08	30.27	30.66	31.41	32.52	33,58	34.62	35.62	36.60	37.55	38.47	39.38	40.26	28.27
	let, in sum for orifice c eir (feet): cient		5	Weir Q	(cfs)	0.27	0.76	1.39	2.14	2.99	3.93	4.96	90.9	7.23	8.46	9.76	11.13	12.54	13.04	14.02	15.55	17.13	18.76	20.44	22.16	23.94	25.76	27.62	29.52	10.22
	Double A inlet, in su Open Area (for orifice Length of Weir (feet): Orifice Coeficient	Weir Coeficient	1 Wing	Weir Q	(cfs)	0.13	0.38	0.70	1.07	1.50	1.97	2.48	3.04	3.62	4.24	4.89	5.58	6.29	6.54	7.03	7.79	8.59	9.40	10.25	11.11	12.00	12.91	13.84	14.80	5.12
				Head	(in)	9.0	1.2	1.8	2.4	က	3.6	4.2	4.8	5.4	9	6.6	7.2	7.8	8.0	8.4	6	9.6	10.2	10.8	11.4	12	12.6	13.2	13.8	6.804
			-	Head	(ft)	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5	0.55	9.0	0.65	0.667	7.0	0.75	0.8	0.85	6.0	0.95	+	1.05	1.1	1.15	0.567

STRYKER RA		SUMP CON	No. 11 &
China China		INCET #31	
		N-11.9 CF5	
INCET#32	Q. N=11.9 CF3	A Pour	
			B-25

Alley_0.50.txt

			MANNIN	G'S N	= 0.01	7 SLOPE	= 0.005				
1.0 2.0 3.0	0.0 2.4 4.0	0.3		1NT 4.0 5.0 6.0	5.0 10.0 15.0	0.1 0.2 0.1		INT 7.0 8.0 9.0	DIST 16.0 17.6 20.0	0.0 0.3 0.4	
WSE FT.		DEPTH	FLOW AREA SQ.FT.	FL RA (C		WETTED PER (FT)	FLOW VEL (FPS)	PL	WID US UCTIONS	TOTAL ENERGY (FT)	
0.05 0.15 0.20 0.25 0.30 0.35	0	0.050 0.100 0.150 0.200 0.250 0.300 0.350	0.033 0.131 0.320 0.757 1.435 2.168 2.943	0. 0. 1.	017 109 279 762 898 693 605	1.325 2.650 6.046 11.512 14.492 14.987 17.205	0.524 0.832 0.872 1.007 1.323 1.703 1.905	2. 6. 11. 14. 14.	309 618 000 454 424 909 120	0.054 0.111 0.162 0.216 0.277 0.345 0.406	

TYPICAL ALLEY CAPACITY

(2 0.546 = 6 CFS

APPENDIX C INROADS STORM DRAIN OUTPUT FILES

```
InRoads Storm & Sanitary Design Log
Drainage File: P:\20140338\CDP\Control\Data\20140338_Sb.sdb
Design File: P:\20140338\CDP\HYDRO\20140338BASINS_BCP.DWG
Display Log: P:\20140338\CDP\HYDRO\design.log
Date: Wednesday, April 23, 2014 2:07:47 PM
Designing inlet INI
WARNING: Spread is greater than maximum spread (2.5000 ft )
WARNING: Inlet forced to capture all flow, ignoring capacity calculations.
    Results:
Gutter Flow:
                                           9.5000 cfs
                                                                                      Flow From: Injected Storm
       Status:
Inlet Length:
Flow Downstream:
Percent Cap:
Spread:
Depth in Gutter:
                                       Fixed
6.5000 ft
9.5000 cfs
100.0000 %
12.5768 ft
0.3353 ft
                                                                                  Inlet width:
                                                                                                                2.0000 ft
0.0000 cfs
0.0000 cfs
                                                                                      Bypass To:
Capacity:
                                                                            Assigned Bypass:
                                                                                                                     N/A
Designing pipe SDP18
WARNING: Full flow yelocity is greater than maximum (10.0000)
   Results:
Total Flow:
                                           9.5000 cfs
                                                                                      Flow From:
                                                                                                            Upstream
         Status:
Pipe Width:
Depth of Flow:
Critical Depth:
Velocity:
Froude Number:
                                         Fixed
18.0000 in
0.5430 ft
1.1900 ft
16.4217 ft/s
4.5761
                                                                                                              0.1041 ft/ft
18.0000 in
Partial
33.8840 cfs
                                                                                   Flow Regime: Supercritical
Designing inlet IN2
WARNING: Spread is greater than maximum spread (2.5000 ft )
WARNING: Inlet forced to capture all flow, ignoring capacity calculations.
    Results:
Gutter Flow:
                                           9.5000 cfs
                                                                                      Flow From: Injected Storm
       Status:
Inlet Length;
Flow Downstream:
Percent Cap:
                                       Fixed
6.5000 ft
9.5000 cfs
100.0000 %
2.5171 ft
0.8804 ft
                                                                                                                2.0000 ft
0.0000 cfs
0.0000 cfs
                                                                                   Inlet Width:
                                                                                      Bypass To:
Capacity:
       Spread:
Depth in Gutter:
                                                                           Assigned Bypass:
                                                                                                                     N/A
Designing pipe SDP19
WARNING: Full flow velocity is greater than maximum (10.0000)
   Results:
Total Flow:
                                           9.5000 cfs
                                                                                      Flow From:
                                                                                                            upstream
        Status:
Pipe Width:
Depth of Flow:
Critical Depth:
Velocity:
Froude Number:
                                         Fixed
18.0000 in
0.5480 ft
1.1900 ft
16.2193 ft/s
4.4961
                                                                                   Slope:
Pipe Height:
Flow Status:
Capacity:
                                                                                                              0.1006 ft/ft
18.0000 in
                                                                                                              Partial
33.3220 cfs
                                                                                   Flow Regime: Supercritical
pesigning manhole SDMH1
   Results:
Total Flow:
                                         19.0000 cfs
                                                                                      Flow From:
                                                                                                            Uostream
          Status:
Chamber Width:
                                           Fixed
4.0000 ft
                                                                             Chamber Length:
                                                                                                                4.0000 ft
Designing pipe SDP6
   Results:
Total Flow:
                                         19.0000 cfs
                                                                                      Flow From:
                                                                                                            Upstream
                                         Fixed
24.0000 in
1.1390 ft
1.5600 ft
10.2709 ft/s
1.8746
         Status:
Pipe Width:
Depth of Flow;
Critical Depth:
Velocity:
Froude Number:
                                                                                   Slope:
Pipe Height:
Flow Status:
Capacity:
                                                                                                              0.0184 ft/ft
24.0000 in
Partial
30.6727 cfs
                                                                                   Flow Regime: Supercritical
Designing inlet IN3
WARNING: Spread is greater than maximum spread (2.5000 ft )
WARNING: Inlet forced to capture all flow, ignoring capacity calculations.
   Results:
Gutter Flow:
                                           9.2000 cfs
                                                                                      Flow From: Injected Storm
      Status:
Inlet Length:
Flow Downstream:
Percent Cap:
Spread:
Depth in Gutter:
                                       Fixed
6.5000 ft
9.2000 cfs
100.0000 %
12.4778 ft
0.3305 ft
                                                                                  Inlet width:
                                                                                                               2.0000 ft
0.0000 cfs
0.0000 cfs
                                                                                      Bypass To:
Capacity:
                                                                           Assigned Bypass:
                                                                                                                     N/A
```

Designing pipe SDP16
WARNING: Full flow velocity is greater than maximum (10.0000)
Page 1

			Ou	tfall A.txt	
Results; Total Flow:	9.2000	cfs	Flow From:	Upstream	
Status: Pipe Width: Depth of Flow: Critical Depth: Velocity: Froude Number:	Fixed 18.0000 0.3680 1.1700	in ft ft	Slope: Pipe Height: Flow Status: Capacity:	0.4372 18.0000 Partial 69.4576	ft/ft in cfs
Velocity: Froude Number:	0.3680 1.1700 27.2427 9.4080	ft/s	Flow Regime:		
Designing inlet IN4 WARNING: Inlet for	ced to car	ture al	1 flow, ignoring capac	ity calcula	tions.
Results:	100.774		100000000		
Gutter Flow:	9.2000	cfs	Flow From:	Injected St	orm
Status: Inlet Length: Flow Downstream: Percent Cap: Spread:	Fixed 6.5000 9.2000 100.0000 2.4865	ft cfs %	Inlet Width: Bypass To: Capacity:	2.0000 0.0000 0.0000	cfs
Depth in Gutter:	0.8700	ft	Assigned Bypass:	N/A	
Designing pipe SDP17 WARNING: Full flow	v velocity	is grea	ter than maximum (10.0	0000)	
Results: Total Flow:	9.2000	cfs	Flow From:	Upstream	
Status: Pipe Width: Depth of Flow: Critical Depth:	Fixed	46	Slope: Pipe Height: Flow Status: Capacity:	0.4228 18.0000 Partial 68.3053	in
Velocity: Froude Number:	0.3710 1.1700 26.9331 9.2606	ft/s	Flow Regime:		43
Designing manhole SDM)					
Results: Total Flow:	37.4000	cfs	Flow From:	Upstream	
Status: Chamber Width:	Fixed 4.0000	ft	Chamber Length:	4.0000	ft
Designing pipe SDPS					
Results: Total Flow:	37,4000	cfs	Flow From:	Upstream	
Status:	Fixed		Slope:	0.0100	ft/ft
Pipe Width: Depth of Flow: Critical Depth: Velocity:	36,0000 1,6060 1,9800 9,7016 1,5075	fr	Fipe Height: Flow Status: Capacity:	36.0000 Partial 66.6984	in cfs
Froude Number:	1.5075		Flow Regime;	SuperCriti	al
oesigning manhole som	H3				
Results: Total Flow:	37.4000	cfs	Flow From:	Upstream	
Status: Chamber Width:	Fixed 6.0000	ft	Chamber Length:	6.0000	ft
Designing pipe SDP4					
Results: Total Flow:	37.4000	cfs	Flow From:	Upstream	
Status: Pipe Width: Depth of Flow:	Fixed 36.0000 1.6060	in ft	Slope: Pipe Height: Flow Status:	0.0100 36.0000 Partial	ft/ft in
Critical Depth: Velocity: Froude Number:	1.9800 9.7016 1.5075	ft	Capacity: Flow Regime:	66.6984	
Designing inlet IN7			cimum spread (2.5000 f 1 flow, ignoring capa	43550000	
WARNING: Inlet fo Results: Gutter Flow:	9.2000			Injected S	
Status:	Edved		W A Y V 37 4 3		
Inlet Length: Flow bownstream: Percent Cap: Spread:	6.5000 9.2000 100.0000	26	Inlet Width: Bypass To: Capacity:	2.0000 0.0000 0.0000	ft cfs cfs
Depth in Gutter:	2.6384 0.8396	ft	Assigned Bypass:	N/A	
Designing pipe SDP12					
Results: Total Flow:	9.2000	cfs	Flow From:	Upstream	
Status: Pipe Width: Depth of Flow:	Fixed 18.0000 1.0020	in ft	Slope: Pipe Height: Flow Status:	0.0124 18.0000 Partial 11.6932	in
Critical Depth: Velocity: Froude Number:	1.1700 7.3263 1.3708	ft/s	Capacity: Flow Regime:		

Page 3

```
pesigning inlet IN9
WARNING: Spread is greater than maximum spread (2,5000 ft )
WARNING: Inlet forced to capture all flow, ignoring capacity calculations.
WARNING: Pipe Too large for valid connection to inlet.
     Results:
                Gutter Flow:
                                                 7.0000 cfs
                                                                                                 Flow From: Injected Storm
        Status:
Inlet Length:
Flow Downstream:
Percent Cap:
Spread:
Depth in Gutter:
                                             Fixed
6.5000 ft
16.2000 cfs
100.0000 %
16.4872 ft
0.2373 ft
                                                                                                                              2.0000 ft
0.0000 cfs
0.0000 cfs
                                                                                             Inlet width:
                                                                                                  Capacity:
                                                                                     Assigned Bypass:
                                                                                                                                    N/A
 Designing pipe SDP13
WARNING: Full flow velocity is greater than maximum (10.0000)
    Results:
Total Flow:
                                              16,2000 cfs
                                                                                                Flow From:
          Status:
Pipe Width:
Depth of Flow:
Critical Depth:
Velocity:
Froude Number:
                                               Fixed
24.0000 in
0.4380 ft
1.4500 ft
31.7151 ft/s
10.0785
                                                                                             Slope:
Pipe Height:
Flow Status:
Capacity:
                                                                                                                         0.4632 ft/ft
24.0000 in
Partial
153.9599 cfs
                                                                                             Flow Regime: Supercritical
WARNING: Pipe Too large for valid connection to inlet.
Designing inlet INB
WARNING: Spread is greater than maximum spread (2.5000 ft )
WARNING: Inlet forced to capture all flow, ignoring capacity calculations.
     Results:
                Gutter Flow:
                                                 9,2000 cfs
                                                                                                 Flow From: Injected Storm
        Status:
Inlet Length:
Flow Downstream:
Percent Cap:
Spread:
Depth in Gutter:
                                             Fixed
6.5000 ft
9.2000 cfs
100.0000 %
668.6888 ft
0.0303 ft
                                                                                                                              2.0000 ft
0.0000 cfs
0.0000 cfs
                                                                                             Inlet width:
                                                                                                 Bypass To:
Capacity:
                                                                                 Assigned Bypass:
                                                                                                                                    N/A
Designing pipe SDP14
    Results:
Total Flow:
                                                 9.2000 cfs
                                               Fixed
18.0000 in
1.0020 ft
1.1700 ft
7.3263 ft/s
1.3708
                                                                                             Slope:
Pipe Height:
Flow Status:
Capacity:
          Status:
Pipe Width:
Depth of Flow:
Critical Depth:
Velocity:
Froude Number:
                                                                                             Flow Regime: Supercritical
Designing inlet INIO.
WARNING: spread is greater than maximum spread (2.5000 ft )
WARNING: Inlet forced to capture all flow, ignoring capacity calculations.
WARNING: Pipe Too large for valid connection to inlet.
    Results:
Gutter Flow:
                                                 7.0000 cfs
                                                                                               Flow From: Injected Storm
                                          Fixed
6.5000 ft
16.2000 cfs
100.0000 %
1921.2516 ft
0.0137 ft
        Status:
Inlet Length:
Flow Downstream:
Percent Cap:
Spread:
Depth in Gutter:
                                                                                              Inlet width:
                                                                                     Assigned Bypass:
                                                                                                                              N/A
 Designing pipe SDP15
WARNING: Full flow velocity is greater than maximum (10.0000)
    Results:
Total Flow:
                                               16,2000 cfs
                                                                                                  Flow From:
                                                                                                                           Upstream
           Status:
Pipe Width:
Depth of Flow:
Critical Depth:
Velocity:
Froude Number:
                                               Fixed
24.0000 in
0.4340 ft
1.4500 ft
32.1310 ft/s
10.2606
                                                                                             Slope:
Pipe Height:
Flow Status:
Capacity:
                                                                                                                          Partial
156.3222 cfs
                                                                                              Flow Regime: Supercritical
 WARNING: Pipe Too large for valid connection to inlet. Designing manhole SDMH4
    Results:
Total Flow:
                                                69.8000 cfs
                                                                                              Flow From:
             Status:
Chamber width:
                                                  Fixed
6.0000 ft
                                                                                        Chamber Length:
                                                                                                                              6,0000 ft
 Designing pipe SDP3
WARNING: Full flow velocity is greater than maximum (10.0000)
     Results:
Total Flow:
                                                69.8000 cfs
                                                                                                                             0.0100 ft/ft
42.0000 in
                                                                                              Slope:
Pipe Height:
Flow Status:
Capacity:
           Status:
Pipe Width:
Depth of Flow:
Critical Depth:
Velocity:
Froude Number:
                                                                                                                          Partial
100.6098 cfs
                                                                                              Flow Regime: SuperCritical
```

C-3

```
Designing inlet IN6
WARNING: Spread is greater than maximum spread (2.5000 ft )
WARNING: Inlet forced to capture all flow, ignoring capacity calculations.
    Results:
Gutter Flow:
                                                13,2500 cfs
                                                                                                   Flow From: Injected Storm
        Status:
Inlet Length:
Flow Downstream:
Percent Cap:
Spread:
Depth in Gutter:
                                              6.5000 ft
13.2500 cfs
100.0000 %
2.8531 ft
0.9971 ft
                                                                                                Inlet width:
                                                                                       Assigned Bypass:
                                                                                                                                        N/A
Designing pipe SDP8
   Results:
Total Flow:
                                                13.2500 cfs
                                                                                                    Flow From:
                                                                                                                              Upstream
                                                                                                Slope:
Pipe Height:
Flow Status:
Capacity:
          Status:
Pipe width:
Depth of Flow:
Critical Depth:
Velocity:
                                                Fixed
18.0000 in
1.3390 ft
1.3500 ft
7.9530 ft/s
1.0471
                                                                                                                                0.0141 ft/ft
18.0000 in
Partial
12.4761 cfs
                                                                                                                            critical
             Froude Number:
                                                                                                Flow Regime:
Designing inlet INI2
WARNING: Spread is greater than maximum spread (2.5000 ft )
WARNING: Inlet forced to capture all flow, ignoring capacity calculations.
WARNING: Pipe Too large for valid connection to inlet.
    Results:
Gutter Flow:
                                                13.2500 cfs
                                                                                                    Flow From: Injected Storm
        Status:
Inlet Length:
Flow Downstream:
Percent Cap:
Spread:
Depth in Gutter:
                                              Fixed
6.5000 ft
26.5000 cfs
100.0000 %
16.0031 ft
0.3543 ft
                                                                                                Inlet Width:
Bypass To:
Capacity:
                                                                                                                                  0.0000 cfs
0.0000 cfs
                                                                                        Assigned Bypass:
                                                                                                                                        N/A
Designing pipe SDP9
WARNING: Full flow velocity is greater than maximum (10.0000)
     Results:
Total Flow:
                                                26.5000 cfs
                                                                                                     Flow From:
                                                                                                                               Upstream
                                                Fixed
24.0000 in
0.5850 ft
1.7900 ft
34.5458 ft/s
9.3913
                                                                                                slope:
Pipe Height:
Flow Status:
Capacity:
          Status:
Pipe Width:
Depth of Flow:
Critical Depth:
Velocity:
Froude Number:
                                                                                                                             0.3926 ft/ft
24.0000 in
Partial
141.7453 cfs
                                                                                                Flow Regime: Supercritical
WARNING: Pipe Too large for valid connection to inlet.
Designing inlet INS
WARNING: Spread is greater than maximum spread (2.5000 ft )
WARNING: Inlet forced to capture all flow, ignoring capacity calculations.
     Results:
Gutter Flow:
                                                                                                 Flow From: Injected Storm
                                                13.2500 cfs
                                              Fixed
6.5000 ft
13.2500 cfs
100.0000 %
15.1790 ft
0.3657 ft
        Status:
Inlet Length:
Flow Downstream:
Percent Cap:
Spread:
Depth in Gutter:
                                                                                                Inlet width:
                                                                                                                                   2.0000 ft
0.0000 cfs
0.0000 cfs
                                                                                                     Bypass To:
Capacity:
                                                                                        Assigned Bypass:
                                                                                                                                         N/A
Designing pipe SDP10
     Results:
Total Flow:
                                                 13.2500 cfs
                                                                                                    Flow From:
                                                                                                Slope:
Pipe Height:
Flow Status:
Capacity;
          Status:
Pipe Width:
Depth of Flow:
Critical Depth:
Velocity:
Froude Number:
                                                Fixed
18.0000 in
1.3400 ft
1.3500 ft
7.9486 ft/s
1.0448
                                                                                                                                0.0141 ft/ft
18.0000 in
Partial
12.4707 cfs
                                                                                                 Flow Regime: Critical
 Designing inlet INI1
WARNING: Spread is greater than maximum spread (2.5000 ft )
WARNING: Inlet forced to capture all flow, ignoring capacity calculations.
WARNING: Pipe Too large for valid connection to inlet.
     Results:
Gutter Flow:
                                                13.2500 cfs
                                                                                                    Flow From: Injected Storm
                                               Fixed
6.5000 ft
26.5000 cfs
100.0000 %
15.6046 ft
0.3597 ft
         Status:
Inlet Length:
Flow Downstream:
Percent Cap:
Spread:
Depth in Gutter:
                                                                                                                                    2.0000 ft
0.0000 cfs
0.0000 cfs
                                                                                                 Inlet width:
                                                                                         Assigned Bypass:
                                                                                                                                         N/A
 Designing pipe SDP11
WARNING: Full flow velocity is greater than maximum (10.0000)
     Results:
Total Flow:
                                                                                                     Flow From:
                                                 26,5000 cfs
                                                                                                                               Upstream
                                                                                                                             0.4047 ft/ft
24.0000 in
Page 4
                                                                                              Slope:
Pipe Height:
                   Status:
Pipe Width:
                                                 Fixed
24.0000 in
```

Desi	Depth of Flow: Critical Depth: Velocity:	h.i													
pesi	A 20 1 Week 1 WA 1	34.	5810 ft 7900 ft 8766 ft/	s	C	Status: apacity:		al 02 cfs							
Desi	Froude Number:	9.	5170			Regime:	SuperCri	tical							
	ARNING: Pipe To gning manhole SD	o large MH5	for val	id conne	ction to	inlet.									
Re	sults: Total Flow:	53.	0000 cfs		F1	ow From:	Upstre	am							
	Status: Chamber Width:	6.	ixed 0000 ft		Chamber	Length:	6.00	000 ft							
pesi	gning pipe SDP7														
Re	sults: Total Flow:	53,	0000 cfs		F1	ow From:	Upstre	am							
	Status: Pipe Width: Depth of Flow:	36.	ixed 0000 in 0190 ft 3600 ft		Flow	slope: Height: Status:	Parts		t						
	Critical Depth: Velocity: Froude Number:	10.	4692 ft/ 3766	s		apacity: Regime:		184 cfs Itical							
besi	igning manhole SD	мнб													
Re	sults: Total Flow:	122.	8000 cfs		FI	ow From:	Upstro	eam							
	Status: Chamber Width:	6.	ixed 0000 ft		Chamber	Length:	6.00	000 ft							
Desi W	igning pipe SDP2 VARNING: Full fl	ow velo	city is	greater	than maxi	mum (10.0	0000)								
Re	sults: Total Flow:	122.	8000 cfs		F	ow From:	Upstre	eam							
	Status: Pipe Width:	48.	ixed 0000 in		Pine	Slope: Height:	0.03	100 ft/1	Ft						
	Depth of Flow: Critical Depth: Velocity: Froude Number:	2. 3. 12.	8450 ft 3300 ft 8407 ft/ 3941	S	Flow	Status: apacity: Regime:	143.64	133 cfs							
Desi	igning manhole sp	MH7				11/2/11/	Ol-Man down								
Re	sults: Total Flow:	122	8000 cfs		67	ow From:	Upstro	eant							
	Status: Chamber Width:	F	ixed 0000 ft			Length:		000 ft							
Desi	igning pipe SDP1 VARNING: Full fl	ani sa Ta	aran ba		along tribula	(10)	0000								
	sults:							200							
	Total Flow: Status:		8000 cfs ixed		F	ow From: Slope:	Upstro	2am 100 ft/1	ft						
	Pipe Width: Depth of Flow: Critical Depth Velocity: Froude Number:	2. 3. 12.	0000 in 8420 ft 3300 ft 8553 ft/ 3970	s	Flav	: Height: v Status: apacity: v Regime:	143.8	413 cfs							
ugi /	/EGL Computations														
	ible A:														
	truct_ID _Elev.	D (in)	Q (cfs)	L (ft)	V (ft/s)	d (ft)	dc (ft)	VA2/2g (ft)	sf (ft/ft)	on_soffi (ft)	t EGLdn (ft)	HGLdn (ft)	Tot_Loss (ft)	EGLUP '	HGLup (ft)
(ft	70.00			SALAN.				City	(10/6	,.,	0,00	11.03			
	SDP1	48	122.80	123.67	9.77	1	80	1.48	0.0073	5293.00	5296.98	5295.50	0.90	5297.89	5295.50
	SDMH7	1	-	-	200	1	8	6		H	5297.89			1101000	5297.5
5305	5.43 SDP2	48	122.80	274.51	9.77	-	*	1.48	0.0073	5294.31					5299.5
-	SDMH6		- 3		10.0		-		d.S.		5301.04	5299.55	0.23	5301,27	5299.7
5303	3.84 SDP3	42	69.80	41.00	7.25	-	+	0.82	0.0048	5296.60	5301.27	5299.78	0.20	5301.46	5300.6
5303	SDMH4 3.91	-		7.8	6	3	8	-	17.5		5301.46				5300.8
10.04	SDP4	36	37.40	238.01	5,29	17	8	0,44	0,0031	5296.55					5301.9
5305		36	37.40	48.00	5.20	19		0.44	0.0031	5298.79	5302.38				5302.4
	SDPS SDMHZ	36	37.40	48.00	5.29	2		-	0.0031	5298.79	5303.05		The William	Self Edition of	5302.6
5305		24	19.00	270.05	6.05	+	61	0.57	0.0071	5298.32					5304.4
	SDMH1	3	-	- 2	120	14	Page 5	9	- 4		5305.02	5304.4	5 0.24	5305.26	5304.7

5307.21	4.5		77.00	r 20	,	outfall A		A 40-	F355						1000
SDP18	18	9.50	13.90	5.38	7	7	0.45	0.0082	5302.81					305,38	634.17
IN1 5306.85	Η.		-	-		~	н	-	_	5305.38	5304.9	3	- 5	305.38	5304.
New Branch	-		6	-		é.	-	-	-	1 6	-		- 5	301.04	5299.
SDMH6 5303.84	-	1.5	4311	-	-	-	~	9.	2	5301.04	5299,5	5	0.51 5	301.55	5300.
SDP7	36	53.00	41.00	7.50	-	140	0.87	0.0063	5296.10	5301.55	5300.0	6	0.26	301.81	5300.
SDMH5 5303.78	+	13	- 51	1 5	-	7			-	5301.81	5300.9	3	0.48	302.28	5301.
SDP9	24	26.50	17.37	8.44	\star	+	1.11	0.0137	5295.55	5302.28	5301.4	1	0.24	302,52	5301.
IN12 5303.40	100	1.75	5	-	-	77	-	*		5302.52	5301.4	2	1.25 5	303.77	5302.
SDP8	18	13.25	30.09	7.50	19	7	0.87	0.0159	5299.50	5303.77	5302.6	6	0.48 5	304.25	5303.
IN6 5303.33	-	19	-	-	3	-	÷	-	- 4	5304.25	5303.3	7	- 5	304,25	5303.
New Branch	-		141	-	4	-	-	+	-	4	4		- 5	301.46	5300.
SDMH4	4	. 4	2	4	4	9	_			5301.46	5300.6	4		301.63	
5303.91 SDP13	24	16.20	17.82	5.16	1.0	2	0.41	0.0051	5295.55		PRINCE N			301.73	
IN9	19	1 2		9	6	4	2	× 1777	- C	5301.73				302.11	
5303.53 SDP12	18	9.20	30.09	5.21	3		0.42	0.0077	5300.30				0.23 5	302.34	5301.
IN7	8	14	20124	(5)	-	12	15	W/7 55.2		5302.34				302.34	
303.59										1/00/270					
New Branch	0	*	l Mil	7		3	7	*	5	Ellowed.	1005			301.46	
SDMH4 5303.91			44 44	7	10	7.	0.0	V.5.	45.44.00	5301.46				301,63	
SDP15	24	16.20	17.54	5.16	1.5	1	0.41	0.0051	5295.55					301.72	
1N10 303.53			45.44	5 22	Ĩ	- 5	C) Ju	. 3.	issi es	5301.72	ALC: U			302.11	
SDP14	18	9,20	30.09	5.21	~	4	0.42	0.0077	5300.30			4		302,34	
303.59	^		-	2	17	5		*	- 3	5302.34	5301.9	2	-	5302.34	5301.
New Branch		-		3	6	4	13.	-	(-)	-	-		- 5	303.05	5302.
SDMH2		2	400	12.	9	91	-	3	1.5	5303.05	5302.6	1	0.10	303.14	5302.
305.56 SDP16	18	9.20	15.09	5.21	2	÷	0.42	0.0077	5297.82	5303.14	5302.7	1	0.12 5	303.26	5302.
IN3 305.19	3	8	2.1	1.5	-	-	4	-	12	5303.26	5302.8	4	- 5	303.26	5302.
New Branch						-								202 05	F202
SDMH2	2	131	0	3	-		~		Ğ	E202 0E	E202 6	4		303.05	
5305.56 5DP17	18	9.20	15.38	5.21		2	0.42		2000 0	5303.05 5303.14				303.14	
IN4		5.20	13.30	3.21	2	- 2	0.42	0.00//	5297.82		Bert C			303.26	
305.19	10	9	- 3	100	9	- 81	V.			5303.26	3302.0		0	303.26	3302.
New Branch	-	-	141	7	÷	4	-	~	÷	1.8.			- 3	305.02	5304.
SDMH1 5307.21		7 J	1.5	1.8	\times	1-1	1.8	H	L.3.	5305.02	5304.4	6	0.24	305.26	5304.
SDP19	18	9.50	14.24	5.38	1.8	7	0.45	0.0082	5302.81	5305.26	5304.7	0	0.12 5	305.38	5304.
IN2 306.85	-	+		2	E	-	4	2	2	5305.38	5304.9	3	4	305.38	5304.
New Branch			(4)	2		4	4		-				_ 3	301.81	5300
SDMH5	3	12.			-	4				5301.81		3		302.28	
303.78 SDP11	24	26.50	17.08	8.44		2	1.11		5295.55					302.52	
IN11	2	1	71.741	-	ж	21	7		42016	5302.52				303.76	
303.40 SDP10	18	13.25	30.09	7.50	à	20	0.87	0.0159	5299.50					304.24	
INS	4		27.522	5	4	2	4			5304.24				304.24	
3303.33										And Mark	10000			11117	200
-11-		0													
Table B:									Var Jean	U.A. CAN					
osses Str_ID b K	Йť	нБ	Hstr	Нc	He	н₹	Total	1 -)Le	OSS_COEF		CD	cd	C	Cq.	Ср
outfall	25	-15	41	I.F.	\sim	1	1,89		-	-	- 1	*	-		2
SDP1	0.90	1	(4)	18	0	6.1	0.90) :	9	8		8.	2		d.
SDMH7 L.000 0.769	1.3	181	1.14	1.5	-	-	1,14	6	.19 1.	184 1.	000	.650	1.00	00 1.	000
SDP2	2.01	-	4	-	~	-	2.01	(9	- 1	4	3)	-	-		-11
SDMH6 .000 0.155	-	18	0.23	1.5	~	4	0.23	1 6	.56 0.	150 1.	000 0	.673	1,53	32 1.	000
SDP3	0,20	18	9-	2	-	ė	0.20	1 :	+ (-			-	696		-11
SDMH4 .000 0.206	-	*	0.17	13	9	-	0.17	1 7	.19 0.	171 1.	000 0	.770	1.56	52 1.	000
	0.75		-	-	-	-	0.75								-

						outfall A	txt						
SDMH3	12		0.52	1	12		0.52	6.07	1,553	1.000	0.764	1.000	1.000
1.000 1.186 SDP5	0.15		-		Ü		0.15	9.07	2,300	2.000	0.7.0.7	-	2.000
SDMH2			0.07	2	0		0.07	6.39	0,133	1.000	0.787	1.587	1.000
1.000 0.167	7.00		0.07	5.	- (3)	3		0.33	0,133		0.767	1.507	1.000
SDP6	1,90			•	~	7	1.90		4 665	1 000			
1.000 0.421	12 00		0.24	3			0.24	3.25	1,553	1.000	0.669	0.405	1.000
SDP18	0.11				7		0.11 1	2.5	-			7	
INI	-		-	1	-	-		2.58	-		-		
New Branch	-	101	9	-	1		6 1	Q	8	-	-		.2.
SDMH6	5.0	- 1	0.51	8	8	2	0.51	6.56	1,488	1.000	0.673	0.345	1.000
1.000 0.346 SDP7	0.26	(#)	4	(4)		-	0.26	11277	-	100	-	-	116-11
SDMHS	120	4	0.48	2	-	2	0.48	7.48	1.553	1.000	0.865	0,405	1.000
1.000 0.545 SDP9	0.24	20	ů.	4	~	-	0.24	3.0	-	H-1	13		-
INIZ		161	1.25	_	(4		1.25	3.42	1.634	1.000	0.689	1,000	1.000
1.000 1.126 SDP8	0.48	2	6	-		-	0.48 1	4		4	9	φ	1 4
ING -	OH THE	(14)	*		200	-	* 1	5.04	-	-	-	-	-
							1 1						
New Branch	9	(9)	*	5	18	*	A 1	1.5	150	0			
1.000 0.210	15.4	-	0.17	-	-	-	0.17	7.19	1.518	1.000	0.770	0.180	1.000
SDP13	0.09	(-)	8	-)~)	3	0.09	-	~		757	~	
1.000 0.937		-	0.39	9	10	8	0.39	2.51	1.634	1.000	0.573	1.000	1.000
SDP12	0.23	-	7	-	-	7	0.23	7.0	-	~	-	~	3-
IN7	~	8	-	н	-	8	- 1	2.83	-	2	3	*	18
New Branch	-	15	UB/	0	12	81	- I	- 8	N.E.	3		100	-
1.000 0.210	100	-	0.17	4	-	-	0.17	7.19	1.518	1.000	0.770	0.180	1.000
1.000 0.210 SDP15	0.09	-	-	+	-	-	0.09 [-	-	-	DR.Y	1.00	(45)
INIO	-	18	0.39	-	-	-	0.39	2.51	1.634	1.000	0.573	1.000	1.000
1.000 0.936 SDP14	0.23	1	4	-	÷	+	0.23	(e)	+	5	2	-	(8)
INB	(2)	*	-	-	7	31	- 1	2.83	-	-	0	-	14
New Branch	+	-	-	5	(+)	8	- 1		-	nieli.	8	~	-
1,000 0.220	4	-	0.10	2	-	- 61	0.10	6.39	1.462	1.000	0.787	0.191	1.000
1.000 0.220 SDP16	0.12	(-)	-	-	-	-	0.12 !		100	1120	5.7	-	+
INB	13.0	-	8	-		4	- 1	2.15	4	1	-51	8	7
New Branch	121		10			31	5.7	W	- 5	- 6	2		- 6
SDMHZ		-31	0.10	rûi.	- 10	13	0.10	6.39	1.462	1.000	0.787	0.191	1,000
1.000 0.220 SDP17	0.12	13	0.3.0	10	- 7	4	0.12 [-	4.402		0.707	V. 4. A.	1,000
- IN4	-	3		487	3		- 1	2.15	4	3	3	3	-
								2140	1				
New Branch	-	-	8	7	-	Н	8. 1	8.0	- P	000	+	Α.	(+)
1.000 0.421	1.7	1.9	0.24	- 6	-		0.24	3.25	1.553	1.000	0.669	0.405	1.000
SDP19	0.12	ė.	8	-	2	-	0.12	8.	-	1 2	4	-	H
IN2	4	-	-	+	-	+	- 1	2.58	10	-	+	-	181
New Branch	34.	1.5	1.4	4	-	8	- 1		-	1 31	1.1	-	4
SDMH5	1	1	0.48	1	1	4	0.48	7.48	1.553	1.000	0.865	0.405	1.000
1.000 0.545 SDP11	0.23	-	3	2	3	ń.	0.23	- 1	н	-	10		(P)
IN11	7	- 6	1.24	140	-	- 6	1.24	3.41	1.634	1.000	0.689	1.000	1.000
1.000 1.126 SDP10	0.48		-		-	ú.	0.48 [7177	2	à	777		2
INS	9.72	-	V		-	ь.	(- 1	5.04	, è	-	16	4	-
· · · · ·								24-5					

```
InRoads Storm & Sanitary Design Log
Drainage File: P:\20140338\CDP\Control\Data\20140338_SD.sdb
Design File: P:\20140338\CDP\HYDRO\20140338BASINS_BCP.DWG
Display Log: P:\20140338\CDP\HYDRO\design.log
Date: Wednesday, April 23, 2014 2:06:37 PM
Designing inlet IN16
WARNING: Spread is greater than maximum spread (2.5000 ft )
WARNING: Inlet forced to capture all flow, ignoring capacity calculations.
    Results:
               Gutter Flow:
                                            10,0000 cfs
                                                                                           Flow From: Injected Storm
       Status:
Inlet Length:
Flow Downstream:
Percent Cap:
                                          Fixed
6.5000 ft
10.0000 cfs
100.0000 %
2.5786 ft
0.8949 ft
                                                                                        Inlet Width:
                                                                                                                      2.0000 ft
0.0000 cfs
0.0000 cfs
                                                                                           Bypass To:
Capacity:
        Spread:
Depth in Gutter:
                                                                                Assigned Bypass:
                                                                                                                            N/A
Designing pipe SDP44
   Results:
Total Flow:
                                            10.0000 cfs
                                                                                           Flow From:
                                            Fixed
18.0000 in
0.9980 ft
1.2100 ft
7.9994 ft/s
1.5016
         Status:
Pipe Width:
Depth of Flow:
Critical Depth:
Velocity:
Froude Number:
                                                                                        Slope:
Pipe Height:
Flow Status:
Capacity:
                                                                                                                     0.0148 ft/ft
18.0000 in
Partial
12.7855 cfs
                                                                                        Flow Regime: Supercritical
Designing inlet IN18
WARNING: Inlet forced to capture all flow, ignoring capacity calculations.
WARNING: Pipe Too large for valid connection to inlet.
    Results:
Gutter Flow:
                                              6.3000 cfs
                                                                                           Flow From: Injected Storm
       Status:
Inlet Length:
Flow Downstream:
Percent Cap:
Spread:
Depth in Gutter:
                                          Fixed
6.5000 ft
16.3000 cfs
100.0000 %
2.1689 ft
0.7524 ft
                                                                                        Inlet Width:
                                                                                                                       2.0000 ft
0.0000 cfs
0.0000 cfs
                                                                                            Bypass To:
Capacity:
                                                                                Assigned Bypass:
                                                                                                                             N/A
Designing pipe SDP43 WARNING: Full flow velocity is greater than maximum (10.0000)
    Results:
                 Total Flow:
                                           16.3000 cfs
                                                                                        Flow From:
                                                                                                                   Upstream
                                           Fixed
24.0000 in
0.6590 ft
1.4500 ft
18.0283 ft/s
4.5881
         Status:
Pipe Width:
Depth of Flow:
Critical Depth:
Velocity:
Froude Number:
                                                                                        Slope:
Pipe Height:
Flow Status:
Capacity:
                                                                                                                     0.0940 ft/ft
24.0000 in
Partial
69.3764 cfs
                                                                                        Flow Regime: Supercritical
WARNING: Pipe Too large for valid connection to inlet.
Designing inlet INI5
WARNING: Spread is greater than maximum spread (2.5000 ft.)
WARNING: Inlet forced to capture all flow, ignoring capacity calculations.
    Results:
Gutter Flow:
                                           10.0000 cfs
                                                                                            Flow From: Injected Storm
       Status:
Inlet Length:
Flow Downstream:
Percent Cap:
Spread:
Depth in Gutter:
                                          6.5000 ft
10.0000 cfs
100.0000 %
13.6665 ft
0.3290 ft
                                                                                        Inlet Width:
Bypass To:
Capacity:
                                                                                                                        2.0000 ft
0.0000 cfs
0.0000 cfs
                                                                                                                             N/A
                                                                                 Assigned Bypass:
besigning pipe SDP45
    Résults:
                 Total Flow:
                                            10.0000 cfs
                                                                                            Flow From:
                                                                                                                    Upstream
         Status:
Pipe Width:
Depth of Flow:
Critical Depth:
Velocity:
Froude Number:
                                            Fixed
18.0000 in
0.9980 ft
1.2100 ft
7.9994 ft/s
1.5016
                                                                                        Slope:
Pipe Height:
Flow Status:
                                                                                                                     0.0148 ft/ft
18.0000 in
                                                                                                                     Partial
12.7856 cfs
                                                                                              Capacity:
                                                                                        Flow Regime: SuperCritical
Designing inlet IN17
WARNING: Spread is greater than maximum spread (2.5000 ft )
WARNING: Inlet forced to capture all flow, ignoring capacity calculations.
WARNING: Pipe Too large for valid connection to inlet.
    Results:
               Gutter Flow:
                                              6.3000 cfs
                                                                                            Flow From: Injected Storm
                                            Fixed
6.5000 ft
16.3000 cfs
        Status:
Inlet Length:
Flow Downstream:
                                                                                                                 2.0000 ft
0.0000 cfs
Page 1
                                                                                        Inlet Width:
                                                                                            Bypass To:
```

Security Securi	100 0000		00	tfall B.txt	202
Percent Cap: Spread: Depth in Gutter:	100.0000 11.5188 0.2763	ft ft	Capacity: Assigned Bypass:	0.0000 N/A	CIS
Designing pipe SDP46 WARNING: Full flo	w velocity	is great	er than maximum (10.	0000)	
Results: Total Flow:	16.3000	cfs	Flow From:	Upstream	
Status	Fixed 24,0000	in	Slope: Pipe Height: Flow Status:	0.0910 24.0000	ft/ft in
Pipe Width: Depth of Flow; Critical Depth: Velocity: Froude Number:	0.6650 1.4500 17.8058 4.5085	ft ft/s	Capacity:	Partial 68.2257	
				Suparat (41)	
WARNING: Pipe Too Designing manhole SDM	large for H8	valid co	nnection to inlet.		
Results: Total Flow:	32.6000	cfs	Flow From:	Upstream	
Status: Chamber Width:	Fixed 4.0000	ft	Chamber Length:	4,0000	ft
Designing pipe SOP42					
Results: Total Flow:	32.6000	cfs	Flow From:	Upstream	
Status:	Fixed 36.0000		slope: Pipe Height:	0.0108	ft/ft
Pipe Width: Depth of Flow: Critical Depth: Velocity:	1.4480 1.8500 9.6412	ft ft ft/s	Flow Status: Capacity:	Partial 69.1940	
Froude Number:	1,6012	7 163	Flow Regime:	SuperCritic	:a1
pesigning manhole SDM	Н9				
Results: Total Flow:	32.6000	cfs	Flow From:	Upstream	
Status: Chamber Width:	4.0000	ft	Chamber Length:	4.0000	ft
Designing pipe SDP41					
Results: Total Flow:	32.6000	cfs	Flow From:	Upstream	
Status: Pipe Width: Depth of Flow:	Fixed 36.0000 1.4800	ft	Slope: Pipe Height: Flow Status:	0.0100 36.0000 Partial	ft/ft in
Critical Depth: Velocity: Froude Number:	1.8500 9.3751 1.5358	ft	Capacity: Flow Regime:	66.6984 Supercritic	3
Designing inlet IN20 WARNING: Inlet fo	rced to car	nture all	flow, ignoring capa	city calcul:	tions
Results:					
Gutter Flow: Status:	8.9000 Fixed		Flow From:	Injected S	
Inlet Length: Flow Downstream: Percent Cap:	6.5000 8.9000 100.0000	cfs %	Inlet width: Bypass To: Capacity:	2.0000 0.0000 0.0000	cfs
Depth in Gutter:	2.4669 0.8569	ft	Assigned Bypass;	N/A	
Designing pipe SDP47					
Results: Total Flow:	8.9000	cfs	Flow From:	Upstream	
Status: Pipe Width: Depth of Flow:	Fixed 18.0000 1.0180	ft	Slope: Pipe Height: Flow Status:	0.0111 18.0000 Partial	in
Critical Depth: Velocity: Froude Number:	1.1500 6.9627 1.2858	ft/s	Capacity: Flow Regime:	11.0726	
Designing inlet IN22 WARNING: Inlet fo WARNING: Pipe Too	rced to cap large for	oture all valid co	flow, ignoring capa nnection to inlet.	city calcula	ations
Results: Gutter Flow:	6,0000	cfs	Flow From:	Injected S	torm
Status: Inlet Length: Flow Downstream:	Fixed 6.5000 14.9000	ft cfs	Inlet Width: Bypass To:	2.0000	ft cfs
Percent Cap: Spread: Depth in Gutter:	6.5000 14.9000 100.0000 2.1278 0.7391	ft ft	Bypass To: Capacity: Assigned Bypass:	0.0000 N/A	cfs
Designing pipe SDP48 WARNING: Full flo			er than maximum (10.	0000)	
Results: Total Flow:	14.9000	.2	Flow From:	Upstream	
TOTAL FIONS	_11,000	41.0	E ISW ETSIII?	ppour call	

Page 2

Pipe Width: 24.0000 in Pipe Height: 31.2805 ft/s Capacity: 31.2805 ft/s Froude Number: 10.2030 Flow Regime: Supercritical WARNING: Pipe Too large for valid connection to inlet. Designing inlet IN19 WARNING: Spread is greater than maximum spread (2.5000 ft.) WARNING: Spread is greater than maximum spread (2.5000 ft.) WARNING: Inlet forced to capture all flow, ignoring capacity calculations are status: Fixed Supercritical Inlet Length: 6.5000 ft. Inlet width: 2.0000 ft. Flow Downstream: 8.9000 cfs Bypass To: 0.0000 cfs Porcent Cap: 100.0000 % Capacity: 0.0000 cfs Porcent Cap: 100.0000 ft Pipe Height: 18.0000 in Pipe Height
WARNING: Pipe Too large for valid connection to inlet. Designing inlet IMI9 WARNING: Spread is greater than maximum spread (2.5000 ft) WARNING: Inlet forced to capture all flow, ignoring capacity calculations Results: Gutter Plow: 8.9000 cfs Flow From: Injected Storm Status: Fixed Inlet Length: 6.5000 ft Inlet width: 2.0000 ft Elow bownstream: 8.9000 cfs Bypass To: 0.0000 cfs Percent Cap: 100.0000 % Capacity: 0.0000 cfs Percent Gap: 100.000 % Capacity: 0.0000 cfs Percent Gap: 100.000 ft Pipe Weight: 18.0000 in Pipe Weight: 18.0000 cfs Percent Cap: 100.0000 % Capacity: 0.0000 cfs Percent Capacity: 0.0000 in Pipe Weight: 24.0000 in Pipe Weight:
WARNING: Spread is greater than maximum spread (2.5000 ft) WARNING: Inlet forced to capture all flow, ignoring capacity calculations Results: Gutter Flow: 8.9000 cfs Flow From: Injected Storm Status: Fixed Inlet Length: 6.5000 ft Inlet width: 2.0000 ft Flow bownstream: 8.9000 cfs Bypass To: 0.0000 cfs Spread: 13.1294 ft Depth in Gutter: 0.3143 ft Assigned Bypass: N/A Designing pipe SDP49 Results: Fixed Pipe width: 18.0000 in Pipe Height: 11.0726 cfs Velocity: 6.9627 ft/s Capacity: 11.0726 cfs Velocity: 1.2558 Flow Regime: SuperCritical Designing inlet IN21 WARNING: Spread is greater than maximum spread (2.5000 ft) WARNING: Inlet forced to capture all flow, ignoring capacity calculations WARNING: Inlet forced to capture all flow, ignoring capacity calculations WARNING: Pipe Too large for valid connection to inlet. Results: Gutter Flow: 6.0000 cfs Flow From: Injected Storm Status: Fixed Inlet Length: 6.5000 ft Inlet width: 2.0000 ft Flow Downstream: 14.9000 cfs Bypass To: 0.0000 cfs Percent Cap: 100.0000 % Capacity: 0.0000 cfs Percent Cap: 100.0000 % Pipe Height: 24.0000 in Pipe Hei
Status: Fixed Pipe Width: 18.0000 ft Separate Storm Separate Storm Separate Storm Separate Status: Fixed Pipe Width: 18.0000 ft Separate Storm Separate Storm Separate Storm Separate Storm Separate Status: Fixed Pipe Width: 18.0000 ft Pipe Height: 18.0000 in Pipe Height: 20.0000 in Pipe Height: 20.0000 ft Pipe Width: 20.0000 f
Inlet Length: 6.5000 ft Bypass To: 0.0000 cfs Percent Cap: 100.0000 % Capacity: 0.0000 cfs Spread: 13.1294 ft Depth in Gutter: 0.3143 ft Assigned Bypass: N/A Designing pipe SDP49 Results: Total Flow: 8.9000 cfs Flow From: Upstream Status: Fixed Slope: 0.0111 ft/fi Pipe Width: 18.0000 in Pipe Height: 18.0000 in Depth of Flow: 1.0180 ft Flow Status: Partial Critical Depth: 1.1500 ft Capacity: 11.0726 cfs Velocity: 6.9627 ft/s Froude Number: 1.2858 Flow Regime: SuperCritical Designing inlet IN21 WARNING: Spread is greater than maximum spread (2.5000 ft) WARNING: Inlet forced to capture all flow, ignoring capacity calculations WARNING: Pipe Too large for valid connection to inlet. Results: Gutter Flow: 6.0000 cfs Flow From: Injected Storm Status: Fixed Inlet Length: 6.5000 ft Inlet width: 2.0000 ft Flow bownstream: 14,9000 cfs Bypass To: 0.0000 cfs Percent Cap: 100.0000 % Capacity: 0.0000 cfs Spread: 10.2712 ft Assigned Bypass: N/A Designing pipe SDP50 WARNING: Full flow velocity is greater than maximum (10.0000) Results: Total Flow: 14.9000 cfs Flow From: Upstream Status: Fixed Slope: 0.4574 ft/f Depth of Flow: 0.4210 ft Slope: 0.4574 ft/f Depth of Flow: 0.4210 ft Slope: 0.4574 ft/f Depth of Flow: 0.4210 ft Slope: 0.4574 ft/f Velocity: 30.8584 ft/s Froude Number: 10.0145 Flow Regime: SuperCritical
Results: Total Flow: 8.9000 cfs Flow From: Upstream Status: Fixed Slope: 0.0111 ft/ff Pipe Width: 18.0000 in Pipe Height: 18.0000 in Depth of Flow: 1.0180 ft Flow Status: Partial Critical Depth: 1.1500 ft Capacity: 11.0726 cfs Velocity: 6.9627 ft/s Froude Number: 1.2858 Flow Regime: SuperCritical Designing inlet IN21 WARNING: Spread is greater than maximum spread (2.5000 ft) WARNING: Inlet forced to capture all flow, ignoring capacity calculations WARNING: Pipe Too large for valid connection to inlet. Results: Gutter Flow: 6.0000 cfs Flow From: Injected Storm Status: Fixed Inlet Length: 6.5000 ft Spread: 14.9000 cfs Bypass To: 0.0000 cfs Percent Cap. 100.0000 % Capacity: 0.0000 cfs Percent Cap. 100.0000 % Capacity: 0.0000 cfs Spread: 10.2712 ft Assigned Bypass: N/A Designing pipe SDPSO WARNING: Full flow velocity is greater than maximum (10.0000) Results: Total Flow: 14.9000 cfs Flow From: Upstream Status: Fixed Slope: 0.4574 ft/f Pipe Width: 24.0000 in Pipe Height: 24.0000 in Depth of Flow: 0.4210 ft Flow Status: Partial Critical Depth: 1.3900 ft Capacity: 153.0018 cfs Froude Number: 10.0145 Flow Regime: SuperCritical
Results: Total Flow: 8.9000 cfs Flow From: Upstream Status: Fixed Slope: 0.0111 ft/ft Pipe Width: 18.0000 in Pipe Height: 18.0000 in Depth of Flow: 1.0180 ft Flow Status: Partial Critical Depth: 1.1500 ft Capacity: 11.0726 cfs Velocity: 6.9627 ft/s Froude Number: 1.2858 Flow Regime: SuperCritical Designing inlet IN21 WARNING: Spread is greater than maximum spread (2.5000 ft) WARNING: Inlet forced to capture all flow, ignoring capacity calculations WARNING: Pipe Too large for valid connection to inlet. Results: Gutter Flow: 6.0000 cfs Flow From: Injected Storm Status: Fixed Inlet Length: 6.5000 ft Inlet width: 2.0000 ft Flow Downstream: 14.9000 cfs Bypass To: 0.0000 cfs Percent Cap: 100.0000 % Capacity: 0.0000 cfs Spread: 10.2712 ft Assigned Bypass: N/A Designing pipe SDP50 WARNING: Full flow velocity is greater than maximum (10.0000) Results: Total Flow: 14.9000 cfs Flow From: Upstream Status: Fixed Pipe width: 24.0000 in Pipe Height: 24.0000 in Depth of Flow: 0.4210 ft Flow Status: Partial Critical Depth: 1.9900 ft Capacity: 13.0018 cfs Froude Number: 10.0145 Flow Regime: SuperCritical
Total Flow: 8,9000 cfs Flow From: Upstream Status: Fixed Slope: 0.0111 ft/ft Pipe Width: 18,0000 in Pipe Height: 18,0000 in Depth of Flow: 1.0180 ft Flow Status: Partial Critical Depth: 1.1500 ft Capacity: 11,0726 cfs Velocity: 6,9627 ft/s Froude Number: 1.2858 Flow Regime: SuperCritical Designing inlet IN21 WARNING: Spread is greater than maximum spread (2.5000 ft) WARNING: Inlet forced to capture all flow, ignoring capacity calculations WARNING: Pipe Too large for valid connection to inlet. Results: Gutter Flow: 6.0000 cfs Flow From: Injected Storm Status: Fixed Inlet Length: 6.5000 ft Inlet width: 2.0000 ft Flow Downstream: 14,9000 cfs Bypass To: 0.0000 cfs Percent Cap: 100.0000 % Capacity: 0.0000 cfs Spread: 10.2712 ft Assigned Bypass: N/A Designing pipe SDP50 WARNING: Full flow velocity is greater than maximum (10.0000) Results: Total Flow: 14,9000 cfs Flow From: Upstream Status: Fixed Pipe Width: 24,0000 in Pipe Height: 24,0000 in Depth of Flow: 0.4210 ft Flow Status: Partial Critical Depth: 1,3900 ft Capacity: 13,0018 cfs Froude Number: 10.0145 Flow Regime: SuperCritical
Pipe width: 18.0000 in Pipe Height: 18.0000 in Depth of Flow: 1.0180 ft Flow Status: Partial Critical Depth: 1.1500 ft Capacity: 11.0726 cfs Velocity: 6.9627 ft/s Froude Number: 1.2858 Flow Regime: SuperCritical Designing inlet IN21 WARNING: Spread is greater than maximum spread (2.5000 ft) WARNING: Inlet forced to capture all flow, ignoring capacity calculations WARNING: Pipe Too large for valid connection to inlet. Results: Gutter Flow: 6.0000 cfs Flow From: Injected Storm Status: Fixed Inlet Length: 6.5000 ft Inlet width: 2.0000 ft Flow Downstream: 14.9000 cfs Bypass To: 0.0000 cfs Percent Cap: 100.0000 % Capacity: 0.0000 cfs Spread: 10.2712 ft Depth in Gutter: 0.2874 ft Assigned Bypass: N/A Designing pipe SDPSO WARNING: Full flow velocity is greater than maximum (10.0000) Results: Total Flow: 14.9000 cfs Flow From: Upstream Status: Fixed Pipe Width: 24.0000 in Pipe Height: 24.0000 in Depth of Flow: 0.4210 ft Flow Status: Partial Critical Depth: 1.3900 ft Capacity: 153.0018 cfs Flow Regime: SuperCritical Flow: 10.0145 Flow Regime: SuperCritical Flow Number: 10.0145 Flow Regime: SuperCritical Flow Number: 10.0145 Flow Regime: SuperCritical Flow Number: 10.0145 Flow Regime: SuperCritical
Velocity: 6.962/ tt/s Froude Number: 1.2858 Flow Regime: SuperCritical Designing inlet IN21 WARNING: Spread is greater than maximum spread (2.5000 ft) WARNING: Inlet forced to capture all flow, ignoring capacity calculations WARNING: Pipe Too large for valid connection to inlet. Results: Gutter Flow: 6.0000 cfs Flow From: Injected Storm Status: Fixed Inlet Length: 6.5000 ft Inlet width: 2.0000 ft Flow Downstream: 14.9000 cfs Bypass To: 0.0000 cfs Percent Cap: 100.0000 % Capacity: 0.0000 cfs Spread: 10.2712 ft Depth in Gutter: 0.2874 ft Assigned Bypass: N/A Designing pipe SDP50 WARNING: Full flow velocity is greater than maximum (10.0000) Results: Total Flow: 14.9000 cfs Flow From: Upstream Status: Fixed Pipe Width: 24.0000 in Pipe Height: 24.0000 in Depth of Flow: 0.4210 ft Flow Status: Partial Critical Depth: 1.3900 ft Capacity: 153.0018 cfs Velocity: 30.8584 ft/s Froude Number: 10.0145 Flow Regime: SuperCritical
WARNING: Spread is greater than maximum spread (2.5000 ft) WARNING: Inlet forced to capture all flow, ignoring capacity calculations WARNING: Pipe Too large for valid connection to inlet. Results: Gutter Flow: 6.0000 cfs Flow From: Injected Storm Status: Fixed Inlet Length: 6.5000 ft Inlet width: 2.0000 ft Flow Downstream: 14.9000 cfs Bypass To: 0.0000 cfs Percent Cap: 100.0000 % Capacity: 0.0000 cfs Spread: 10.2712 ft Assigned Bypass: N/A Designing pipe SDPSO WARNING: Full flow velocity is greater than maximum (10.0000) Results: Total Flow: 14.9000 cfs Flow From: Upstream Status: Fixed Pipe width: 24.0000 in Pipe Height: 24.0000 in Depth of Flow: 0.4210 ft Flow Status: Partial Critical Depth: 1.3900 ft Capacity: 153.0018 cfs Flow Regime: SuperCritical Flow: 10.0145 Flow Regime: SuperCritical Flow Number: 10.0145 Flow Regime: SuperCritical Flow Number: 10.0145 Flow Regime: SuperCritical
Status: Fixed Slope: O.4574 ft/f
Inlet Length: 6.5000 ft Flow Downstream: 14.9000 cfs Percent Cap: 100.0000 % Spread: 0.0000 cfs Spread: 10.2712 ft Depth in Gutter: 0.2874 ft Assigned Bypass: N/A Designing pipe SDP50 WARNING: Full flow velocity is greater than maximum (10.0000) Results: Total Flow: 14.9000 cfs Flow From: Upstream Status: Fixed Slope: 0.4574 ft/f Pipe Width: 24.0000 in Pipe Height: 24.0000 in Depth of Flow: 0.4210 ft Flow Status: Protail Flow Status: Pipe Width: 24.0000 in Pipe Height: 24.0000 in Depth of Flow: 0.4210 ft Flow Status: Partial Critical Depth: 1.3900 ft Capacity: 153.0018 cfs Velocity: 30.8584 ft/s Froude Number: 10.0145 Flow Regime: SuperCritical
Designing pipe SDR50 WARNING: Full flow velocity is greater than maximum (10.0000) Results: Total Flow: 14,9000 cfs Flow From: Upstream Status: Fixed Slope: 0.4574 ft/f Pipe Width: 24,0000 in Pipe Height: 24,0000 in Depth of Flow: 0.4210 ft Flow Status: Partial Critical Depth: 1,3900 ft Capacity: 153,0018 cfs Velocity: 30.8584 ft/s Froude Number: 10.0145 Flow Regime: SuperCritical
Results: Total Flow: 14,9000 cfs Flow From: Upstream Status: Fixed Slope: 0.4574 ft/f Pipe Width: 24,0000 in Pipe Height: 24,0000 in Depth of Flow: 0.4210 ft Flow Status: Partial Critical Depth: 1.3900 ft Capacity: 153.0018 cfs Velocity: 30.8584 ft/s Froude Number: 10.0145 Flow Regime: SuperCritical
Total Flow: 14,9000 cfs Flow From: Upstream Status: Fixed Slope: 0.4574 ft/f Pipe Width: 24,0000 in Pipe Height: 24,0000 in Depth of Flow: 0.4210 ft Flow Status: Partial Critical Depth: 1.3900 ft Capacity: 153.0018 cfs Velocity: 30.8584 ft/s Froude Number: 10.0145 Flow Regime: SuperCritical
Pipe Width: 24,0000 in Pipe Height: 24,0000 in Depth of Flow: 0.4210 ft Flow Status: Partial Critical Depth: 1.3900 ft Capacity: 153,0018 cfs Velocity: 30.8584 ft/s Flow Regime: SuperCritical Capacity: 153,0018 cfs Capacity: 1
Froude Number: 10.0145 Flow Regime: SuperCritical
Name of the season of the seas
WARNING: Pipe Too large for valid connection to inlet. pesigning manhole SDMH10
Results: Total Flow: 62.4000 cfs Flow From: Upstream
Status: Fixed Chamber Width: 6,0000 ft Chamber Length: 6,0000 ft
Designing pipe SDP40
Results: Total Flow: 62.4000 cfs Flow From: Upstream
Status: Fixed Slope: 0.0100 ft/f
Velocity: 10.7214 ft/s Froude Number: 1.2481 Flow Regime: SuperCritical
pesigning manhole SDMH11
Results: Total Flow: 62.4000 cfs Flow From: Upstream
Status: Fixed Chamber Width: 4,0000 ft Chamber Length: 4,0000 ft
pesigning pipe SDF39
Results:
Total Flow: 62.4000 cfs Flow From: Upstream Status: Fixed Slope: 0.0100 ft/f Pipe Width: 36.0000 in Pipe Height: 36.0000 in Depth of Flow: 2.3010 ft Flow Status: Partial Critical Depth: 2,5400 ft Capacity: 66.6984 cfs Velocity: 10.7214 ft/s
Pipe Width: 36.0000 in Pipe Height: 36.0000 in

```
outfall B.txt
Designing inlet IN24 WARNING: Inlet forced to capture all flow, ignoring capacity calculations.
              Gutter Flow:
                                          8.9000 cfs
                                                                                    Flow From: Injected Storm
                                       Fixed
6.5000 ft
8.9000 cfs
100.0000 %
2.4779 ft
0.8546 ft
       Status:
Inlet Length:
Flow Downstream:
Percent Cap:
Spread:
Depth in Gutter:
                                                                                Inlet Width:
Bypass To:
Capacity:
                                                                                                              2.0000 ft
0.0000 cfs
0.0000 cfs
                                                                           Assigned Bypass:
                                                                                                                   N/A
Designing pipe SDP51 WARNING: Full flow velocity is greater than maximum (10,0000)
   Results:
Total Flow:
                                          8.9000 cfs
                                                                                     Flow From:
                                                                                                          Upstream
                                        Fixed
18.0000 in
0.3090 ft
1.1500 ft
33.7533 ft/s
12.7942
        Status:
Pipe Width:
Depth of Flow:
Critical Depth:
Velocity:
Froude Number:
                                                                                  Slope:
Pipe Height:
Flow Status:
Capacity:
                                                                                                            0.8284 ft/ft
18.0000 in
Partial
95.6051 cfs
                                                                                  Flow Regime; Supercritical
Designing inlet IN23
WARNING: Spread is greater than maximum spread (2.5000 ft )
WARNING: Inlet forced to capture all flow, ignoring capacity calculations.
    Results;
Gutter Flow:
                                          8.9000 cfs
                                                                                     Flow From: Injected Storm
       Status:
Inlet Length:
Flow Downstream:
Percent Cap:
                                       6.5000 ft
8.9000 cfs
100.0000 %
17.9918 ft
0.2601 ft
                                                                                                              2.0000 ft
0.0000 cfs
0.0000 cfs
                                                                                  Inlet Width:
                                                                                     Bypass To:
Capacity:
       Spread:
Depth in Gutter:
                                                                           Assigned Bypass:
                                                                                                                   N/A
Designing pipe SDP52
WARNING: Full flow velocity is greater than maximum (10.0000)
    Results:
Total Flow:
                                           8.9000 cfs
                                                                                     Flow From:
        Status:
Pipe Width:
Depth of Flow:
Critical Depth:
Velocity:
Froude Number:
                                                                                 Slope:
Pipe Height:
Flow Status:
Capacity:
                                                                                                            0.7958 ft/ft
18.0000 in
Partial
93.7086 cfs
                                                                                  Flow Regime: SuperCritical
Designing manhole SDMH12
   Results:
Total Flow:
                                         80.2000 cfs
                                                                                     Flow From:
                                                                                                           Upstream
                                           Fixed
6.0000 ft
          Chamber Width:
                                                                            Chamber Length:
                                                                                                              6,0000 ft
Designing pipe SDP38 WARNING: Full flow velocity is greater than maximum (10.0000)
    Results:
Total Flow:
                                         80.2000 cfs
                                                                                     Flow From:
                                                                                                           Upstream
                                         Fixed
48.0000 in
2.1360 ft
2.7100 ft
11.7410 ft/s
1,5826
                                                                                  Slope:
Pipe Height:
Flow Status:
Capacity:
        Status:
Pipe Width:
Depth of Flow:
Critical Depth:
Velocity:
Froude Number:
                                                                                                             0.0100 ft/ft
48.0000 in
                                                                                                           Partial
143.6433 cfs
                                                                                  Flow Regime: Supercritical
 pesigning manhole SDMH13
    Results:
Total Flow:
                                         80.2000 cfs
                                                                                     Flow From:
                                                                                                           Upstream
           Chamber Width:
                                           Fixed
6,0000 ft
                                                                         Chamber Length:
                                                                                                              6.0000 ft
 Designing pipe SDP37
WARNING: Full flow velocity is greater than maximum (10.0000)
    Results:
Total Flow:
                                         80.2000 cfs
                                                                                     Flow From:
                                                                                                           upstream
                                         Fixed
48.0000 in
2.1360 ft
2.7100 ft
11.7410 ft/s
1.5826
        Status:
Pipe Width:
Depth of Flow:
Critical Depth:
Velocity:
Froude Number:
                                                                                                         0.0100 ft/ft
48.0000 in
Partial
143.6433 cfs
                                                                                  Slope:
Pipe Height:
Flow Status:
Capacity:
                                                                                  Flow Regime: SuperCritical
Designing inlet IN32
WARNING: Spread is greater than maximum spread (2.5000 ft )
WARNING: Inlet forced to capture all flow, ignoring capacity calculations.
    Results:
Gutter Flow:
                                         11,9000 cfs
                                                                                     Flow From: Injected Storm
```

Status: Inlet Length: Fixed 6.5000 ft

2,0000 ft Page 4

Inlet Width:

Flow Downstream: Percent Cap: Spread:	11.9000 100.0000	%	Bypass To: Capacity:	fall B.txt 0,0000 cfs 0,0000 cfs
Depth in Gutter:	15.3239 0.3410	ft	Assigned Bypass:	N/A
pesigning pipe SDP26 WARNING: Full flow	velocity	is greater	than maximum (10.0	000)
Results: Total Flow:	11.9000	cfs	Flow From:	Upstream
Status: Pipe Width: Depth of Flow: Critical Depth: Velocity:	Fixed 18.0000 0.6630	in ft ft	Slope: Pipe Height: Flow Status: Capacity:	0.0785 ft/ft 18.0000 in Partial 29.4294 cfs
Velocity: Froude Number:	1,3100 15,7646 3,9084	ft/s	44.00	SuperCritical
esigning inlet IN31 WARNING: Spread is WARNING: Inlet for	greater ced to ca	than maximu oture all f	m spread (2.5000 ft low, ignoring capac	ity calculations
Results: Gutter Flow:	11.9000	cfs	Flow From:	Injected Storm
Status: Inlet Length: Flow Downstream: Percent Cap: Spread:	Fixed 6.5000 11.9000 100.0000	96	Inlet Width: Bypass To: Capacity:	2.0000 ft 0.0000 cfs 0.0000 cfs
Depth in Gutter:	0.3427		Assigned Bypass:	N/A
Designing pipe SDP27 WARNING: Full flow	velocity	is greater	than maximum (10.0	0000)
Results: Total Flow:	11.9000	cfs	Flow From:	Upstream
Status; Pipe Width: Depth of Flow: Critical Depth:	Fixed 18.0000 0.7940 1.3100	ft	Slope: Pipe Height: Flow Status: Capacity:	0.0423 ft/ft 18.0000 in Partial 21.6021 cfs
Velocity: Froude Number:	12.5127	ft/s	The Asset Line	SuperCritical
esigning manhole SOMH	19			
Results: Total Flow:	23,8000	cfs	Flow From:	Upstream
Chamber Width:	Fixed 4.0000	ft	Chamber Length:	4.0000 ft
Designing pipe SDP25 WARNING: FUll flow	velocity	is greater	than maximum (10.	0000)
Results: Total Flow:	23,8000	cfs	Flow From;	Upstream
Status: Pipe_width:	Fixed 36,0000	in	Slope: Pipe Height:	0.0113 ft/ft 36.0000 in
Pipe Width: Depth of Flow: Critical Depth: Velocity: Froude Number:	Fixed 36,0000 1,1980 1,5700 9,0241 1,6802	ft ft ft/s	Flow Status: Capacity: Flow Regime:	Partial 70.7597 cfs SuperCritical
Designing inlet IN14 WARNING: Spread is WARNING: Inlet for	greater	than maximu pture all d	um spread (2.5000 f Flow, ignoring capa	t) city calculations
Results: Gutter Flow:	9.3000	cfs	Flow From:	Injected Storm
Status: Inlet Length:	6.5000 9.3000	ft	Inlet Width:	2.0000 ft
Flow Downstream: Percent Cap: Spread: Depth in Gutter:	9.3000 1.00.0000 37.8451 0.1710	ft	Bypass To: Capacity: Assigned Bypass:	0.0000 cfs 0.0000 cfs N/A
Designing pipe SDP29 WARNING: Full flow	velocity	ds greate	r than maximum ClO.	0000)
Results:			Flow From:	Upstream
Total Flow: Status:	9.3000 Fixed	7.7	slope:	0.0925 ft/ft
Pipe Width: Depth of Flow: Critical Depth: Velocity:	18,0000 0,5540 1,1700 15,6460	ft ft ft/s	Pipe Height: Flow Status; Capacity:	18.0000 in Partial 31.9544 cfs
Froude Number: Designing inlet IN13	4,3103			SuperCritical
	ced to ca	pture all	um spread (2.5000 f flow, ignoring capa	city calculations
Results: Gutter Flow:	9.3000	cfs	Flow From:	Injected Storm
Status: Inlet Length: Flow Downstream: Percent Cap:	6.5000 9.3000 100.0000	ft cfs	Inlet Width: Bypass To: Capacity:	2.0000 ft 0.0000 cfs 0.0000 cfs

			Ou	tfall B.txt
Depth in Gutter:	12.0874 0.3391		Assigned Bypass:	N/A
Designing pipe SDP30 WARNING: Full flo	w velocity	is great	er than maximum (10.0	0000)
Results: Total Flow:	9.3000	cfs	Flow From:	Upstream
Status: Pipe Width: Depth of Flow: Critical Depth:	Fixed 18.0000 0.5620 1.1700	ft	Slope: Pipe Height: Flow Status: Capacity:	0.0876 ft/ft 18.0000 in Partial 31.0822 cfs
Velocity: Froude Number:	1.1700 15.3464 4.1931	TT/S	Flow Regime:	SuperCritical
Designing manhole SDN	H17			
Results: Total Flow:	18.6000	cfs	Flow From:	Upstream
Status: Chamber Width:	Fixed 4.0000	ft	Chamber Length:	4,0000 ft
Designing pipe SDP28 WARNING: Full flo	w velocity	is great	er than maximum (10.	0000)
Results: Total Flow:	18.6000	cfs	Flow From:	Upstream
status: Pipe Width: Depth of Flow: Critical Depth: Velocity:	Fixed 24.0000 0.5930 1.5500 23.7946	in ft ft	Slope: Fipe Height: Flow Status: Capacity:	0.1836 ft/ft 24.0000 in Partial 96.9367 cfs
Velocity: Froude Number:	23.7946 6.4205	ft/s	-411.117.111.111.111.111.111.111.111.111.	SuperCritical
Designing manhole SDN	H18			
Results: Total Flow:	42,4000	cfe	Flow From:	Upstream
Status: Chamber Width:	Fixed			
Chamber Width:	6.0000	ft	Chamber Length:	6.0000 ft
Designing pripe SDP24				
Results: Total Flow:	42,4000	cfs	Flow From:	
Status: Pipe Width: Depth of Flow: Critical Depth: Velocity:	Fixed 42.0000 1.6600 2.0200 9.4239 1.4650	in ft ft	Slope: Pipe Height: Flow Status: Capacity:	0.0085 ft/ft 42.0000 in Partial 92.7576 cfs
Froude Number:	1:4650	TL/S	Flow Regime:	SuperCritical
Designing inlet IN25 WARNING: Spread i WARNING: Inlet fo	is greater orced to ca	than maxi pture all	mum spread (2.5000 f flow, ignoring capa	t) city calculations.
Results: Gutter Flow:	8.8000	cfs	Flow From:	Injected Storm
Status: Inlet Length: Flow Downstream: Percent Cap:	Fixed 6.5000 8.8000 100.0000	ft cfs %	Inlet Width: Bypass To: Capacity:	2.0000 ft 0.0000 cfs 0.0000 cfs
Spread: Depth in Gutter:	14.1473 0.2985	ft	Assigned Bypass:	N/A
Designing pipe SDP31 WARNING: Full flo	ow velocity	is great	er than maximum (10.	0000)
Results: Total Flow:	8.8000	cfs	Flow From:	Upstream
Status: Pipe Width: Depth of Flow: Critical Depth: Velocity:	Fixed 18.0000 0.3630 1.1400	in ft	Slope: Pipe Height: Flow Status: Capacity:	0.4218 ft/ft 18.0000 in Partial 68.2199 cfs
Velocity: Froude Number:	26.5652 9.2417	ft/s		Supercritical
Designing inlet IN26 WARNING: Inlet fo	orced to ca	pture all	flow, ignoring capa	city calculations
Results: Gutter Flow:	8.8000	cfs	Flow From:	Injected Storm
Status: Inlet Length: Flow Downstream: Percent Cap:	Fixed 6.5000 8.8000 100.0000	ft cfs	Inlet width: Bypass To: Capacity:	2,0000 ft
Spread: Depth in Gutter:	2.4569 0.8532	ft	Assigned Bypass:	N/A

Designing pipe SDP32 WARNING: Full flow velocity is greater than maximum (10.0000)

Results: Total Flow: 8,8000 cfs Flow From: Upstream Page 6

```
outfall B.txt
e: 0.4140 ft/ft
t: 18.0000 in
s: Partial
y: 67.5848 cfs
                                                                                              Slope:
Pipe Height:
Flow Status:
Capacity:
         Status:
Pipe Width:
Depth of Flow:
Critical Depth:
Velocity:
Froude Number:
                                                                                              Flow Regime: SuperCritical
pesigning manhole SDMH16
   Results:
Total Flow:
                                               60.0000 cfs
                                                                                                 Flow From:
                                                                                                                           Upstream
                                                 Fixed
6.0000 ft
           Status:
Chamber Width:
                                                                                       Chamber Length:
                                                                                                                               6.0000 ft
Designing pipe SDP23
   Results:
Total Flow:
                                               60.0000 cfs
                                                                                                  Flow From:
                                                                                                                           Upstream
                                                                                              slope:
Pipe Height:
Flow Status:
Capacity:
                                                                                                                             0.0085 ft/ft
42.0000 in
Partial
92.7576 cfs
                        Status:
         Pipe Width:
Pipe Width:
Depth of Flow:
Critical Depth:
Velocity:
Froude Number:
                                               42.0000 in
2.0490 ft
2.4200 ft
10.2470 ft/s
1,3868
                                                                                               Flow Regime: Supercritical
Designing inlet IN27
WARNING: Spread is greater than maximum spread (2.5000 ft )
WARNING: Inlet forced to capture all flow, ignoring capacity calculations.
   Results;
Gutter Flow:
                                               12.7000 cfs
                                                                                                  Flow From: Injected Storm
       Status:
Inlet Length:
Flow Downstream:
Percent Cap:
Spread:
Depth in Gutter:
                                            Fixed
6.5000 ft
12.7000 cfs
100.0000 %
20.7401 ft
0.2957 ft
                                                                                                                               2.0000 ft
0.0000 cfs
0.0000 cfs
                                                                                              Inlet width:
                                                                                                  Bypass To:
Capacity:
                                                                                      Assigned Bypass:
                                                                                                                                     N/A
Designing pipe SDP33
   Results:
Total Flow:
                                               12.7000 cfs
                                                                                               Flow From:
                                               Fixed
18.0000 in
1.5000 ft
1.5000 ft
7.1867 ft/s
0.0000
                                                                                                                            0.0126 ft/ft
18.0000 in
Full
11.7876 cfs
         Status:
Pipe Width:
Depth of Flow:
Critical Depth:
Velocity:
Froude Number:
                                                                                               Slope:
Pipe Height:
Flow Status:
Capacity:
                                                                                               Flow Regime: Subcritical
Designing inlet IN29
WARNING: Spread is greater than maximum spread (2.5000 ft )
WARNING: The forced to capture all flow, ignoring capacity calculations,
WARNING: Pipe Too large for valid connection to inlet.
    Results:
Gutter Flow:
                                               12.7000 cfs
                                                                                                  Flow From: Injected Storm
       Status:
Inlet Length:
Flow Downstream:
Percent Cap:
Spread:
Depth in Gutter:
                                             6.5000 ft
25.4000 cfs
100.0000 %
23.0019 ft
0.2779 ft
                                                                                              Inlet Width:
                                                                                                                                2.0000 ft
0.0000 cfs
0.0000 cfs
                                                                                                                                     N/A
                                                                                       Assigned Bypass:
Designing pipe SDP34 WARNING: Full flow velocity is greater than maximum (10.0000)
    Results:
                   Total Flow:
                                               25,4000 cfs
                                                                                                   Flow From:
                                                                                                                            Upstream
         Status:
Pipe Width:
Depth of Flow:
Critical Depth:
Velocity:
Froude Number:
                                               Fixed
24.0000 in
0.5530 ft
1.7700 ft
35.8089 ft/s
10.0387
                                                                                                                              0.4507 ft/ft
24.0000 in
                                                                                                                            Partial
151.8705 cfs
                                                                                                     Capacity:
                                                                                               Flow Regime: SuperCritical
WARNING: Pripe Too large for valid connection to inlet.
Designing inlet IN28
WARNING: Spread is greater than maximum spread (2.5000 ft)
WARNING: Inlet forced to capture all flow, ignoring capacity calculations.
    Results:
                Gutter Flow:
                                               12,7000 cfs
                                                                                                  Flow From: Injected Storm
        Status:
Inlet Length:
Flow Downstream:
Percent Cap:
Spread:
Depth in Gutter:
                                             fixed
6.5000 ft
12.7000 cfs
100.0000 %
2.8537 ft
0.9719 ft
                                                                                               Inlet width:
                                                                                                                                2.0000 ft
0.0000 cfs
0.0000 cfs
                                                                                                   Expass To:
Capacity:
                                                                                                                                      N/A
                                                                                       Assigned Bypass:
Designing pipe SDP35
    Results:
Total Flow:
                                                12.7000 cfs
                                                                                                   Flow From:
                                                                                                                            upstream
                                                                                               Slope:
Pipe Height:
Flow Status:
                                                                                                                           0.0126 ft/ft
24.0000 in
Partial
Page 7
            Status:
Pipe Width:
Depth of Flow:
                                               Fixed
24.0000 in
1.0000 ft
```

```
Outfall B.txt
Capacity: 25,3862 cfs
        Critical Depth:
Velocity:
Froude Number:
                                                                               Flow Regime: Supercritical
Designing inlet IN30
WARNING: Spread is greater than maximum spread (2.5000 ft )
WARNING: Inlet forced to capture all flow, ignoring capacity calculations.
WARNING: Pipe Too large for valid connection to inlet.
    Results:
Gutter Flow:
                                      12.7000 cfs
                                                                                  Flow From: Injected Storm
      Status:
Inlet Length:
Flow Downstream:
Percent Cap:
Spread:
Depth in Gutter:
                                           Fixed
                                      6.5000 ft
25.4000 cfs
100.0000 %
2.8647 ft
0.9697 ft
                                                                             Inlet Width:
Bypass To:
Capacity:
                                                                        Assigned Bypass:
                                                                                                                N/A
Designing pipe SDP36 WARNING: Full flow velocity is greater than maximum (10.0000)
   Results:
Total Flow:
                                                                                  Flow From: Upstream
                                       25.4000 cfs
        Status:
Pipe width:
Depth of Flow:
Critical Depth:
Velocity:
Froude Number:
                                       Fixed
24.0000 in
0.5550 ft
1.7700 ft
35.6290 ft/s
9.9687
                                                                                Slope:
Pipe Height:
Flow Status:
                                                                                    Capacity:
                                                                                Flow Regime: Supercritical
 WARNING: Pipe Too large for valid connection to inlet. Designing manhole SDMH15
   Results:
Total Flow:
                                    110.8000 cfs
                                                                                   Flow From:
                                                                                                        Upstream
                                          Fixed
6.0000 ft
          Chamber Width:
                                                                    Chamber Length:
                                                                                                            6.0000 ft
 Designing pipe SDP22
WARNING: Full flow velocity is greater than maximum (10,0000)
    Results:
Total Flow:
                                      110.8000 cfs
                                                                               slope:
Pipe Height:
Flow Status:
Capacity:
         Status:
Pipe width:
Depth of Flow:
Critical Depth:
Velocity:
Froude Number:
                                                                                                          0.0085 ft/ft
48.0000 in
                                                                                                        Partial
132.4326 cfs
                                                                                Flow Regime: SuperCritical
 Designing manhole SDMH14
   Results: Total Flow: 191,0000 cfs
                                                                               Flow From: Upstream
           Status:
Chamber Width:
                                          Fixed
8.0000 ft
                                                                           Chamber Length:
                                                                                                            8.0000 ft
 Designing pipe SDPZ1 WARNING: Full flow velocity is greater than maximum (10.0000)
    Results:
Total Flow:
                                     191.0000 cfs
                                                                                   Flow From: Upstream
                                        Fixed
60,0000 in
3.3680 ft
3.9500 ft
13.5718 ft/s
1.3813
                                                                                Slope:
Pipe Height:
Flow Status:
Capacity:
                                                                                                       0.0085 ft/ft
60.0000 in
Partial
240.1162 cfs
         Status:
Pipe Width:
Depth of Flow:
Critical Depth:
Velocity:
Froude Number:
                                                                                Plow Regime: SuperCritical
 pesigning manhole SDMH20
    Results: Total Flow: 191,0000 cfs
                                                                                    Flow From: Upstream
           Status:
Chamber Width:
                                          Fixed
8.0000 ft
                                                                           Chamber Length:
 Designing pipe SDP20 WARNING: Full flow velocity is greater than maximum (10,0000)
    Results:
Total Flow:
                                                                                                         Upstream
                                      191.0000 cfs
                                                                                    Flow From:
                                                                                Slope:
Pipe Height:
Flow Status:
Capacity:
                                         Fixed

50.0000 in

3.3700 ft

3.9500 ft

13.5627 ft/s

1.3797
                                                                                                         0.0085 ft/ft
60.0000 in
Partial
239,9301 cfs
         Status:
Pipe Width:
Depth of Flow:
Critical Depth:
Velocity:
Froude Number:
                                                                                 Flow Regime: SuperCritical
```

HGL/EGL Computations:

Table A:

outfi	777 F	TXT

						ourfall B.	CXC							
Struct_ID	D	Q	Ĺ	V	d	dč	V^2/2g	sf p	n_soffit	EGLdn	HGLdn	Tot_Loss	EGLUP	HGLup
(ft)	(in)	(cfs)	(ft)	(ft/s)	(ft)	(ft)	(ft)	(ft/ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)
Outfall	6		110	9	1	3	5	. (5)	2	3		4		5292.
Contract of		191,00	243.20	9.73		2		0.0054	5288.00	5203 57		1.31	5294.88	
SDP20	60	191,00	243.20	3113		0	7.46	0.0034	3200.00	5294.88			5295.98	
SDMH20 5303.60 SDF21	60	191.00	190.81	9.73		8	1.47	0.0054	5290.13	0.06/11/20	F9773		5297.03	
SDMH14	8		. S.	8	-	- 8	3.	18.	-	5297.01	5295.5	0.25	5297.26	5295.
5301.78 SDP22	48	110.80	102.19	8.82	141	7	1.21	0.0059	5290.78				5297.87	
SDMH15 5301.10	115	0.00		1.5	-	21	ALC: N	AOZ SON		5297.87			5298.10	
SDP23	42	60.00	88.00	6.24		-	0.60	0.0036	5291.19	1000		5 - 3755	5298.43	
SDMH16 5301.12 SDP24	42	42.40	250.01	4.41	(5)	Š	0.30	0.0018	- 5291.99	5298.41 5298.54			5298.50	
SDMH1.8		1000	4.0100	*		2			-	5298.99			5299.10	5 5298.
5302.99 50P25	36	23.80	260.02	3.37		- 21.1	0.18	0.0013	5293.66				5299,45	
	20		20.02	5.57		6	-	0.0013	3233.00	5299.49			5299.57	
SDMH19 5299.53 SDP26	18	11.90	16.88	6.73			0.70	0.0128	5295.13	5299.57			5299.79	
	2	-	-	-	1	_	5	15	*	5299.79	1000			5299.
5299.15 New Branch						2	2	-	-	1			5297.0	1 5295.
SDMH14	1	1		I		810		1		5297.01		4 0.52	5297.5	
5301.78	- 40	80.20	231.16	6,38		3	0.63	0.0031	5290.7B				5298.2	
SDP37	48	60.20	231.10	0,30	- 3	3	0.02	0.0033	32,90.76	5298.25			5298.4	
SDMH13 5302.56	40	90.30	220.23		12		0.63	0.0031	5293.12				5299.1	
SDP38	48	80.20	220,23	6.38	1			0.0031	3233,42	5299.15		5 6 25	5299.3	
SDMH12 5303.66	26	62.40	157.10			-	1 21	0 0000	5294.36			3 - 5755	5300.7	
SDP39	36	62.40	157.10	8.83	-	-	1.21	0.0086	3234.36					9 5299.
SDMH11 S304.36	30	63.40	450.02	0 03	-	6	1 21	0.0000	5295.98	5300.76		0.13/5	5304.9	
SDP40	36	62.40	450.02	8.83		_	1.21	0.0088	3693.90	5304.93			5305.2	
SDMH10 5306.68	-	22.50	110.01	4 500			0.33		E300 E3				5305.5	
SDP41	36	32.60	118.01	4.61	1.7		0.33	0.0024	5300.53	5305.22		1	5305.5	
SDMH9 5307.29	20	22.50	450.00	4.61			0.33	0 0074	5301.76				5306.6	
SDP42	36	32.60	450.03	4.61	- 3	0	0.33	0,0024	3307.70	5306.62			5306.7	
5309.56 5309.56	24	16.30	12 00	5.19	- 3		0.42	0.0052	5305.66				5306.7	
SDP43	24	16.30	13.89	5.49		115.1	0.42	0.0032	3303.00	5306.78			5307.1	
IN18 5309.20 SDP44	18	10.00	20.00	5.66	2	Ē.	0.50	0.0091	5306.10				5307.2	
IN16	116		4		8	Ε.	-1	3	~	5307.29	5306.7	9 -	5307.2	9 5306.
5309.30						15	1		3			115	5207 R	7 5296.
New Branch	Ť		(2)	1	7	- D				6207 97	5296.6		5 5298.1	
5DMH15 5301.10	54	25.40	25.04	P 00		- 12	1.02	0.0136	5289.69				5298.4	
SDP34	24	25.40	25.04	8.09		2	1.02	0.0126	2209.09		5297.4		5299.1	
5300.56	50	23.50	20.00			-	0.00	0.0146	5297.30				5299.4	
SDP33 IN27	18	12.70	20.00	7.19	-	9	0.80	0.0146	5297.30		5298.6			9 5298.
5300.47	7		- 3	9						9,400,115			37.1	
New Branch	~	-	1	\prec	-	(=	-	-	-			9.	5297.8	7 5296.
SDMH15 5301.10	4	0.00	459	37.	~	-	~	15.		5297.87	5296.6	6 0.26	5 5298.1	3 5296.
SDP36	24	25.40	25.34	8.09	6	17	1.02	0.0126	5289.69	5298.13	5296.9	2 0.32	2 5298.4	5 5297.
IN30 5300.56		1.5	1,332	*	-	14	187	14		5298.45	5297.4	A STATE OF THE PARTY OF THE PAR	5 5299.2	
SDP35	24	12.70	20.00	4.04	-	-	0.25	0.0032	5297.80		5298.3		5 5299.2	
IN28 5300.47	8	~	-	-	8	1	~	- 8	141	5299.26	5299.0)1 -	5299.2	6 5299.
New Branch	9	-	-	-	6	-	91	-	16	(E	13	. (40	5298.4	1 5297.
SDMH16	-	-		-	-	14	-	-	. J.E.	5298.43	L 5297.8	0.09	9 5298.5	0 5297.
5301.12 SDP31	18	8,80	24.78	4.98	+	-	0,39	0,0070	5289.99	5298.50	5297.9	0.17	7 5298.6	8 5298.
IN25 5300.58	13	-	à	u	4	(9)	-	-	(4)	5298.6	3 5298.7	19 -	5298.6	8 5298.
New Branch	-	12	4	-	-	-	-	-	-			(6)	5298.	1 5297.
										1 - Date 10	1 5297.8		9 5298.5	المتلمان

Laborate Programme					o	outfall B.	txt								
5301.12 SDP32	18	8.80	25.08	4.98	-	- 4	0.39	0.0070	5289.99	5298.5	5297	.90	0.18	5298.68	5298.3
IN26 300.58	-	1	-	-	8	(+)	7	-		5298.6	5298	.30		5298.68	5298.3
New Branch	4	4	4	-	_	4	3	-				-		5298.99	5298.6
SDMH18	6	ηÀ	4	-		4	8		13	5298.9	9 5298	. 69	0.13	5299.12	5298.8
302.99 SDP28	24	18.60	41.69	5.92	8	(4)	0.54	0.0068	5292.6	5299.1	2 5298	. 82	0.28	5299.40	5298.8
SDMH17 303.27	2	3		-	3	-	ne.	13	-	5299.4	5298	,86	0.15	5299.55	5299.0
SDP29	18	9.30	15.90	5,26	-	-	0.43	0.0078	5298.8	7 5299.5	5 5299	. 01.	0.12	5299.68	
IN14 303.03	15	-	7	~	8		0	-	-	5299.6	8 5299	, 25	8	5299.68	5299.2
New Branch			140	8	+	-	-	-	-	-		8.)	5	5299.49	5299.3
SDMH19 299.53	1.5	112	9	н	14	2	. 5		- 6	5299.4	9 5299	.32	0.08	5299.57	5299.3
SDP27	18	11.90	24.19	6.73	-	-	0.70	0.0128	5295.1	3 5299.5	7 5299	.39	0.31	5299.88	5299.1
IN31 298.99	15	17	13	-	8	3	-	1.5	-	5299.8	8 5299	.18	-	5299.88	5299.1
New Branch	-	2	12	9	4	÷	1	14	-	- 5		2		5299.15	5298.5
SDMH12	-	80			(5)	100		-	(4)	5299.1	5 5298	.52	0.06	5299.22	5298.5
303.66 5DP51	18	8,90	17.94	33.75	-	-	17.71	0.0072	5292.8	6 5299.2	2 5298	.59	-	5316.81	5299.1
IN24 303.30	13	7	9	1,5	ė	+	4.6	- 2	-	5316.8	1 5299	.11	7	5316.81	5299.1
New Branch		-	4	4	н	-	~			-		_	-	5299.15	5298.5
SDMH12	1	-	- 5	-	-	-	-	. 8.		5299,1	5 5298	.52	0.07	5299.22	5298.5
303.66 SDP52	18	8.90	18.13	33.29	-	2	17,22	0.0072	5292.8	6 5299.2	2 5298	.59	31	5316.34	5299.1
IN23 303.31	(-)	-	*	- 1	-	8	-	1 (2)		5316.3	4 5299	.11	1	5316,34	5299.1
New Branch	1	4	ű.	-			L		-				-	5304.93	5303.7
SDMH10	127		-	-	-	9	13	- 3	- 2	5304.9	3 5303	.72	0.27	5305.20	
306.68 SDP48	24	14.90	15.31	4.74	(A)	-	0.35	0.0043	5299.5	3 5305.2			0.07	5305.26	5304.9
IN22	-	1911	1000	-	-	-	1	7	-	5305.2	6 5304	.92	0.38	5305.65	5305.3
306.35 SDP47	18	8,90	20.00	5,04	141	+	0.39	0.0072	5303.3	0 5305.6	5 5305	.30	0.14	5305.79	5305.4
IN20 306.45	100	-		14	(+)	9		-	1 3	5305.7	9 5305	.40	120	5305,79	5305.4
New Branch	-			_	-	-	_		_	-		-	10	5304.93	5303.7
SDMH10	20	5	-	-	-	-	13	-	-	5304.9	3 5303	.72	0.27	5305.20	5303.9
306.68 SDP50	24	14.90	15.58	4.74	(**	9	0,35	0.0043	5299.5	3 5305.2	0 5303	.99	0.07	5305.27	5304.9
IN21 306.35	130	19	100	-	-	-	-	191	1.3	5305.2	7 5304	.92	0,38	5305.65	5305.3
SDP49	18	8.90	20.00	5.04	-	9	0.39	0.0072	5303.3	0 5305.6	5 5305	. 30	0.14	5305.79	
IN19 306.45	5	~	7	-	-	~	-	-		5305.7	9 5305	.40	~	5305.79	5305.4
New Branch	8	4	8	-	-	-	-	-	3	5		-	-	5306.62	5306.2
SDMH8	9	-	121	14	12	ω.	4	-	-	5306.6	2 5306	5.29	0.09	5306.73	5306.3
309.56 SDP46	24	16.30	14.23	5.19	-	8	0.42	0.0052	5305.6	6 5306.7	1 5300	3.38	0.07	5306.78	5306.3
IN17 309.20	8	18	18	-	17	-	1	15	-	5306.7	8 5300	3,36	0.32	5307.1	5306.6
SDP45	18	10.00	20.00	5.66	+	6	0.50	0.0091	5306.1	.0 5307.1			0.18	5307.29	
IN15 309.30	-	-	-	-	3	~	-	-	~	5307.2	9 5306	5.79	*	5307.29	5306.7
New Branch		3	-	-	-	\geq	T	-	-	3.9		-	-	5299.40	5298.8
SDMH17 303.27	. 9	14	9	4	1.9	-	(4)	. 9	4	5299.4	0 5298	3.86	0.15	5299.5	5299.0
SDP30	18	9,30	16.23	5.26	-	6	0.43	0.0078	5298.8	7 5299.5	5 5299	0.01	0.13	5299.6	5299.2
IN13 302,98	181	3	7	7	1	5	1	1		5299.6	8 5299	9.25	-	5299.6	5299.7
Table B:															
OSSES TO	Hf	нБ	HST	Ho	He	ĒΝ	Total	-11		FFICENTS KO	CD	Cd		Cq	Ср
b K	HE	hib	natr	HG	ne	10	(Ota)		G.F.I	NO.	4.0	Cu		Sept.	-
Outfall	8		8	*	-	-	15.7	di i	3	-	3	-		- 1	-
SDP20	1.31	7	5.0	14	~	(*)	1.31			-	-			1	-
SDMH20 .000 0.750	2	*	1.10	181		4	1.10				1.000	0.682			000
SDP21	1.03		0.35	2	-	18	1.03		-	160	000	0.704		E22 1	000
.000 0.172	Ö	2	0.25	-	-	Bana d	0.25	8	3.85 0	.160	000	0.704	1.	522 1	.000
						Page 1	Ų.								

						OTTECHOS								
SDP22	0.61	-	4.3	-	-	Outfall	0.61	-	-		-	-	2	
SDMH15		-	0.23	-	-		0.23 [9,07	0.150	1.000	0.817	1.557	1.000	
1.000 0.191 SDP23	0.31	4	12	4	4	4	0.31 1	1.5	-	4	5	-	3	
SDMH16		-	0.13	-	.0	4	0.13	9.42	0.171	1.000	0.906	1.399	1.000	
1.000 0.217 SDP24	0.44	100		5	5	9	0.44 1	(8.1	-	(4)	-	-	1.8	
SDMH18	-	-	0.17		18	-	0.17	8.12	1.518	1.000	0.829	0.461	1,000	
1.000 0.580 SDP25	0.33	1	113	8	16	4	0.33	1.5		100	4	2	118	
SDMH19	8.0	lw.	0.08	-	100	5-0	0.08]	5.79	1,462	1.000	0.742	0.405	1.000	
1.000 0.439 SDP26	0.22	1.0	4	4		8	0.22		-	-	1727		1.3	
IN32	18	1	2	2	12	2	~ 1	4.43	-	16	2	ω.	4	
100 100/6														
New Branch				•			7	0.00	2 300	4 1000	2,422		0.0	
1.000 0.355		(+)	0.52	0	15		0.52]	8.85	1.502	1,000	0.704	0.336	1.000	
SDP37	0.72	-	4.32	-	-	-	0.72	12.12	5 745	2 514	1 232	2 224		
1.000 0.343		~	0.22	-	~	7	0.22	8.60	0.434	1.000	0.791	1.000	1.000	
SDP38	0.69	7	20.20	-	1.5	7	0.69)	100		200		100		
1.000 0.356	7.0	+	0.23	-	-	7	0.23 [7.26	0.417	1.000	0.715	1.194	1.000	
SDP39	1.38		57.5	~	-	~	1.38	5753	3, 525	0.500	0.51	5.5	0.000	
1.000 0.193		17	0.23		- 7	7	0.23	6.66	0.239	1.000	0.807	1.000	1.000	
SDP40	3.94	1.00	7	-	7	70	3.94	27.0		3.5	A. 210		. 120	
1.000 0.245	524	19	0.30	-	- 5		0.30	6.29	0.200	1.000	0.779	1.574	1,000	
SDP41	0.28	(-)	2.40			-	0.28 [0.00		11.0	u.C.	100		
1.000 0.106	250	1.7	0.04	7	1.5	- 6	0.04 [6.52	0.133	1.000	0.796	1.000	1.000	
SDP42	1.08		332	-	- 7	5	1.08		5 155	1 500	12 302	2 326	2002	
1,000 0.280	2.0	(4)	0.09	~	-	~	0.09 [2.73	1.462	1.000	0.472	0.405	1.000	
SDP43	0.07	~	200		1	7	0.07	200	, C	5.50	V 321	1,50	2 440	
1.000 0.774	7.0	101	0.32	-	+	7	0.32	1.76	1.671	1.000	0.464	1.000	1.000	
SDP44	0.18		-	~	0.	~	0.18	3750	-	-		-	-	
IN16	7	17		2	17	8	- 1	1.99	7	~		-	17.	
New Branch	-	÷	8	6	14	5	S 1	8.	100	12	-	-	14	
SDMH15	*	16	0.26	+	-	~	0.26	9.07	1.488	1.000	0.817	0.177	1.000	
1.000 0.216 SDP34	0.32	-	13	9	-		0.32	-	-	115	7		1000	
IN29	1 (4)	(4)	0.75	4	1	9.1	0.75	1,63	1.671	1.000	0.442	1.000	1.000	
1.000 0.739 SDP33	0.29	(6)	-	-	-		0.29	-	100		-		100	
IN27	-	-		-	17	- 8	5 1	2.71	91	18	-	\sim	-	
Name was a sta							6.4							
New Branch			0.20	-	-		0.25 1	0.07	1 400	- 000	0.017	0.122	1 000	
1.000 0.216	0.77		0.26			-	0.26	9.07	1.488	1.000	0.817	0.177	1.000	
SDP36 - IN30	0.32	3	0.75	2	- 13	5	0.32	1.63	1.671	1.000	0.443	1.000	1.000	
1.000 0.740 SDP35	0.06			-		i ĝi	0.06 1	1.02	2.072	-	0.443	-	1.000	
- IN28	0.00	- 12	0	6	-	- 81	- 1	3.04		IÇ.	0			
		10	-	7		191		3.04	- 7	12.1		5		
New Branch	4	÷	+	+		12	- 1	6	1/5	2	1.5	15	1, 50	
1.000 0.154	2.0	15	0.09	-	-	18	0.09 [9.42	1.518	1.000	0.906	0.112	1.000	
SDP31	0.17	9	15	5	7	- 3	0.17	-	7	7	~	7	1.5	
IN25	3	1	+) ()	11.	-	- 1	2.21	е	-	+	+	-	
New Branch	_	4	1			0	14 1			0	L		1.	
SDMH16	£ .		0.09			3	0.09 1	9.42	1,518	1.000	0.906	0.112	1.000	
1.000 0.154 SDP32	0.18	ů.	- 0.09	1	1	31	0.18	21.96	+1310	1.000	0,300	0.1.12		
IN26	-	3	13			8	- 1	2.22			10	1		
	15					10	- 1	2.65		-		0	10	
New Branch	-	+	-	-	-	-	- 1	1	-	3	-		13.0	
1.000 0.442	1,277	11-6	0.13	3	11/2	9	0.13	8.12	1.518	1.000	0.829	0.352	1.000	
SDP28	0.28	-	1.57	~	-	Η.	0.28	(E)	1.0	100	150		*	
1.000 0.274	3.0	1	0.15	7	17	. 8	0.15	1.59	1.553	1,000	0.435	0.405	1.000	
SDP29	0.12	2	16	4	II'r	H	0.12	4	-	9	-	191	(2)	
Washington, and						Page	11							

						Annual Conference								
IN14_	15	-	2	4	4	Outfall	B.txt	į.	0.77	-	13	4	4	4
New Branch	(-)	-	-	-	-	-	8.	Î	-	- 4	. (-)	100	-	-
SDMH19	1.0	-	0.08		-		0.08	1	5.79	1,462	1.000	0.742	0.405	1.000
1.000 0.439 SDP27	0.31	-	×	ē	+	2	0.31	1	4	1-1	13	6	1.4	13
INBI	(2.7	~	-	*	-	3	-	t	4.69	-	*	(8)	4	-
New Branch	*	*	1.0		100	.8	Ь.	1	7		14	+		14
SDMH12 1.000 0.102	-	- 5	0.06	~	-	-	0.06	1	7.26	1.479	1.000	0,715	0.096	1.000
1.000 0.102 SDP51	0.13	-	-	-	(+)	+	0.13	1	-	E	- 6	(+)	~	-
IN24	7	3	18	5	17	8	-	T	0.31	\approx	1	7	-	1.8
New Branch	4	-	182	5		-	-	1	-		8	. +	. 3	14
1.000 0.106	10	-	0.07	-	(H)	~	0.07	1	7.26	1.476	1.000	0.715	0.100	1.000
SDP52	0.13	-	-	-	17	-	0.13	1	1.5		-	-	3	15
INZ3	+	-	-	140	÷	-		1	0.31	-	-	-	÷	4
New Branch	160	-		-	+	-	-	1	4	-	-	-	+	
SDMH10	-	-	0.27	-	15	9	0.27	1	6.29	1,553	1.000	0.779	0.185	1.000
1.000 0.224 SDP48	0.07	÷	4	140	1.0	÷1	0.07	1		0-1	-	2.6	-	-
1.000 1.090	-	-	0.38	-	92,	8	0.38	1	3,12	1.671	1.000	0.652	1.000	1.000
1.000 1.090 SDP47	0.14	-	-	-	- 5		0.14	1	-	-	-	-	18	16
INZO	-		ė	-	+		-	1	3,45	ė	+	+	9	14
New Branch	-	-	é	-	-	2	-	1	+	-		-	~	-
SDMH10	-	4	0.27	-	-	- 2	0.27	1	6.29	1,553	1,000	0.779	0.185	1.000
1.000 0.224 SDP50	0.07	-		-	1	-	0.07	1	121				3	
IN21	(2)	9	0.38		Ų,	н	0.38	1	3:12	1.671	1.000	0.652	1.000	1.000
1.000 1.090 SDP49	0.14	-	A	16.		Ų.,	0.14	1	-	-	-		-	101
		÷	+	4	*	÷	-	1	3.45	-	-	-	ė	14
New Branch	-	-		-	-	~	-	11		-		-	-	-
SDMH8	120	1.0	0.09	-	-		0.09	1	2.73	1.462	1.000	0.472	0.405	1.000
1.000 0.280 SDP46	0.07	2	-	140	-	- 2	0.07	1	-	-	120	¥.	1	1
	14	4	0.32	-	-		0.32	1	1.76	1.671	1.000	0.464	1.000	1.000
1.000 0.775 SDP45	0.18	2	-	6	8	- 8	0.18	1	123	2	4	-		175
IN15	1.0	+	*	+	-	31	-	1	1.99	÷	-	-	÷	13
New Branch	-	-	*	-	4	-	-	1	-	-	141	-	-	-
SDMH17	78	-	0.15	-	-	- 8	0.15	1	1,59	1,553	1.000	0.435	0.405	1.000
1.000 0.274 SDP30	0.13	4	2	œ1	-	-	0.13	1	14		4		-	14
IN13	12	В		ê		9	5	l I	0.80	81	(4)	-	15	1.5

Hydraulic Analysis for Storm Drain Using StormCAD

Project Name: Mesa Del Sol Neighborhood Montage Units 3 & 4
Project No.: 20190195
Prepared By: P. Carrillo
Date: 1/23/2019

SDP 40 SDMH10 6.84 5,301,92 5,306.68 5,300.47 6.21 SDM 41 S.34 5,207,30 5,306.86 5,306.94 7.79 SDM 41 S.34 5,207,66 5,306.86 5,306.94 1.74 SDM 42 SDM 48 6.36 5,304.66 5,306.89 2.67 SDM 48 6.36 5,304.60 5,306.86 5,306.89 1.74 SDM 48 6.36 5,304.60 5,306.89 2.67 SDM 49 7.47 5,302.56 5,306.89 2.67 SDM 40 7.47 5,304.60 5,300.40 5,300.40 1.73 SDM 41 1.87 5,307.85 5,300.40 5,307.77 1.63 SDM 41 1.87 5,307.85 5,300.40 5,307.66 1.72 SDM 42 INLET 12 1.83 5,305.80 5,304.96 1.73 SDM 41 6.18 5,307.85 5,304.96 5,307.66 1.73 SDM 41 6.18 5,307.80 5	Label	-Node- (Upstream) (Downstream)	-Depth- (Upstream) (Downstream) (ft)	-EGL- (Upstream) (Downstream) (ft)	-Ground- (Upstream) (Downstream) (ft)	-HGL- (Upstream) (Downstream) (ft)	HGL Clearance (HGL depth below Ground) (ft)	-Invert- (Upstream) (Downstream) (ft)	Section Discharge Capacity (cfs)	-X- (Upstream) (Downstream) (ft)	-Y- (Upstream) (Downstream) (ft)
SDMH11 5.34 5,297.30 5,304.36 5,296.57 INLET 18 2.06 5,307.66 5,306.36 5,306.84 SDMH8 6.36 5,307.26 5,306.89 5,306.89 SDMH8 6.36 5,307.26 5,307.26 5,307.26 SDMH8 6.36 5,308.37 5,309.40 5,307.37 INLET 15 1.97 5,308.37 5,309.40 5,307.37 INLET 15 1.87 5,307.88 5,307.77 INLET 15 1.87 5,307.85 5,307.77 INLET 20 1.87 5,307.85 5,307.40 5,307.77 INLET 20 1.87 5,307.85 5,309.40 5,307.77 INLET 20 1.83 5,305.80 5,304.40 5,304.76 SDMH8 6.17 5,305.60 5,304.40 5,304.46 SDMH12 6.18 5,304.40 5,304.40 5,304.46 SDMH12 6.17 5,295.16 5,303.62 5,294.46 SDMH12 6.26 5,294.44	SDP40	SDMH10	6.84	5,301.92	5,306.68	5,300.47	6.21	5,294.04	62.40	1,530,894.26	1,449,579.15
INLET 18 2.06 5,307.66 5,308.68 5,306.94 SDMH8 6.18 5,304.00 5,308.68 5,306.89 SDMH8 6.18 5,304.00 5,305.56 5,306.89 SDMH8 6.18 5,304.00 5,306.80 5,306.80 SDMH9 7.47 5,302.56 5,307.77 INLET 15 1.87 5,308.37 5,309.40 5,307.77 INLET 18 1.87 5,307.85 5,307.77 INLET 18 1.87 5,308.37 5,309.40 5,307.77 INLET 20 1.83 5,305.41 5,308.68 5,307.77 INLET 20 1.73 5,305.41 5,306.55 5,304.76 SDMH12 6.17 5,305.40 5,306.55 5,304.76 SDMH8 6.18 5,305.40 5,306.56 5,304.76 SDMH12 6.17 5,295.44 5,306.55 5,304.76 SDMH12 6.17 5,295.44 5,306.56 5,294.46 SDMH12 6.26 5,295.37		SDMH11	5.34	5,297.30	5,304.36	5,296.57	7.79	5,290.75	56.47	1,531,330.77	1,449,688.51
SDMH8 6.18 5,304.00 5,309.56 5,306.89 SDMH9 6.36 5,302.56 5,309.56 5,303.42 SDMH9 7.47 5,303.25 5,309.50 5,303.32 INLET 15 1.97 5,303.37 5,309.40 5,307.77 INLET 16 1.97 5,308.37 5,309.40 5,307.77 INLET 16 1.97 5,308.37 5,309.40 5,307.77 INLET 16 1.97 5,308.37 5,309.40 5,307.77 INLET 18 1.87 5,307.85 5,309.40 5,307.77 INLET 20 1.06 5,307.66 5,307.60 5,306.95 INLET 22 1.73 5,308.40 5,304.93 5,304.93 SDMH8 6.18 5,304.00 5,306.95 5,304.93 SDMH1 6.18 5,304.00 5,306.95 5,304.93 SDMH1 6.18 5,304.00 5,306.95 5,304.93 SDMH1 6.18 5,297.30 5,309.46 5,294.40 SDMH1	SDP43	INLET 18	2.06	5,307.66	5,308.68	5,306.94	1.74	2,305.27	16.30	1,530,340.02	1,449,454.18
SDMH8 6.36 5,303.82 5,309.56 5,303.42 SDMH9 7.47 5,303.82 5,309.56 5,303.42 SDMH9 7.47 5,302.86 5,307.77 INLET 15 1.97 5,308.37 5,309.40 5,307.77 INLET 16 1.87 5,307.85 5,309.40 5,307.77 INLET 20 1.83 5,305.41 5,306.88 5,307.77 INLET 20 1.83 5,307.85 5,307.77 5,307.77 INLET 20 1.83 5,305.41 5,306.89 5,307.76 INLET 20 1.73 5,307.86 5,304.93 1,049.93 INLET 20 1.73 5,305.41 5,306.55 5,304.76 5,304.90 SDMH12 6.18 5,207.66 5,306.55 5,304.90 5,304.90 SDMH12 6.18 5,297.10 5,306.50 5,304.90 5,304.90 SDMH13 6.15 5,297.30 5,304.36 5,294.46 5,306.90 SDMH14 6.20 5,297.37 5,3		SDMH8	6.18	5,304.00	5,309.56	5,306.89	2.67	5,297.31	16.01	1,530,343.29	1,449,441.12
SDMH9 7.47 5,302.56 5,307.29 5,302.36 INLET 15 1.97 5,308.37 5,309.40 5,307.77 INLET 17 1.87 5,308.37 5,309.40 5,307.56 INLET 18 1.87 5,307.85 5,309.40 5,307.56 INLET 20 1.73 5,305.00 5,306.88 5,307.56 INLET 22 1.73 5,305.00 5,306.95 5,304.76 INLET 22 1.73 5,305.00 5,306.95 5,304.76 INLET 22 1.73 5,305.00 5,306.95 5,304.76 SDMH8 6.18 5,307.66 5,309.56 5,304.90 5,304.90 SDMH12 6.18 5,307.60 5,306.95 5,304.90 5,304.90 SDMH12 6.18 5,307.40 5,309.40 5,204.90 5,304.90 SDMH13 6.15 5,294.44 5,303.62 5,294.66 5,294.66 5,295.92 SDMH14 6.15 5,297.30 5,303.43 5,295.92 5,292.31	SDP42	SDMH8	6.36	5,303	5,309.56	5,303.42	6.14	5,297.31	32.60		1,449,441.12
INLET 15 1.97 5,308.37 5,309.40 5,307.77 INLET 15 1.87 5,308.37 5,309.40 5,307.77 INLET 15 1.87 5,308.37 5,309.40 5,307.77 INLET 20 1.83 5,308.41 5,308.68 5,304.93 INLET 20 1.73 5,307.66 5,306.68 5,304.76 INLET 20 1.73 5,307.66 5,309.27 5,304.76 INLET 20 1.73 5,307.66 5,309.27 5,304.76 INLET 20 1.73 5,307.66 5,306.59 5,304.76 SDMH3 6.18 5,307.60 5,309.27 5,304.76 SDMH12 6.18 5,297.44 5,309.56 5,294.66 SDMH12 6.17 5,297.30 5,304.36 5,294.66 SDMH13 6.18 5,297.37 5,304.36 5,294.66 SDMH14 6.92 5,293.99 5,301.49 5,294.66 SDMH15 7.95 5,293.99 5,301.49 5,292.31 INLET		SDMH9	7.47	5,302	5,307.29	5,302.36	4.93	5,294.76	49.46		1,449,550.48
INLET 17 1.87 5,307.85 5,309.27 5,307.55 INLET 16 1.97 5,308.37 5,308.40 5,307.56 INLET 18 1.87 5,308.81 5,307.56 INLET 20 1.83 5,308.41 5,306.68 5,307.56 INLET 22 1.73 5,305.41 5,306.55 5,304.09 INLET 22 1.73 5,305.00 5,306.55 5,304.76 INLET 22 1.73 5,305.00 5,306.55 5,304.76 INLET 32 6.18 5,307.60 5,309.56 5,304.76 SDMH 6.18 5,294.40 5,306.95 5,294.40 SDMH 6.15 5,297.30 5,303.62 5,294.46 SDMH 6.15 5,297.30 5,303.62 5,294.46 SDMH 1.25 5,297.30 5,303.62 5,294.46 SDMH 1.25 5,297.30 5,303.62 5,294.46 SDMH 1.25 5,293.39 5,301.10 5,295.91 SDMH 1.55 <td< td=""><td>SDP45</td><td>INLET 15</td><td>1.97</td><td>5,308.37</td><td>5,309.40</td><td>5,307.77</td><td>1.63</td><td>5,305.90</td><td>10.00</td><td>1,530,320.46</td><td>1,449,421.14</td></td<>	SDP45	INLET 15	1.97	5,308.37	5,309.40	5,307.77	1.63	5,305.90	10.00	1,530,320.46	1,449,421.14
INLET 16 1.97 5,308.37 5,309.40 5,307.75 INLET 18 1.87 5,307.85 5,307.56 5,307.56 INLET 20 1.83 5,307.86 5,307.56 5,307.76 INLET 20 1.73 5,305.00 5,306.55 5,304.76 INLET 17 6.18 5,307.66 5,309.27 5,306.95 SDMH1 6.18 5,307.66 5,309.56 5,294.40 SDMH1 6.18 5,297.10 5,309.56 5,294.40 SDMH1 6.15 5,297.30 5,303.62 5,294.40 SDMH1 6.15 5,297.37 5,303.62 5,294.40 SDMH1 6.15 5,297.37 5,303.62 5,294.46 SDMH1 6.15 5,297.37 5,303.49 5,295.92 SDMH1 6.20 5,297.37 5,300.49 5,295.92 SDMH1 6.20 5,297.87 5,300.49 5,295.91 SDMH1 7.95 5,297.69 5,300.49 5,295.91 SDMH1 <		INLET 17	1.87	5,307.85	5,309.27	5,307.55	1.72	5,305.27	7.72	1,530,346.56	1,449,428.06
INLET 18 1.87 5,307.85 5,308.68 5,307.56 INLET 20 1.83 5,305.41 5,306.68 5,304.93 INLET 22 1.73 5,305.00 5,306.55 5,304.76 INLET 22 1.73 5,305.00 5,306.55 5,304.76 SDMH 6.18 5,304.00 5,306.56 5,304.00 SDMH 6.18 5,304.00 5,306.50 5,206.90 SDMH 6.17 5,295.16 5,303.00 5,294.40 SDMH 6.15 5,297.30 5,294.40 5,295.85 SDMH 6.15 5,297.37 5,303.00 5,295.85 SDMH 6.20 5,297.37 5,304.40 5,295.87 SDMH 6.21 5,297.37 5,304.40 5,295.85 SDMH 6.22 5,297.37 5,304.40 5,295.87 SDMH 6.22 5,297.87 5,304.40 5,295.31 INLET 29 7.95 5,293.99 5,301.10 5,295.31 INLET 28 1.1	SDP44	INLET 16	1.97	5,308.37	5,309.40	5,307.77	1.63	5,305.90	10.00	1,530,313.74	1,449,447.97
INLET 20 1.83 5,305.41 5,306.68 5,304.76 INLET 22 1.73 5,305.00 5,306.55 5,304.76 INLET 22 1.73 5,305.00 5,306.55 5,304.76 SDMH8 6.18 5,304.00 5,309.56 5,306.95 SDMH12 6.18 5,304.00 5,309.56 5,294.40 SDMH12 6.17 5,295.18 5,294.06 5,294.40 SDMH13 6.15 5,297.30 5,294.46 5,294.46 SDMH13 6.15 5,297.37 5,300.49 5,295.85 SDMH13 6.80 5,297.37 5,300.49 5,295.87 SDMH14 6.92 5,297.87 5,301.40 5,295.91 SDMH14 6.92 5,297.87 5,301.40 5,295.91 SDMH14 6.92 5,297.87 5,300.49 5,295.91 SDMH15 7.95 5,293.99 5,301.10 5,295.91 INLET 29 7.95 5,293.99 5,300.49 5,296.43 SDMH16		INLET 18	1.87	5,307.85	5,308.68	5,307.56	1.12	5,305.27	7.72	1,530,340.02	1,449,454.18
INLET 22 1.73 5,305.00 5,306.55 5,304.76 SDMH8 6.18 5,307.66 5,309.27 5,306.95 SDMH1 6.18 5,304.00 5,309.56 5,306.90 SDMH12 6.17 5,295.16 5,303.62 5,294.40 SDMH12 6.17 5,295.16 5,303.06 5,294.40 SDMH1 6.15 5,297.30 5,304.36 5,294.46 SDMH1 6.15 5,297.37 5,304.36 5,295.85 SDMH1 6.15 5,297.37 5,304.46 5,295.85 SDMH1 6.20 5,297.37 5,304.49 5,295.85 SDMH1 6.92 5,297.37 5,304.49 5,295.92 SDMH1 6.92 5,297.37 5,304.49 5,295.92 SDMH1 6.92 5,293.49 5,295.91 5,295.91 SDMH1 6.92 5,293.49 5,296.43 5,296.43 INLET 28 1.16 5,293.49 5,300.49 5,296.43 INLET 29 2	SDP47	INLET 20	1.83	5,305	5,306.68	5,304.93	1.75	5,303.18	8.90	1,530,864.75	1,449,586.02
INLET 17 2.06 5,307.66 5,309.27 5,306.95 SDMH8 6.18 5,304.00 5,309.56 5,306.90 SDMH12 6.17 5,295.16 5,303.62 5,294.40 SDMH12 6.17 5,295.16 5,303.62 5,294.06 SDMH11 5.34 5,297.30 5,303.62 5,294.06 SDMH13 6.15 5,297.37 5,303.62 5,295.85 SDMH13 6.18 5,297.37 5,303.62 5,295.85 SDMH14 6.92 5,297.37 5,300.49 5,295.92 SDMH14 6.92 5,297.37 5,301.10 5,295.31 SDMH14 6.92 5,297.37 5,301.10 5,295.31 SDMH15 7.95 5,293.39 5,301.10 5,295.31 INLET 28 7.95 5,293.39 5,300.49 5,295.31 INLET 28 7.95 5,293.39 5,300.49 5,295.31 INLET 29 2.06 5,295.69 5,300.49 5,296.94 INLET 29		INLET 22	1.73	5,305	5,306.55	5,304.76	1.79	5,302.55	7.72	1,530,890.90	1,449,592.74
SDMH8 6.18 5,304.00 5,309.56 5,306.90 SDMH12 6.17 5,295.16 5,303.62 5,306.90 SDMH12 6.15 5,294.44 5,303.62 5,294.06 SDMH11 6.15 5,297.30 5,304.36 5,294.06 SDMH12 6.15 5,297.30 5,304.36 5,294.46 SDMH12 6.15 5,297.37 5,300.49 5,295.85 SDMH13 6.80 5,297.37 5,300.49 5,295.21 SDMH14 6.92 5,297.37 5,300.49 5,295.21 SDMH14 6.92 5,297.87 5,300.49 5,295.21 SDMH15 7.95 5,297.87 5,300.49 5,295.21 SDMH15 7.95 5,297.87 5,300.49 5,295.31 INLET 28 1.15 5,293.99 5,300.49 5,296.4 INLET 28 1.16 5,294.6 5,300.49 5,296.4 SDMH16 8.25 5,294.6 5,300.49 5,296.4 INLET 29 <	SDP46	INLET 17	2.06	5,307	5,309.27	5,306.95	2.32		16.30	1,530,346.56	1,449,428.06
SDMH12 6.17 5,295.16 5,303.62 5,294.40 SDMH22 6.56 5,294.44 5,303.06 5,294.06 SDMH12 6.15 5,297.30 5,304.36 5,294.06 SDMH11 6.15 5,297.30 5,304.36 5,295.85 SDMH12 6.15 5,297.37 5,300.49 5,295.92 SDMH13 6.80 5,297.37 5,300.49 5,295.21 SDMH14 6.92 5,297.87 5,301.78 5,292.31 INLET 29 7.95 5,297.87 5,300.49 5,292.31 INLET 29 7.95 5,297.87 5,300.49 5,292.31 INLET 28 7.95 5,297.87 5,300.49 5,293.38 INLET 28 1.16 5,293.99 5,300.49 5,296.43 INLET 28 1.16 5,297.42 5,300.49 5,296.43 INLET 28 1.16 5,297.49 5,300.49 5,296.43 INLET 29 2.06 5,297.89 5,300.49 5,296.49 INLET 2		SDMH8	6.18		5,309.56	5,306.90	2.66	5,297.31	16.00	1,530,343.29	1,449,441.12
SDMH22 6.56 5,294.44 5,303.06 5,294.06 SDMH11 5.34 5,297.30 5,304.36 5,295.85 SDMH12 6.15 5,295.18 5,304.36 5,295.85 SDMH12 6.15 5,295.18 5,303.62 5,294.46 INLET 30 7.95 5,293.39 5,300.49 5,295.21 SDMH13 6.80 5,293.73 5,300.49 5,295.21 SDMH14 6.92 5,293.73 5,300.49 5,295.21 SDMH14 6.92 5,293.73 5,300.49 5,295.21 INLET 29 2.07 5,293.73 5,300.49 5,295.31 INLET 29 2.07 5,293.89 5,300.49 5,295.31 INLET 28 1.15 5,293.99 5,300.49 5,296.43 INLET 29 1.16 5,293.99 5,300.49 5,296.4 INLET 29 1.16 5,294.64 5,300.49 5,296.43 INLET 29 2.06 5,297.89 5,300.49 5,298.14 INLET 29	SDP38	SDMH12	6.17		5,303.62	5,294.40	9.22	5,288.38	80.20		1,449,741.79
SDMH11 5.34 5,297.30 5,304.36 5,295.85 SDMH12 6.15 5,295.18 5,303.62 5,294.46 SDMH12 2.12 5,297.37 5,300.49 5,295.92 SDMH15 7.95 5,293.99 5,301.10 5,295.21 SDMH14 6.92 5,293.73 5,302.45 5,292.97 SDMH14 6.92 5,293.73 5,301.10 5,292.31 INLET 29 2.07 5,293.87 5,301.48 5,292.31 INLET 29 7.95 5,293.87 5,296.43 INLET 29 7.95 5,293.89 5,301.40 5,296.43 INLET 28 1.15 5,293.89 5,300.49 5,296.43 INLET 29 1.16 5,293.89 5,300.49 5,296.44 INLET 20 1.16 5,295.69 5,300.49 5,296.45 INLET 29 2.06 5,296.46 5,300.49 5,298.61 INLET 29 2.06 5,296.48 5,300.49 5,299.70 SDMH17 2.06 <td></td> <td>SDMH22</td> <td>6.56</td> <td>5,294</td> <td>5,303.06</td> <td>5,294.06</td> <td>9.00</td> <td>5,287.25</td> <td>140.55</td> <td></td> <td>1,449,793.56</td>		SDMH22	6.56	5,294	5,303.06	5,294.06	9.00	5,287.25	140.55		1,449,793.56
SDMH12 6.15 5,295.18 5,303.62 5,294.46 INLET 30 2.12 5,297.37 5,300.49 5,295.92 SDMH15 7.95 5,293.99 5,301.10 5,295.21 SDMH14 6.92 5,293.73 5,301.45 5,292.97 SDMH14 6.92 5,293.73 5,301.49 5,292.97 INLET 29 2.07 5,293.87 5,300.49 5,292.31 INLET 29 7.95 5,293.87 5,300.49 5,292.31 INLET 28 1.55 5,293.99 5,300.49 5,296.43 INLET 28 1.55 5,293.99 5,300.49 5,296.43 INLET 28 1.16 5,293.99 5,300.49 5,296.44 INLET 29 1.16 5,294.69 5,300.49 5,296.44 INLET 29 2.06 5,299.58 5,300.49 5,298.61 INLET 29 2.06 5,299.58 5,300.49 5,299.70 SDMH17 2.06 5,300.13 5,299.70 5,299.70 SDM	SDP39	SDMH11	5.34	5,297	5,304.36	5,295.85	8.51	355	62.40	1,531,330.77	1,449,688.51
INLET 30 2.12 5,297.37 5,300.49 5,295.92 SDMH15 7.95 5,293.99 5,301.10 5,295.21 SDMH13 6.80 5,293.73 5,302.45 5,292.97 SDMH14 6.92 5,292.69 5,301.78 5,292.31 INLET 29 7.95 5,297.87 5,300.49 5,296.43 SDMH15 7.95 5,293.99 5,301.10 5,296.43 INLET 28 1.55 5,293.99 5,300.49 5,296.43 INLET 28 1.55 5,293.99 5,300.49 5,296.43 INLET 28 1.16 5,293.99 5,300.49 5,296.43 SDMH16 8.25 5,293.99 5,300.49 5,296.43 INLET 29 1.16 5,295.69 5,300.49 5,296.94 INLET 29 2.06 5,296.64 5,300.49 5,298.14 INLET 29 2.06 5,296.89 5,300.49 5,299.70 SDMH17 2.06 5,300.13 5,299.70 5,299.70 SDMH1		SDMH12	6.15	5,295	5,303.62	5,294.46	9.16	5,288.38	61.90		1,449,741.79
SDMH15 7.95 5,293.99 5,301.10 5,295.21 SDMH13 6.80 5,293.73 5,302.45 5,292.97 SDMH14 6.92 5,292.69 5,301.78 5,292.97 INLET 29 2.07 5,293.89 5,300.49 5,296.43 SDMH15 7.95 5,293.89 5,300.49 5,296.43 INLET 28 1.55 5,293.89 5,300.49 5,296.43 INLET 28 1.65 5,293.89 5,300.49 5,293.38 INLET 28 1.16 5,295.89 5,300.49 5,298.27 INLET 29 1.16 5,295.69 5,300.49 5,299.50 INLET 29 1.85 5,296.64 5,300.49 5,299.17 SDMH16 8.25 5,296.78 5,300.49 5,299.70 SDMH17 2.06 5,300.31 5,299.70 SDMH17 2.66 5,300.13 5,299.70 SDMH16 8.25 5,306.49 5,299.50 SDMH16 8.25 5,294.64 5,301.12	SDP36	INLET 30	2.12	5,297	5,300.49	5,295.92	4.57	5,294.15	25.40		1,450,103.94
SDMH13 6.80 5,293.73 5,302.45 5,292.97 SDMH14 6.92 5,292.69 5,301.78 5,292.31 INLET 29 2.07 5,293.89 5,301.40 5,296.43 SDMH15 7.95 5,293.99 5,301.10 5,296.43 INLET 28 1.55 5,293.99 5,301.10 5,298.27 INLET 28 1.6 5,297.42 5,300.49 5,298.27 INLET 26 1.16 5,297.42 5,300.49 5,296.94 INLET 26 1.16 5,297.42 5,300.49 5,296.94 INLET 27 1.85 5,294.64 5,300.49 5,295.17 SDMH16 8.25 5,297.89 5,300.49 5,298.61 INLET 29 2.06 5,297.89 5,300.49 5,298.61 INLET 29 2.06 5,297.89 5,300.49 5,299.80 SDMH17 2.06 5,300.13 5,299.70 5,299.70 SDMH16 8.25 5,294.64 5,301.12 5,295.96 SDMH16		SDMH15	7.95	5,293	5,301.10	5,295.21	5.89	5,284.83	31.99		1,450,078.46
SDMH14 6.92 5,292.69 5,301.78 5,292.31 INLET 29 2.07 5,293.87 5,300.49 5,296.43 SDMH15 7.95 5,293.39 5,300.49 5,296.43 INLET 28 1.55 5,293.39 5,300.43 5,298.27 INLET 30 2.06 5,297.42 5,300.49 5,298.27 INLET 26 1.16 5,295.69 5,300.49 5,296.94 INLET 2 1.85 5,296.64 5,300.49 5,296.94 INLET 2 1.85 5,296.64 5,300.49 5,296.94 INLET 2 1.85 5,296.64 5,300.43 5,296.94 INLET 29 2.06 5,297.89 5,300.43 5,298.61 INLET 29 2.06 5,297.89 5,300.43 5,299.80 SDMH17 2.06 5,300.13 5,303.03 5,299.80 INLET 25 1.16 5,300.13 5,299.70 5,299.70 SDMH16 8.25 5,294.64 5,301.12 5,295.96	SDP37	SDMH13	08.9		5,302.45	5,292.97	9.48	5,286.30	80.20		1,449,858.23
INLET 29 2.07 5,297.87 5,300.49 5,296.43 SDMH15 7.95 5,293.39 5,301.10 5,293.38 INLET 28 1.55 5,299.39 5,300.49 5,298.27 INLET 30 2.06 5,297.42 5,300.49 5,296.94 INLET 26 1.16 5,295.69 5,300.49 5,296.94 SDMH16 8.25 5,294.64 5,300.49 5,296.94 INLET 27 1.85 5,294.64 5,300.49 5,296.94 INLET 29 2.06 5,297.89 5,300.43 5,298.61 INLET 29 2.06 5,297.89 5,300.49 5,298.61 SDMH17 2.06 5,297.89 5,300.49 5,299.80 SDMH17 2.06 5,300.13 5,299.80 5,299.70 SDMH17 2.06 5,300.13 5,299.70 5,299.70 SDMH16 8.25 5,294.64 5,301.12 5,295.96		SDMH14	6.92	5,292	5,301.78	5,292.31	9.47		140.38		1,450,004.90
SDMH15 7.95 5,293.39 5,301.10 5,293.38 INLET 28 1.55 5,299.39 5,300.43 5,298.27 INLET 26 2.06 5,297.42 5,300.49 5,296.94 INLET 26 1.16 5,295.69 5,300.49 5,296.94 SDMH16 8.25 5,294.64 5,300.49 5,295.17 INLET 27 1.85 5,295.64 5,300.43 5,294.50 INLET 29 2.06 5,297.89 5,300.43 5,298.61 INLET 29 2.06 5,297.89 5,300.49 5,298.14 SDMH17 2.66 5,300.31 5,299.80 SDMH17 2.66 5,300.13 5,299.70 SDMH16 8.25 5,294.64 5,301.12 5,295.96	SDP34	INLET 29	2.07	5,297	5,300.49	5,296.43	4.06	5,294.66	25.40		1,450,076.63
INLET 28 1.55 5,299.39 5,300.43 5,298.27 INLET 26 2.06 5,297.42 5,300.49 5,296.94 INLET 26 1.16 5,295.69 5,300.49 5,296.37 SDMH16 8.25 5,294.64 5,301.12 5,294.50 INLET 27 1.85 5,299.68 5,300.43 5,298.61 INLET 29 2.06 5,297.89 5,300.49 5,298.61 INLET 13 2.14 5,300.31 5,298.01 5,298.01 SDMH17 2.66 5,300.13 5,299.70 5,299.70 INLET 25 1.16 5,296.48 5,300.62 5,295.96 SDMH16 8.25 5,294.64 5,301.12 5,295.96		SDMH15	7.95	5,293		5,293.38	7.72		159.96		1,450,078.46
INLET 30 2.06 5,297.42 5,300.49 5,296.94 INLET 26 1.16 5,295.69 5,300.49 5,295.17 SDMH16 8.25 5,294.64 5,301.12 5,294.50 INLET 27 1.85 5,299.58 5,300.43 5,294.50 INLET 29 2.06 5,297.89 5,300.43 5,298.61 INLET 13 2.14 5,300.31 5,299.80 SDMH17 2.66 5,300.13 5,303.03 5,299.70 INLET 25 1.16 5,296.48 5,303.62 5,299.70 SDMH16 8.25 5,294.64 5,301.12 5,295.96	SDP35	INLET 28	1.55	5,299		5,298.27	2.16		12.70		1,450,125.57
INLET 26 1.16 5,295.69 5,300.49 5,295.17 SDMH16 8.25 5,294.64 5,301.12 5,294.50 INLET 27 1.85 5,299.58 5,300.43 5,298.61 INLET 29 2.06 5,297.89 5,300.49 5,298.61 INLET 29 2.14 5,300.31 5,299.80 SDMH17 2.66 5,300.13 5,303.05 5,299.70 INLET 25 1.16 5,296.48 5,303.62 5,295.96 SDMH16 8.25 5,294.64 5,301.12 5,295.96		INLET 30	2.06	5,297	5,300.49	5,296.94	3.55	5,294.15	33.22		1,450,103.94
SDMH16 8.25 5,294.64 5,301.12 5,294.50 INLET 27 1.85 5,299.58 5,300.43 5,298.61 INLET 29 2.06 5,297.89 5,300.49 5,298.14 INLET 13 2.14 5,300.31 5,299.80 SDMH17 2.66 5,300.13 5,303.25 5,299.70 INLET 25 1.16 5,296.48 5,300.62 5,295.96 SDMH16 8.25 5,294.64 5,301.12 5,294.57	SDP32	INLET 26	1.16	2,295		5,295.17	5.32	5,294.11	8.80		1,450,161.98
INLET 27 1.85 5,299.58 5,300.49 5,298.61 INLET 29 2.06 5,297.89 5,300.49 5,298.14 INLET 13 2.14 5,300.31 5,298.03 5,299.80 SDMH17 2.66 5,300.13 5,303.25 5,299.70 INLET 25 1.16 5,296.48 5,300.62 5,295.96 SDMH16 8.25 5,294.64 5,301.12 5,294.57		SDMH16	8.25	5,294	5,301.12	5,294.50	6.62	5,285.79	33.17		1,450,141.80
INLET 29 2.06 5,297.89 5,300.49 5,298.14 INLET 13 2.14 5,300.31 5,303.03 5,299.80 SDMH17 2.66 5,300.13 5,303.25 5,299.70 INLET 25 1.16 5,296.48 5,300.62 5,295.96 SDMH16 8.25 5,294.64 5,301.12 5,294.57	SDP33	INLET 27	1.85	5,299		5,298.61	1.82	5,296.93	12.70		1,450,098.07
INLET 13 2.14 5,300.31 5,303.03 5,299.80 SDMH17 2.66 5,300.13 5,303.25 5,299.70 INLET 25 1.16 5,296.48 5,300.62 5,295.96 SDMH16 8.25 5,294.64 5,301.12 5,294.57		INLET 29	2.06	5,297		5,298.14	2.35		7.43		1,450,076.63
SDMH17 2.66 5,300.13 5,303.25 5,299.70 INLET 25 1.16 5,296.48 5,300.62 5,295.96 SDMH16 8.25 5,294.64 5,301.12 5,294.57	SDP30	INLET 13	2.14	5,300	5,303.03	5,299.80		5,297.74	9.30	1,531,519.18	1,450,283.91
INLET 25 1.16 5,296.48 5,300.62 5,295.96 SDMH16 8.25 5,294.64 5,301.12 5,294.57		SDMH17	2.66		5,303.25	5,299.70			30.80		1,450,295.29
8.25 5,294.64 5,301.12 5,294.57	SDP31	INLET 25	1.16			5,295.96		5,294.90	8.80		1,450,135.82
		SDMH16	8.25	5,294		5,294.57	6.55	5,285.79	169.98	1,531,708.91	1,450,141.80

P:\20190195\CDP\Hydro\20190195_SD.xlsx][1/23/2019][SD HGL]

Label	-Node- (Upstream) (Downstream)	-Depth- (Upstream) (Downstream) (ft)	-EGL- (Upstream) (Downstream) (ft)	-Ground- (Upstream) (Downstream) (ft)	-HGL- (Upstream) (Downstream) (ft)	HGL Clearance (HGL depth below Ground) (ft)	-Invert- (Upstream) (Downstream) (ft)	Section Discharge Capacity (cfs)	-X- (Upstream) (Downstream) (ft)	-Y- (Upstream) (Downstream) (ft)
SDP50	INLET 21	1.93	5,304.80	5,306.55	5,304.08	2.47	5,302.55	14.90	1,530,897.70	1,449,565.58
SDP51	INLET 24	1.45	5,299.05		5,298.39	5.23		8.90	1,531,478.96	1,449,753.47
SDP52	INLET 23	1.45	5,302.05		5,301.39	2.23		8.90	1,531,489.60	1,449,727.72
SDP53	IN1 INI FT 26	1.29	5,295.		5,295.69			0.00		1,450,183.72
SDP54	SDMH13	6.56			5,293.68	9.38		80.20 127.87		1,449,793.56 1,449,858.23
SDP55	IN2 INLET 25	1.29	5,296.48	5,305.88	5,296.48	9.40	5,295.19 5,294.90	0.00 10.75	1,531,667.72 1,531,693.20	1,450,151.94 1,450,135.82
SDP18	INLET 1 SDMH1	6.10		5,306.85	5,304.21	2.64	5,298.20	9.50	1,530,279.00 1,530,283.20	1,450,571.46 1,450,584.64
SDP19	INLET 2 SDMH1	1.46	5,304.87	5,306.85	5,304.10	3.08	5,302.85	9.50 71.36	1,530,287.50 1,530,283.20	1,450,598.14
SDP14	INLET 8	1.52	5,302.		5,301.62	2.13	5,300.25	9.20	1,530,671.56	1,450,680.19
SDP15	INLET 10 SDMH4	4.90		5,303.55	5,300.10	3.45	5,295.33	16.20 76.66	1,530,673.19	1,450,710.14
SDP16	INLET 3 SDMH2	4.80			5,301.75	3.44	5,297.04 5,294.82	9.20		1,450,489.47
SDP17	INLET 4 SDMH2	1.38		5,305.19	5,301.86	3.33	5,300.69	9.20 67.82	1,530,544.75 1,530,540.45	1,450,516.15 1,450,502.65
SDP10	INLET 5 INLET 11	1.84	5,302.54	5,303.33	5,301.49 5,301.07	1.84		13.25 39.83		1,450,753.25 1,450,751.62
SDP11	INLET 11 SDMH5	4.58	5,301.49 5,300.68	5,303.23 5,303.78	5,300.17	3.06	5,295.91	26.50 16.00		1,450,751.62 1,450,766.35
SDP12	INLET 7 INLET 9	1.86		5,303.63	5,301.91 5,301.70			9.20 7.43		
SDP13	INLET 9 SDMH4	1.85	5,301.80	5,303.42 5,303.91	5,300.87 5,300.04	2.55	5,299.42 5,292.57	16.20 135.73	1,530,643.68 1,530,658.46	
SDP9	INLET 12 SDMH5	3.74	5,301.49	5,303.23	5,300.17	3.06	5,296.75 5,293.07	26.50 16.76	1,530,636.49	1,450,781.03 1,450,766.35
SDP8	INLET 6 INLET 12	2.84	5,302.54	5,303.33	5,301.49	1.84	5,298.83	13.25 27.39	1,530,610.85	1,450,797.18 1,450,781.03
SDP5	SDMH2 SDMH3	6.39	5,301.87	5,305.56	5,301.35	4.21	5,294.82 5,294.46	37.40 51.66		
SDP4	SDMH3 SDMH4	6.58	5,301.28	5,305.69 5,303.91	5,300.76 5,300.03	4.93	5,294.46	37.40 51.66	1,530,586.18 1,530,658.46	1,450,488.07 1,450,714.83

Label	-Node- (Upstream) (Downstream)	-Depth- (Upstream) (Downstream) (ft)	-EGL- (Upstream) (Downstream)	-Ground- (Upstream) (Downstream) (ft)	-HGL- (Upstream) (Downstream) (ft)	HGL Clearance (HGL depth below Ground) (ft)	-Invert- (Upstream) (Downstream)	Section Discharge Capacity (cfs)	-X- (Upstream) (Downstream) (ft)	-Y- (Upstream) (Downstream) (ft)
SDP7	SDMH5	6.74	5,300.29	5,303.78	5,299.24	4.54	5,293.07	53.00	1,530,631.84	1,450,766.35
	SDMH6	6.03		5,303.84	5,299.02	4.82	5,291.86	51.66	1,530,670.91	1,450,753.90
SDP6	SDMH1	6.36	5,304.15	5,307.21	5,303.46	3.75	5,297.48	19.00	1,530,283.20	1,450,584.64
	SDMH2	6.62	5,301.93	5,305.56	5,301.59	3.97	5,294.82	17.52	1,530,540.45	1,450,502.65
SDP1	SDMH7	4.50	5,295.94	5,305.43	5,293.48	11.95	5,290.15	122.80	1,530,754.27	1,451,015.43
	SDP1 FREE_EXT	(N/A)	(N/A)	5,293.00	5,291.96	1.04	5,289.00	140.00	1,530,869.15	1,451,061.22
SDP3	SDMH4	06'9		5,303.91	5,299.22	4.69	5,292.57	08.69	1,530,658.46	1,450,714.83
	SDMH6	6.03	5,299.	5,303.84	5,299.05	4.79	5,291.86	77.93	1,530,670.91	1,450,753.90
SDP2	SDMH6	6.20	5,299.37	5,303.84	5,297.59	6.25	5,291.86	122.80	1,530,670.91	1,450,753.90
	SDMH7	3.92			5,295.63	9.80	5,290.15	111.26	1,530,754.27	1,451,015.43
SDP29	INLET 14	3.65	2,300		5,299.80	3.31	5,296.23	9.30	1,531,496.84	1,450,306.83
	SDMH17	2.66		5,303.25	5,299.70	3.55	5,296.17	7.43	1,531,507.93	1,450,295.29
SDP28	SDMH17	3.18	5,299.	5,303.25	5,298.82	4.43		18.60	1,531,507.93	1,450,295.29
	SDMH18	7.67		5,302.99	5,295.07	7.92	220	114.49	1,531,535.38	1,450,321.76
SDP27	INLET 31	4.87	5,296.57	5,298.99	5,295.73	3.26	5,291.00	11.90		1,450,484.84
	SDMH19	6.25	5,295.90	5,299.53	5,295.48	4.05	5,289.40	7.43		1,450,502.24
SDP26	INLET 32	3.85	5,296.48	5,298.99	5,295.63	3.36	5,291.92	11.90	1,531,710.85	1,450,514.35
	SDMH19	6.25	5,295.90	5,299.53	5,295.48	4.05	5,289.40	7.43	1,531,722.53	1,450,502.24
SDP25	SDMH19	6.33	5,295.82	5,299.53	5,295.61	3.92		23.80	1,531,722.53	1,450,502.24
	SDMH18	7.67	5,295.39	5,302.99	5,295.29	7.70	5,287.28	53.21	1,531,535.38	1,450,321.76
SDP24	SDMH18	7.81	5,295.26	5,302.99	5,294.90	8.09	5,287.28	42.40	1,531,535.38	1,450,321.76
	SDMH16	8.25	5,294.64	5,301.12	5,294.46	6.66	5,285.79	75.95	1,531,708.91	1,450,141.80
SDP23	SDMH16	8.25	5,294.64	5,301.12	5,293.92	7.20	5,285.79	00.09	1,531,708.91	1,450,141.80
	SDMH15	7.95		5,301.10	5,293.63	7.47	5,284.83	75.95	1,531,770.00	1,450,078.46
SDP22	SDMH15	7.96		5,301.10	5,292.53	8.57		110.80	1,531,770.00	1,450,078.46
	SDMH14	6.92	5,292.69	5,301.78	5,291.96	9.82		108.44		1,450,004.90
SDP21	SDMH14	7.04		5,301.78	5,290.81	10.97	5,284.18	191.00		1,450,004.90
	SDMH20	5.41	5,290.71	5,303.60	5,289.83	13.77	5,283.60	134.06	1,531,973.38	1,449,867.56
SDP20	SDMH20	5.64	5,290.48	5,303.60	5,288.72	14.88	5,283.60	191.00	1,531,973.38	1,449,867.56
	SDP20 FREE_EXT	(N/A)	(N/A)	5,288.00	5,286.95	1.05	5,283.00	130.21	1,531,971.10	1,449,624.37
SDP49	INLET 19	1.83	5,305.41	5,306.68	5,304.93	1.75	5,303.18	8.90	1,530,871.47	1,449,559.19
	INLET 21	1.73	5,305.00	5,306.55	5,304.76	1.79	5,302.55	7.72	1,530,897.70	1,449,565.58
SDP48	INLET 22	1.93	5304.8	23'90'82	5304.08	2.47	5302.55	14.9		1449592.74
	SDMH10	89.9	5302.09	5306.68	5304.03	2.65		16.01	1	1449579.15
SDP41	SDMH9	7.47	2305		5302.16	5.13		32.6		1449550.48
	SDMH10	9.98	5302.09	5306.68	5301.89	4.79	5294.04	49.46	1530894.26	1449579.15

APPENDIX D INFILTRATION CALCULATIONS

POND INFIDRATION CALCULATIONS

FOR SAND: 10

10 min /in

(FROM ONSITE STORMWATER

DISPOSAL SYSTEM DESIGN AND

CONSTRUCTION, MINIMUM GUIDELINES

AND REQUIREMENTS - WASHINGTON

COUNTY DATED JAN 25, 2005)

120min/FT = Zhr/FT > 0.5 cF/HR/SF

USE 0,5 CF/ARSF FOR INFILTRATION BASIN

USE 1/2 (0.5) CF/HE.SF. FOR PEMAINING POND AREA
LY FACTOR OF SAFETY

TIME TO DRAIN PONDS

T= V2-4R /[0.5 AINF + 0.25 APAND]

WHERE: V2-YR = Z-YR STORM VOLUME (CF)

AINF = AREA INFILTRATION BASIN (SF)

APOND = AND POND AREA MINUS AINF (SF)

INF

Bohannan ∧ Huston≡

PROJECT NAME SHEET OF ENGINEERING A
PROJECT NO. BY こと DATE 5-1650 SPATIAL BATA >
SUBJECT POND INCREMENS CALCORATIONS CHO DATE ADVANCED TECHNOLOGIES >

INFILTRATION BASIN

PROJECT NAME BY BJL SPATIAL DATA DATE PROJECT NO. DATE CH'D

POND INFILTRATION CALCULATIONS

FOR SAND: 10 min/in

(FROM ONSITE STORMWATER DISPOSAL SYSTEM DESIGN AND CONSTRUCTION, MINIMUM GUIDELINES AND REQUIREMENTS - WASHINGTON COUNTY DATED JAY 25, 2005)

120min/FT = Zhr/FT > 0.5 CF/HR/SF

USE 0,5 CFARSE FOR INFILTRATION BASIN

USE 1/2 (0.5) CF/HE.SF FOR PENAIDING POND AREA LY FACTOR OF SAFETY

TIME TO DRAIN PONDS

T= V2-4R /[0.5 AINF + 0.25 APRIND

WHERE: V2-YR= Z-YR STORM VOLUME (CF) AINF = AREA INFILTRATION BASIN (SF) APOND = AND POND AREA MINUS AINF (SF)

Ronannan 🔺 Husion:

ENGINEERING DATE 5-16-0 SPATIAL DATA BY CSS PROJECT.NO. ADVANCED TECHNOLOGIES -SUBJECT POND INFILTRATION CALCULATIONS CHID

POND INFILTRATION Calculations

FOR SAND: 1.74 in/m = 34.48 in/min

USE 0.145 CF FOR INFILTRATION BASIN

Bohannan Huston:

PROJECT NAME PROJECT NO

PROJECTINO

SHEET BV (2

ву В.Т.

OF DATE

DATE

9-26-07

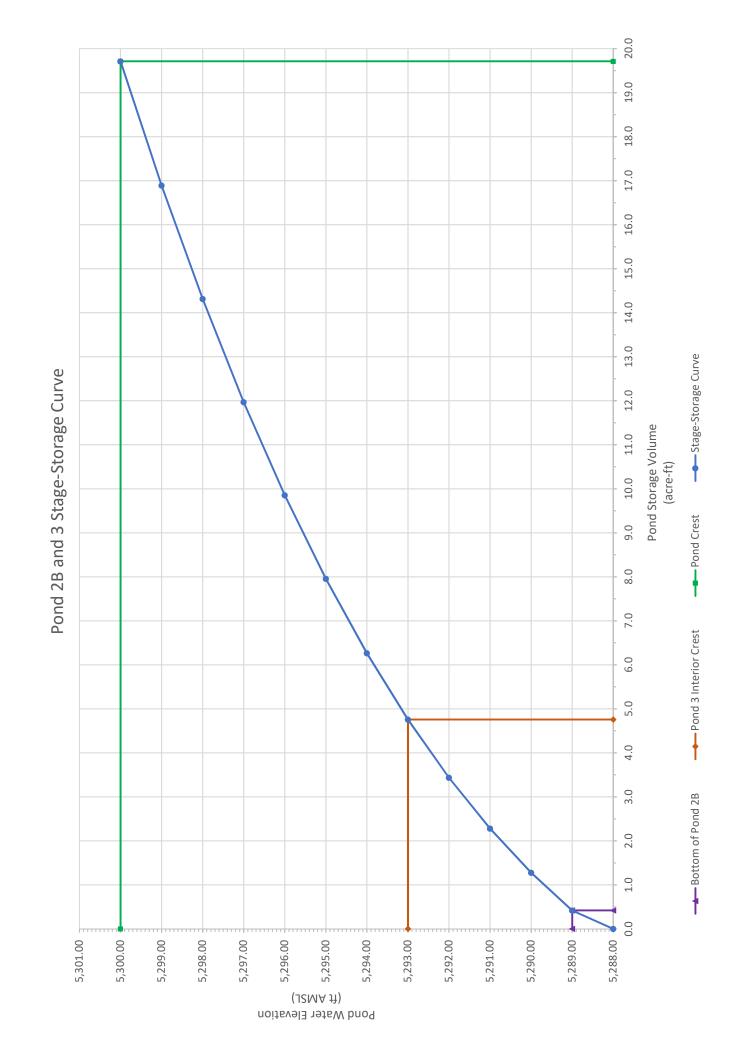
ENGINEERING SPATIAL DATA

D-4

APPENDIX E POND VOLUME CALCULATIONS

Incre	Elevation Incremental Volume	Cumulative volume	Acre-Feet	Surface Area
דם	cu ft	cu ft		sq ft
973,3054	54	973.3054	0.0223	4386.6135
2650.5057	22	3623.8111	0.0832	6676.3677
4251,2300	0	7875,0411	0.1808	10487.5991
6264.7455	55	14139.7866	0.3246	14468.7852
8153,2609	6	22293.0475	0.5118	18228.0361
10278.3327	7	32571.3802	0.7477	23069.8801
13033.2289	0	45604,6092	1.0469	29498,4812
16873,2582	2	62477.8674	1.4343	38587.8213
21443.9508	00	83921.8182	1.9266	47009.6335
25860.2969	6	109782.1151	2.5203	56317.1985
31251.7437	2	141033.8589	3.2377	68406.4902
37877.7953	m	178911.6541	4.1072	82482.1196
43900.3594	4	222812.0135	5.1151	92752.3987
49037,9908	00	271850.0043	6.2408	104391.3594

Hydraulic Analysis for Ponds 2B & 3 Using AutoCAD Civil 3D


Project Name: Mesa Del Sol Neighborhood Montage Units 3 & 4

Project No.: 20190195

Prepared By: P. Carrillo

Date: 12/26/2018

acitore Electron	Cost Anotac)	Cos V silicitació	4+400	Incremental	Incremental	Cumulative	Cumulative
(ft AMSL)	(sq. ft)	(acres)	(£)	(Conic)	(Conic)	(Conic)	(Conic)
				(cu. yds)	(ac-ft)	(cu. yds)	(ac-ft)
5,288.00	16,403.47	0.38	00.00	00:0	00:0	00:0	0.00
5,289.00	34,244.60	0.79	1.00	678.03	0.42	1,236.32	0.42
5,290.00	40,445.36	0.93	1.00	1,382.28	0.86	2,699.01	1.28
5,291.00	46,982.87	1.08	1.00	1,618.00	1.00	4,400.91	2.28
5,292.00	53,889.71	1.24	1.00	1,867.25	1.16	6,354.29	3.44
5,293.00	61,132.66	1.40	1.00	2,128.96	1.32	8,571.85	4.76
5,294.00	69,674.67	1.60	1.00	2,430.23	1.51	11,093.59	6.26
5,295.00	77,894.90	1.79	1.00	2,731.59	1.69	13,919.63	7.96
5,296.00	87,308.77	2.00	1.00	3,059.03	1.90	17,075.85	9.85
5,297.00	97,061.16	2.23	1.00	3,414.42	2.12	20,590.35	11.97
5,298.00	107,132.94	2.46	1.00	3,780.56	2.34	24,473.91	14.31
5,299.00	117,501.05	2.70	1.00	4,159.49	2.58	28,742.04	16.89
5,300.00	128,714.69	2.95	1.00	4,554.45	2.82	20,769.71	19.71

EXHIBITS

EXHIBIT 1: PRELIMINARY PLATS

EXHIBIT 2: LEVEL B PLANNING ZONES

EXHIBIT 3: LEVEL B OVERALL STORMWATER

PLAN

EXHIBIT 4: LEVEL B RESIDENTIAL AREAS

DRAINAGE MANAGEMENT PLAN

EXHIBIT 5: EXISTING CONDITIONS BASIN MAP

EXHIBIT 6: DEVELOPED CONDITIONS BASIN

MAP

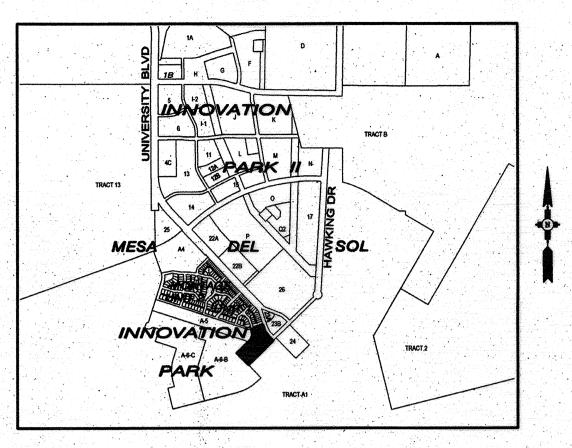

EXHIBIT 7: INLET AND STORM DRAIN ANALYSIS

EXHIBIT 8: TYPICAL PERMANENT STORM POND

DETAIL

EXHIBIT 9: GRADING PLAN

EXHIBIT 1 PRELIMINARY PLATS

LOCATION MAP

ZONE ATLAS R-16 & S-16

SUBDIVISION DATA

- 1. DRB No.
- 2. Zone Atlas Index Number: R-16 & S-16.
- 3. Zoning: PC
- 4. Gross Subdivision Acreage: 6.7708 Acres.
- 5. Total number of Lots/Tracts Created: Thirteen (13) Lots and Four (4) Tracts.
- 6. 0.15 miles public street right-of-way created.
- 0.12 miles of half width streets created.
- 7. 0.10 miles private streets created. Area of private streets created: 0.2152 Acres (Tract 1).
- 8. Date of Survey: April, 2011.
- 9. Plat is located within Sections 22 and 27, Township 9 North.
- Range 3 East, New Mexico Principal Meridian, City of Albuquerque, Bernalillo County, New Mexico.

PURPOSE OF PLAT

The purpose of this Plat is to Subdivide all of Tract A-6-A of the Plat of Tracts A-6-A, A-6-B & A-6-C of the Mesa Del Sol Innovation Park, Albuquerque, New Mexico as the same is shown and designated on the Plat thereof, filed in the office of the County Clerk of Bernalillo County, New Mexico on July 11, 2011 in Book 2011C, Page 0066 as Document No. 2011063035 into Thirteen (13) lots, Four (4) Tracts, to grant easements and to dedicate public street right of way to the City of Albuquerque.

PUBLIC UTILITY EASEMENTS

PUBLIC UTILITY EASEMENTS shown on this plat are granted for the common and joint use of:

- Public Service Company of New Mexico ("PNM"), a New Mexico corporation, (PNM Electric) for installation, maintenance, and service of overhead and underground electrical lines, transformers, and other equipment and related facilities reasonably necessary to provide electrical services,
- New Mexico Gas Company for installation, maintenance, and service of natural gas lines, valves and other equipment and facilities reasonably necessary to provide natural gas services.
- Qwest Corporation d/b/a CenturyLink QC for the installation, maintenance, and ser such lines, cable, and other related equipment and facilities reasonably necessary to provide communication services.
- Cable One for the installation, maintenance, and service of such lines, cable, and other related equipment and facilities reasonably necessary to provide Cable services.

Included: is the right to build, rebuild, construct, reconstruct, locate, relocate within the easement, change, remove, replace, modify, renew, operate and maintain facilities for purposes described above, together with free access to, from, and over said easements, with the right and privilege of going upon, over and across adjoining lands of Grantor for the purposes set forth herein and with the right to utilize the right of way and easement to extend services to customers of Grantee, including sufficient working area space for electric transformers, with the right and privilege to trim and remove trees, shrubs or bushes which interfere with the purposes set forth herein. No building, sign, pool (aboveground or subsurface), hot tub, concrete or wood pool decking, or other structure shall be erected or constructed on said easements, nor shall any well be drilled or operated thereon. Property owners shall be solely responsible for correcting any violations of National Electrical Safety Code by construction of pools, decking, or any structures adjacent to or near easements shown on this plat.

Easements for electric transformer/switchgears, as installed, shall extend ten (10) feet in front of transformer/switchgear doors and five (5) feet on each side.

Disclaimer

In approving this plat, Public Service Company of New Mexico (PNM), New Mexico Gas Company (NMGC) and Qwest Corporation D/B/A CenturyLink (QWEST) did not conduct a Title Search of the properties shown hereon. Consequently, PNM, NMGC and QWEST do not waive or release any easement or easement rights which may have been granted by prior plat, replat or other document and which are not specifically described and shown on this plat.

The City of Albuquerque and its designees and/or contractors may install, maintain and service water and wastewater lines within the 10' PUE.

DESCRIPTION

A certain tract of land located within Sections 22 and 27, Township 9 North, Range 3 East, New Mexico Principal Meridian, City of Albuquerque, Bernalillo County, New Mexico, being and comprising all of of Tract "A-6-A" of the Plat of Tracts A-6-A, A-6-B & A-6-C of the Mesa Del Sol Innovation Park, Albuquerque, New Mexico as the same is shown and designated on the Plat thereof, filed in the office of the County Clerk of Bernalillo County, New Mexico on July 11, 2011 in Book 2011C, Page 0066 as Document No. 2011063035.

Tract contains 6.7708 acres, more or less.

DOC# 2015020811 03/13/2015 01:55 PM Page: 1 of 3 htyPLAT R:\$25.00 B: 2015C P: 0026 M. Toulous Olivere, Bernalilio Co Todios officere, Bernaili

FREE CONSENT AND DEDICATION

The plat shown hereon is made with free consent and in accordance of the desires of the undersigned owner(s), the execution of this plat is their free act and deed. Those signing as owner(s) warrant that they hold among them, complete indefeasible title in fee simple to the land shown on this plat. Owner(s) hereby affirm that the described property shown on this plat lies within the platting and subdivision jurisdiction of Albuquerque, New Mexico. Said owner(s) hereby dedicate right of way to the City of Albuquerque in fee simple with warranty covenants and grant easements as may be shown on this plat. Permanent access easements are granted for private alleys and streets.

MESA DEL SOL, LLC, a New Mexico limited liability company

State of Culuendo County of Denier)

This instrument was acknowledged before me on 15 day of December 15

My Commission Expires: 8/31/2015

NOTES

NOTARY PUBLIC STATE OF COLORADO NOTARY ID 19984024481 1. Bearings are New Mexico State Plane Grid Bearings (Central Zone) NAD 1983. Basis of Bearings is between City of Albuquerque Control Monuments "1-R16" and "3-Q16".

STACEY TAYLOR

- Bearing = N12°15'06"E 2. Distances are ground distances.
- 3. Record Bearings and distances are the same as shown on this plat and the same as shown on the Plat of Tracts A-6-A, A-6-B & A-6-C of the Mesa Del Sol Innovation Park, Albuquerque, New Mexico as the same is shown and designated on the Plat thereof, filed in the office of the County Clerk of Bernalillo County, New Mexico on July 11, 2011 in Book 2011C, Page 0066 as Document No. 2011063035.
- 4. Record easements taken from search and report File No. FT000058876 dated Monday, September 27, 2010 from Fidelity National Title.
- 5. All streets and drainage improvements are to be public, to be dedicated for maintenance to the City of Albuquerque.
- 6. Tract 1 (private alley) is subject to a blanket PUE, Private Access and Private Drainage Easements Granted with the filing of this plat and is private and should be maintained by the Homeowners Association. Covenants will Prohibit Parking in Alleys. Tract 1 (Private Allev) contains 0.2152 acres of land.
- 7. Tract C will be owned and maintained by the Homeowners Association and is encumbered by a blanket PUE and Public Access Easement granted with the filing of this Plat.
- 8. Tracts A-1 thru A-6 of the Bulk Land Plat of Tracts A-1 thru A-6 Mesa Del Sol Innovation Park filed December 6, 2010 in Book 2010C, Page 131 as Document No. 2010123421 are subject to an Easement Agreement filed June 21, 2006 in Book A-119, Page 1052 as Document No. 2006-091310, records of Bernalillo County, New Mexico. Easement terminates upon Tract A-6-A with the filing of this Plat.
- 9. Tract A-5 is subject to an existing blanket Public Storm Drain Easement granted by the plat filed December 6, 2010 in Book 2010C, Page 131 as Document No. 2010123421. This easement to be confined and further defined by future platting action.
- 10. The property on this plat is subject to a Pre-Development Facilities Fee Agreement with the
- Albuquerque Public Schools, recorded at Dec. 16, 2014 Dec # 2014099631

 11. SOLAR NOTE Pursuant to Section 14-14-4-7 of the City of Albuquerque Code of Ordinances, "No property within the area of this Plat shall at any time be subject to a deed restriction, covenant, or binding agreement prohibiting solar collectors from being installed on buildings or erected on the lots or tracts within the area of proposed Plat. The foregoing requirement shall be a condition to approval of this plat".
- 12. The front (adjacent to street) lot comer will not be staked with the exception of intermediate "pc's and pt's". A witness corner projected along the property line being a chiseled "+" in the curb and gutter will be set upon completion of all street improvements. Offset distance will be adjusted by even foot increments to fall within the pan. Remaining lot corners will be marked with a 5/8" rebar and plastic cap stamped "Gromatzky PS 16469", a nail and washer stamped "Gromatzky PS 16469" or a nail and washer stamped "line only".
- 13. Centerline monuments to be installed at centerline PC's, PT's, angle points and street intersections prior to acceptance of subdivision street improvements and will consist of a standard 3-1/4" aluminum alloy cap stamped "CITY OF ALBUQUERQUE", CENTERLINE MONUMENTATION", "SURVEY MARKER", "DO NOT DISTURB", "PLS 16469".

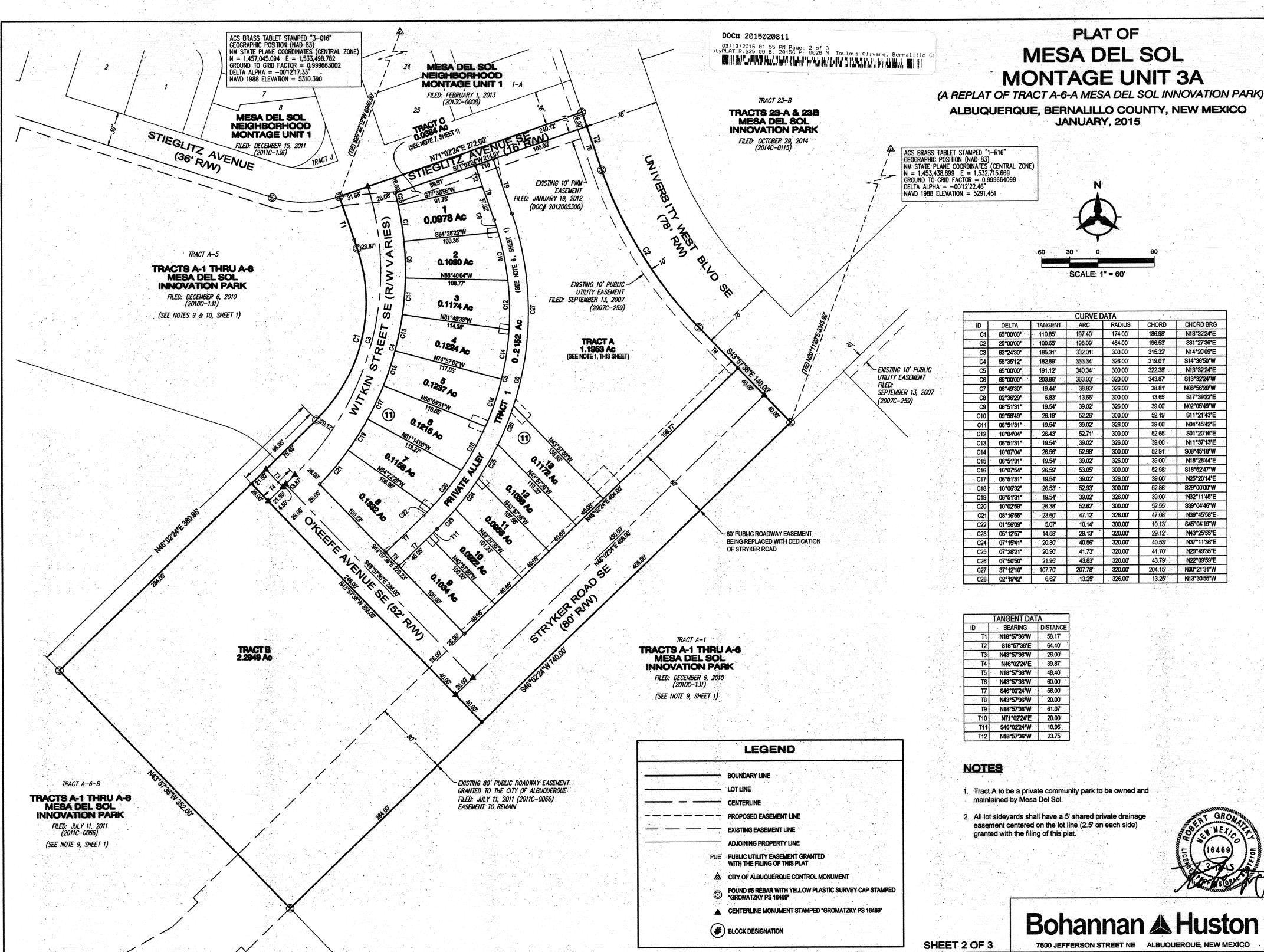
PLAT OF MESA DEL SOL **MONTAGE UNIT 3A**

(A REPLAT OF TRACT A-6-A MESA DEL SOL INNOVATION PARK) ALBUQUERQUE, BERNALILLO COUNTY, NEW MEXICO DECEMBER, 2014

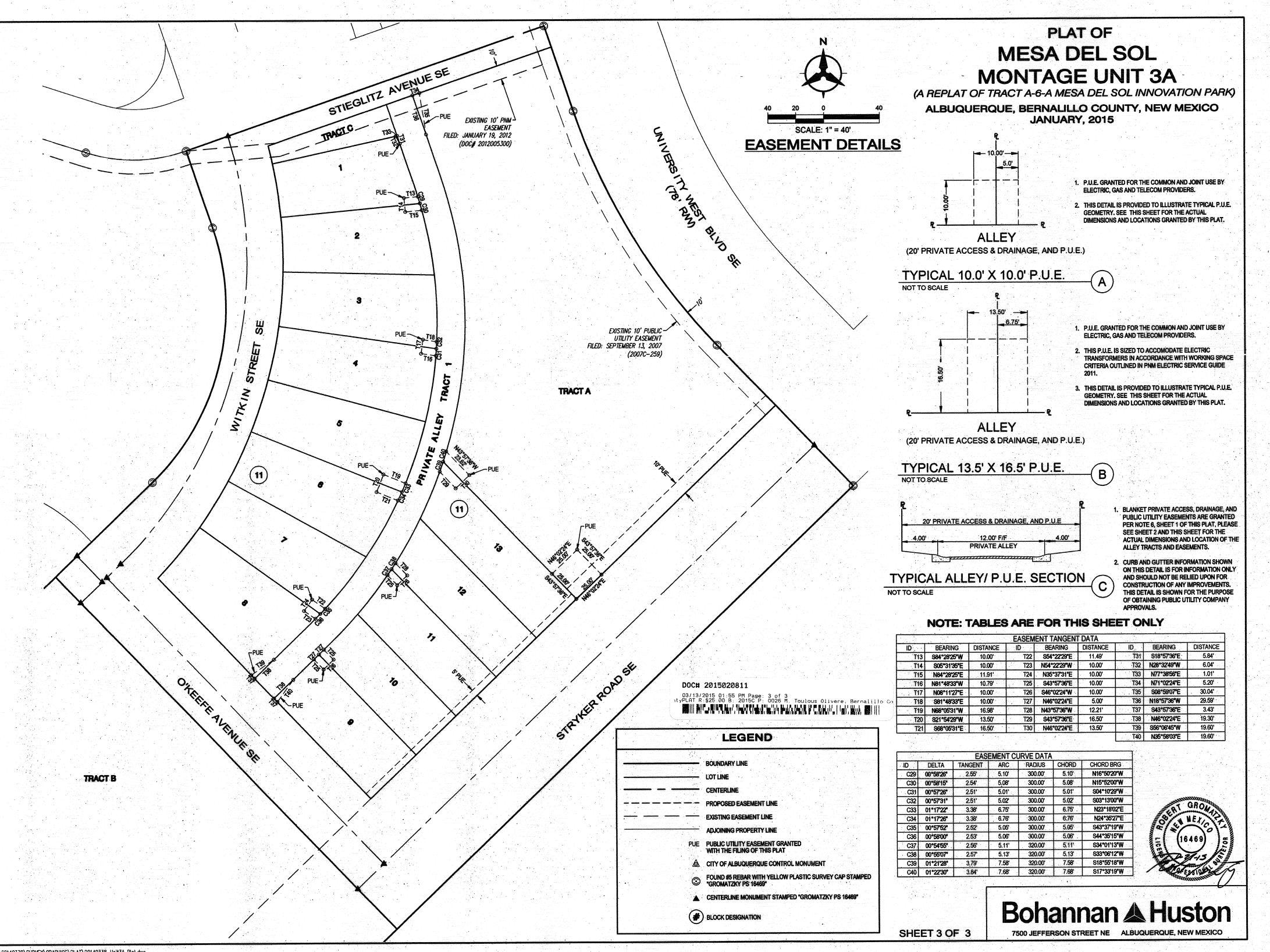
APPLICATION NUMBER 15DRB-70056	
UTILITY APPROVALS:	
Hon	1/22/15
QWEST CORPORATION diple CENTURYLINK QC	DATE /
	1/26/15
COMCAST CABLE	DATE /
terna do Vigil	1-26-15
PNM ELECTRIC SERVICES	DATE
C/// E/T	1/22/15
NEW MEKICO KAS COMPANY	DATE
CITY APPROVALS:	

Foren M. Rsinhoury P.S.	1/14/15
CITY SURVEYOR	DATÉ !
1/4 44	02-18-15
TRAFFIC ENGINEERING, TRANSPORTATION DIVISION	
Ullan Cola	02 118/15
ALBUQUERQUE BERNALILLO COUNTY WATER UTILITY AUTHORITY	DATE
Carol S. Durnent	2-18-15
PARKS & RECREATION DEPARTMENT	DATE
Cent a Cheme	2-18-15
A.M.A.F.C.A.	DATE
Centra Cherry	2-18-15 DATE
CITY ENGINEER	DATE
Gal Cod	3-17-15
DRB CHAIRPERSON, PLANNING DEPARTMENT	DATE
N / N REAL PROPERTY DIVISION	3-13-15 DATE
REAL PROPERTY DIVISION	
TAX CERTIFICATION	
THIS IS TO CERTIFY THAT TAXES ARE CURRENT AND	PAID ON UPC#
1-016-050-20052820	Assembly Marie Committee of the Committe
7-010 080 000 5 12 EX	
PROPERTY OWNER OF RECORD: MESC	pel <01

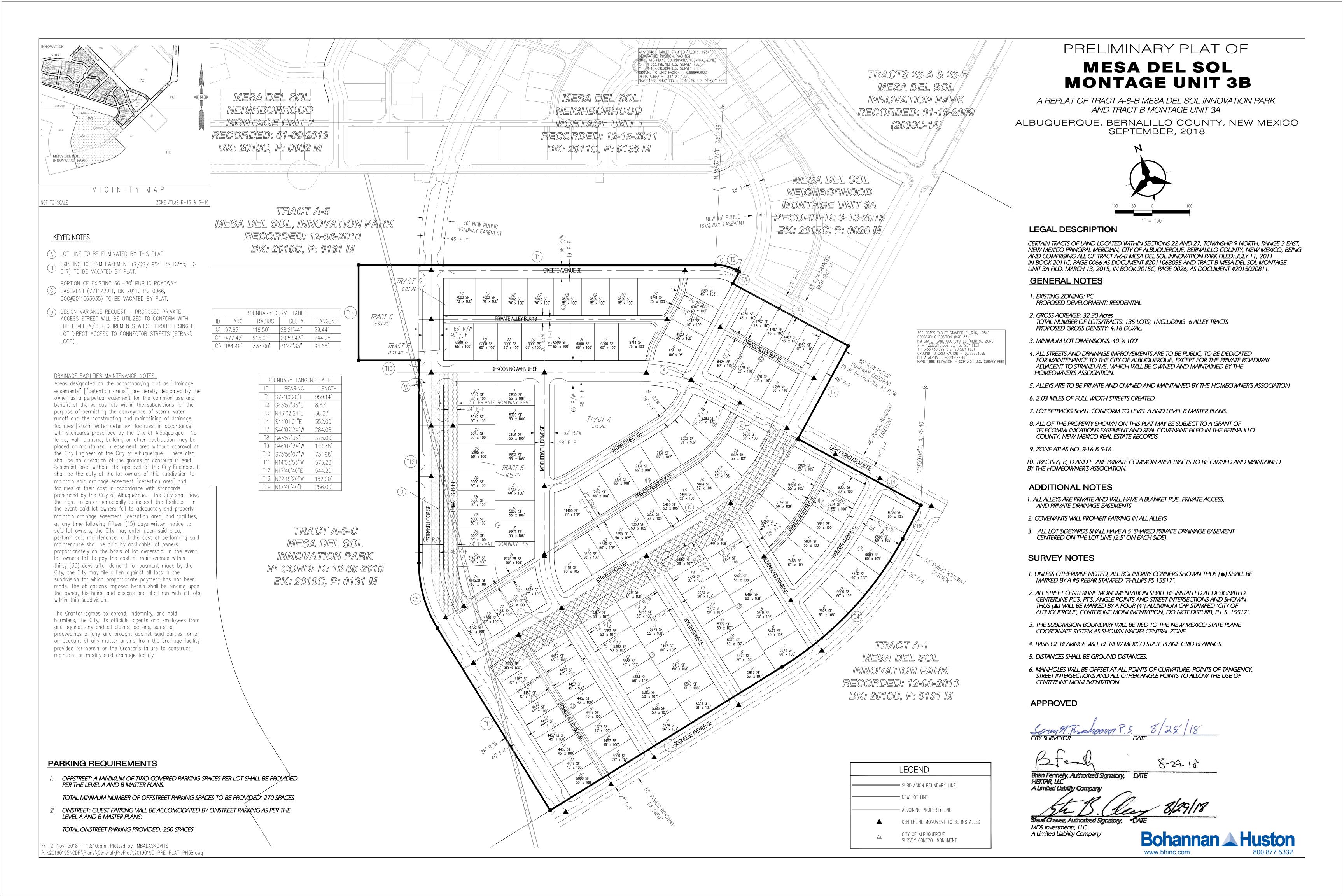
SURVEYOR'S CERTIFICATION


I, Robert Gromatzky, a registered Professional New Mexico Surveyor, certify that I am responsible for this survey and that this plat was prepared by me or under my supervision. shows all existing easements as shown on the plats of record, or made known to me by the owner, utility companies, or other interested parties and conforms to the Minimum Requirements of the Board of Registration for Professional Engineers and Professional Surveyors and meets the minimum requirements for monumentation and surveys contained in the Albuquerque Subdivision Ordinance, and is true and accurate to the best of my knowledge and belief.

Date: DECEMBER 11, 2018

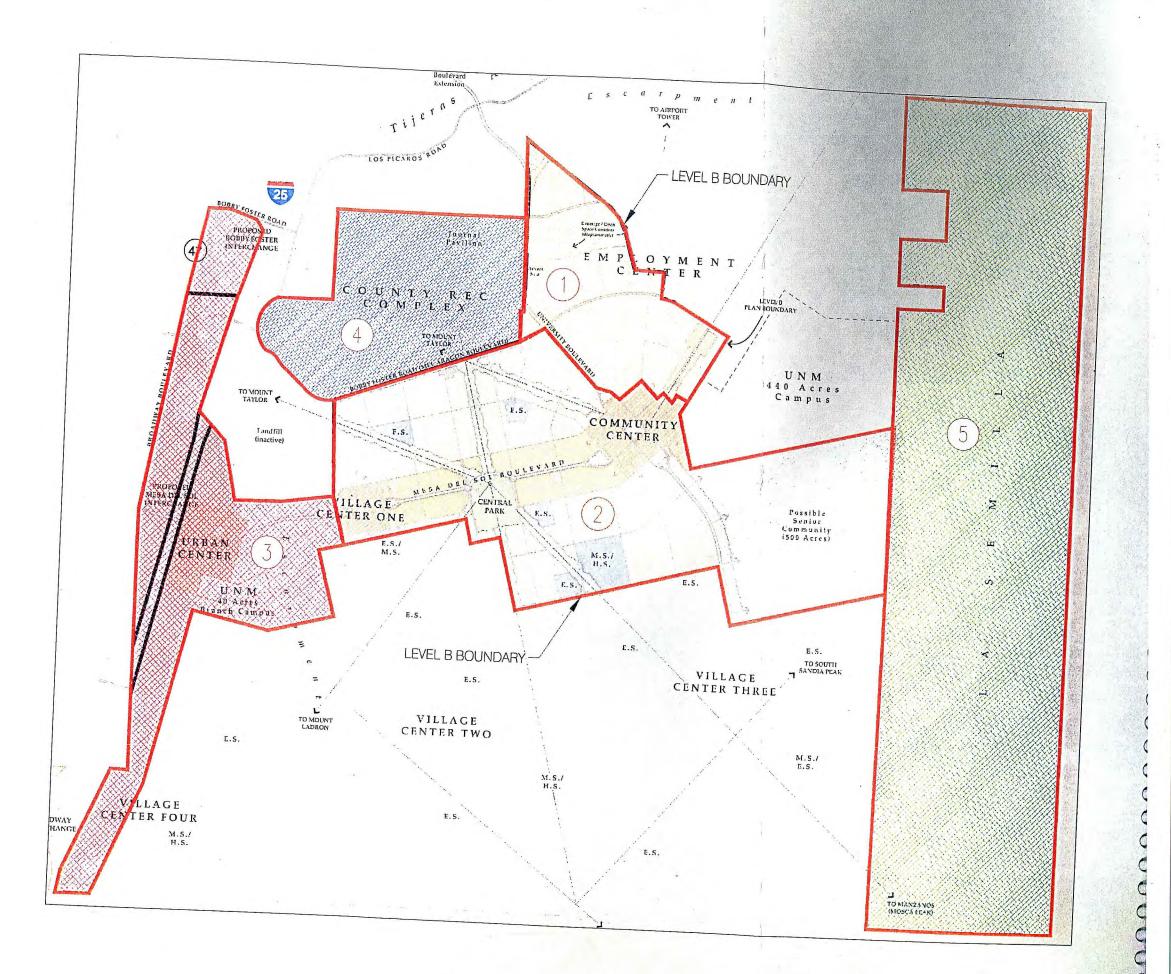


Bohannan A Huston

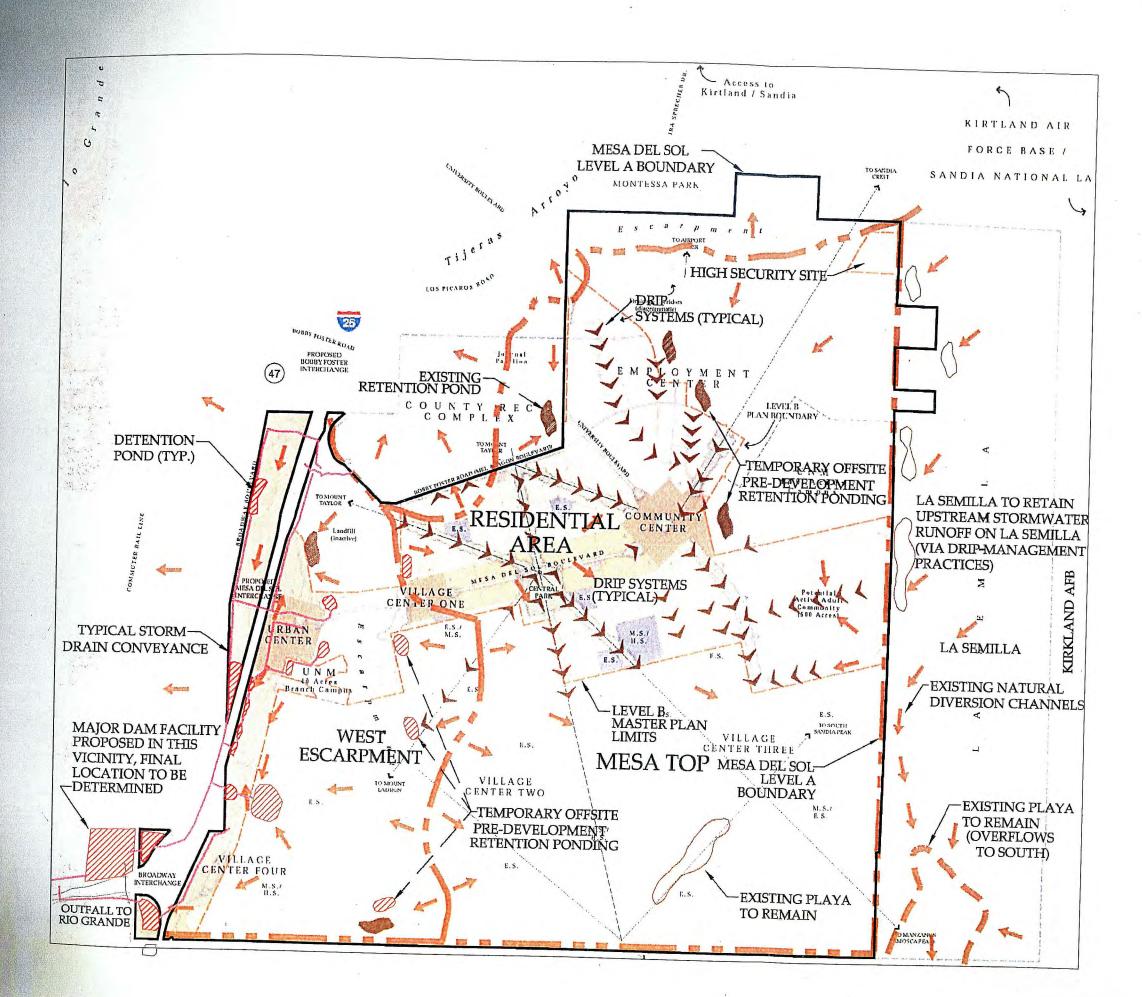

7500 JEFFERSON STREET NE ALBUQUERQUE, NEW MEXICO

P:\20140338\SURVEY\GRAPHICS\PLAT\20140338_Unit3A Plot.dwg
Thu, 12-Mar-2015 - 9:12:am, Plotted by DGUTIERREZ

P:\20140338\SURVEY\GRAPHES\PLAT\20140338_Unit3A Plat.dwg Fri, 16-Jan-2015 - 11:28:am, Plotted by: VRAMOS


EXHIBIT 2 LEVEL B PLANNING ZONES

LEVEL B
PLANNING ZONES
Figure 4A-7


Legend

- 1. Employment Center
- 2. Residential Area
- 3. 1-25/Broadway
- 4. County Rec.
- 5. La Semilla

EXHIBIT 3 LEVEL B OVERALL STORMWATER PLAN

OVERALL STORMWATER PLAN Figure 4A-1

Legend

Notes:

Shown facilities are illustrative only.

. Mesa Top Area

Drainage management concept planuses distributed retention/infiltration ponds (DRIPs) to collect all flows generated on the mesa top in the residential lands.

Non-residential lands (i.e. employment center, UNM, public sites) may utilize shared onsite drip systems.

West Escarpment

The drainage management concepts of collecting runoff in detention ponds and discharging storm water to a large storm water detention basin as proposed by the AMAFCA study entitled "Southwest valley drainage management plan," dated Jan. 1988. The detention pond discharges to the Rio Grande.

DRIP (distributed retention and infiltration pond)

Temporary Retention Pond

Surface Flow Direction

Mesa del Sol Boundary

EXHIBIT 4 LEVEL B RESIDENTIAL AREAS DRAINAGE MANAGEMENT PLAN

RESIDENTIAL AREAS
DRAINAGE MANAGEMENT
PLAN

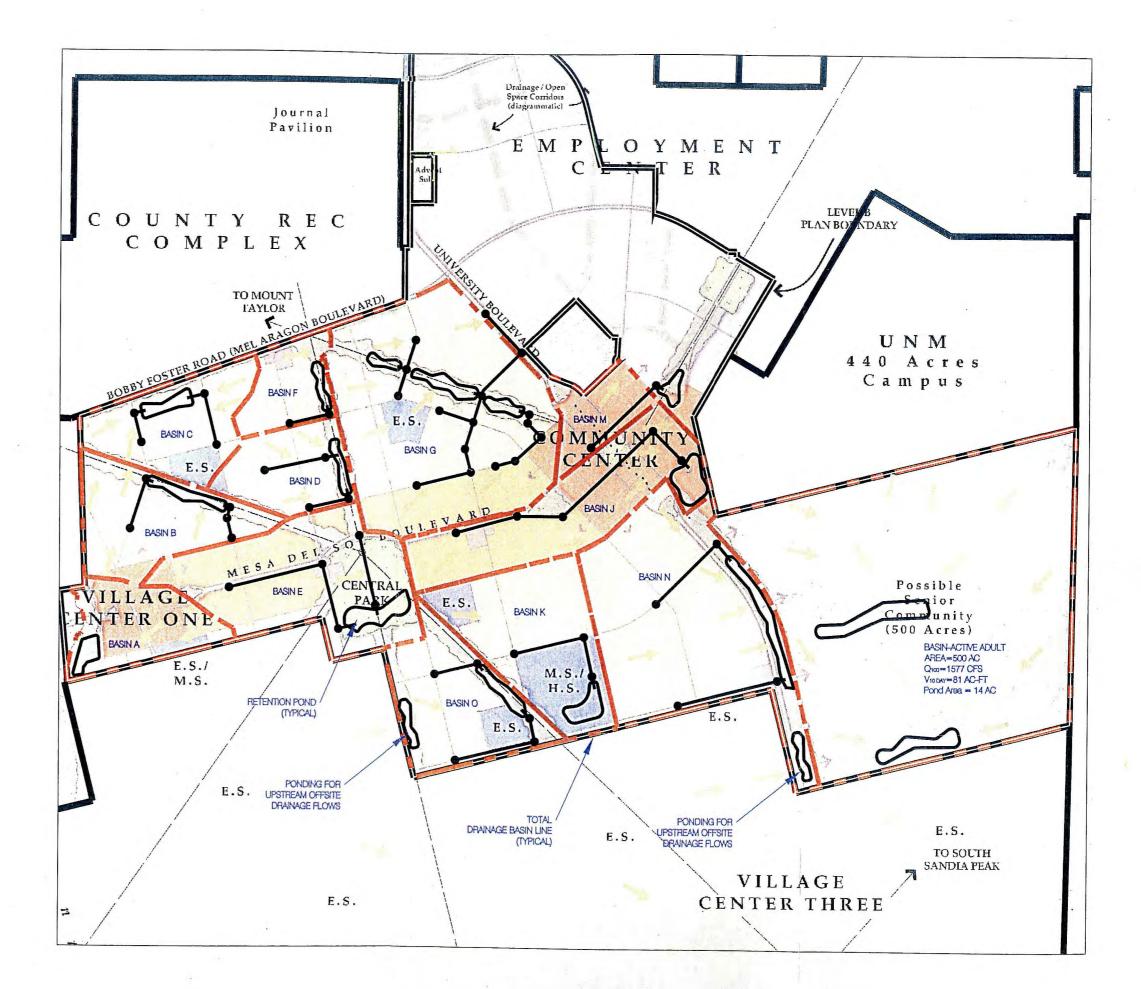
Figure 4A-11

Legend

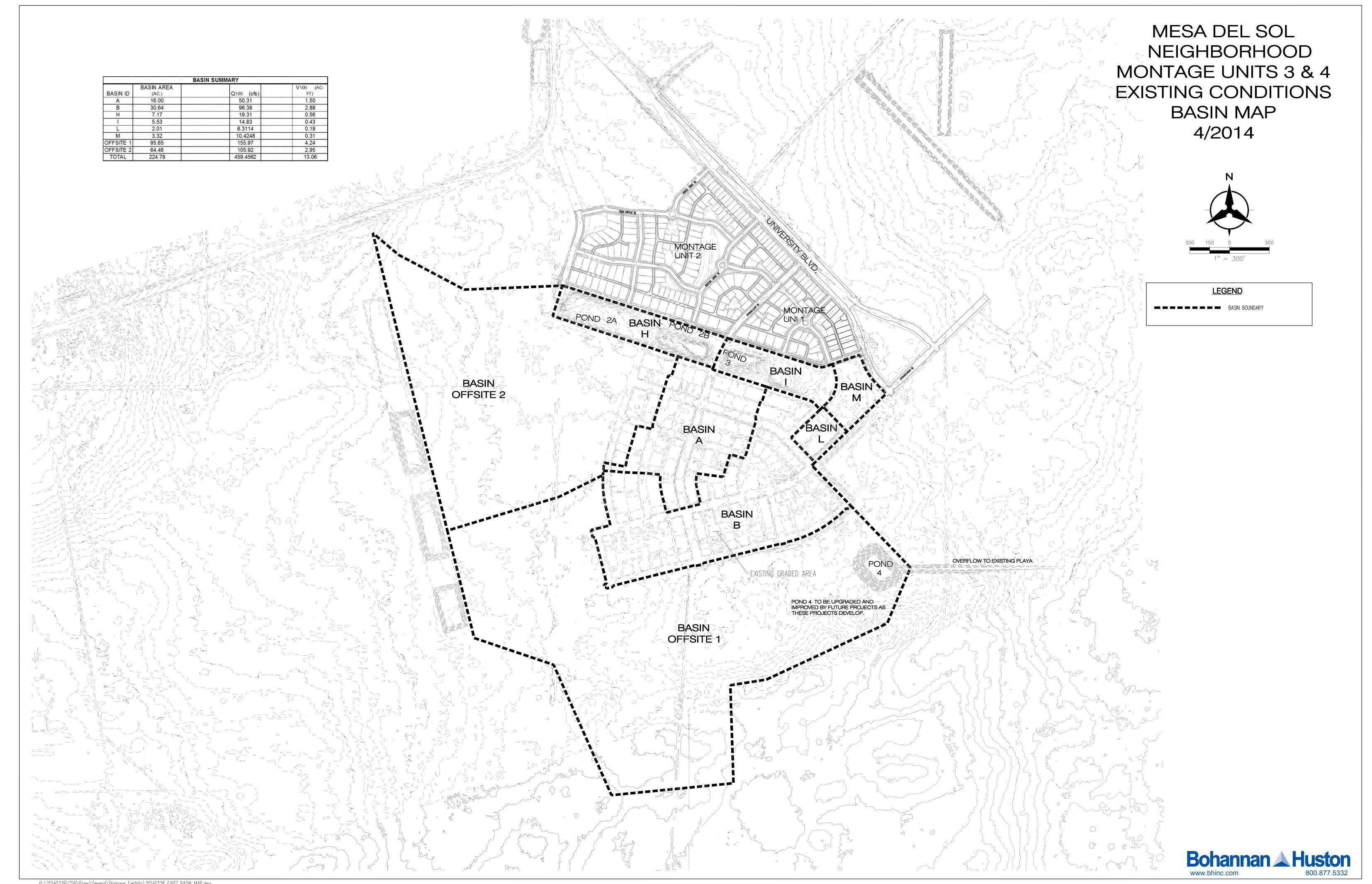
Notes:

- Illustrative Only
- Storm drain system shown is intended to illustrate typical storm drain collection system and drip pond. Does not necessarily apply to final future subdivision planning

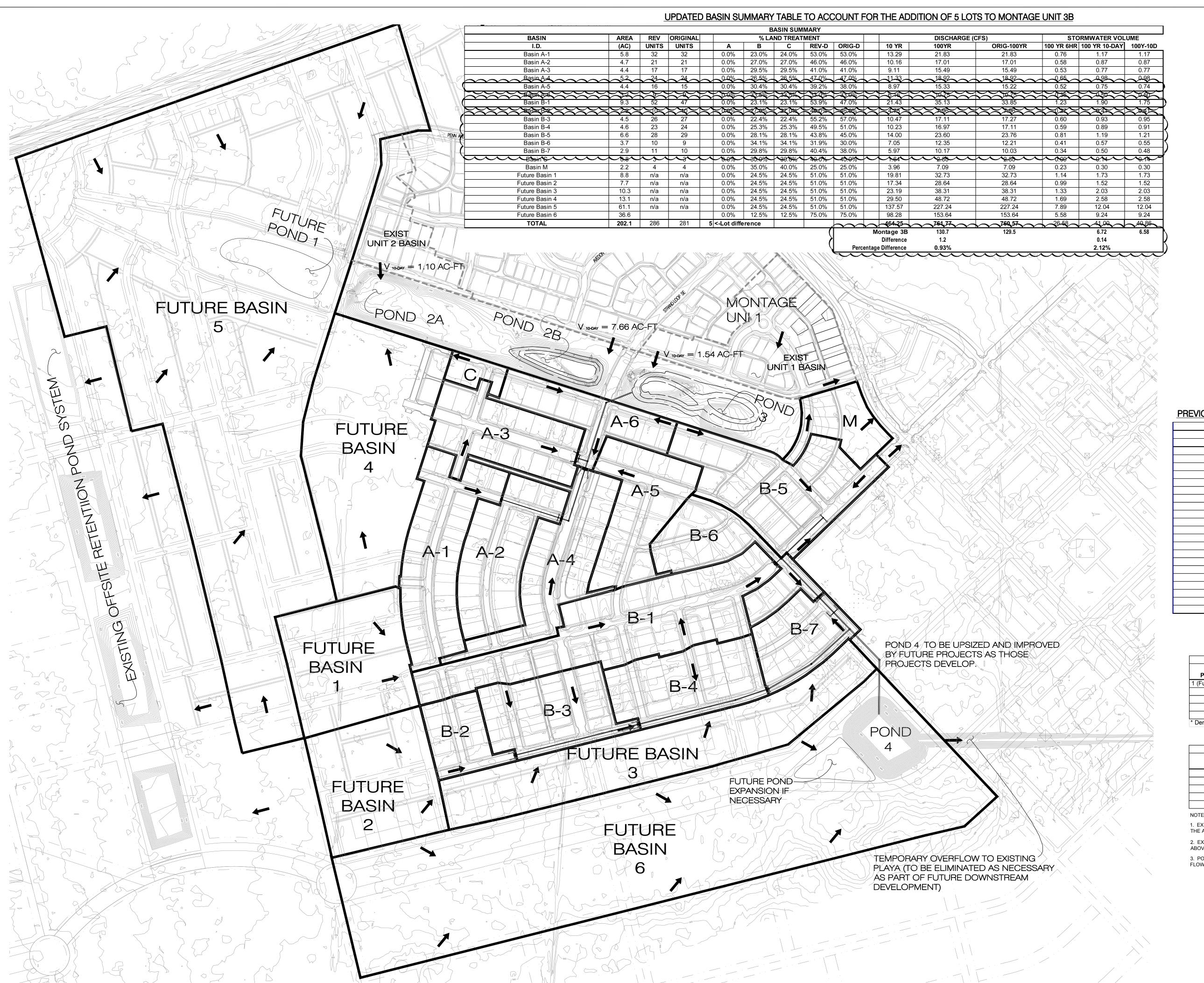
Total Drainage Basin


Drainage Subbasin

Storm Drain and Outfall


Basin Flow Direction

DRIP Pond (Retention Pond)


0 1500

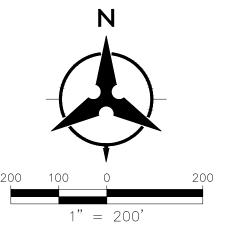

EXHIBIT 5 EXISTING CONDITIONS BASIN MAP

EXHIBIT 6 DEVELOPED CONDITIONS BASIN MAP

MESA DEL SOL NEIGHBORHOOD MONTAGE UNITS 3 & 4 DEVELOPED CONDITIONS **UPDATED BASIN MAP** 10/2018

LEGEND

PREVIOUS BASIN SUMMARY TABLE FROM 2014

BASIN SUMMARY				
BASIN	AREA	DISCHARGE (CFS)	STORMWA	TER VOLUME
I.D.	(AC)	100YR	100 YR 6HR	100 YR 10-DAY
Basin A-1	5.8	21.83	0.76	1.17
Basin A-2	4.7	17.01	0.58	0.87
Basin A-3	4.4	15.49	0.53	0.77
Basin A-4	5.2	18.92	0.65	0.98
Basin A-5	4.4	15.22	0.51	0.74
Basin A-6	3.2	10.75	0.36	0.50
Basin B-1	9.3	33.85	1.16	1.75
Basin B-2	2.2	7.96	0.27	0.41
Basin B-3	4.5	17.27	0.61	0.95
Basin B-4	4.6	17.11	0.59	0.91
Basin B-5	6.6	23.76	0.81	1.21
Basin B-6	3.7	12.21	0.40	0.55
Basin B-7	2.9	10.03	0.34	0.48
Basin C	0.8	2.80	0.09	0.14
Basin M	2.2	7.09	0.23	0.30
Future Basin 1	8.8	32.73	1.14	1.73
Future Basin 2	7.7	28.64	0.99	1.52
Future Basin 3	10.3	38.31	1.33	2.03
Future Basin 4	13.1	48.72	1.69	2.58
Future Basin 5	61.1	227.24	7.89	12.04
Future Basin 6	36.6	153.64	5.58	9.24

POND SUMMARY - FULLY DEVELOPED CONDITIONS			
		REQ'D STORAGE	MAX DEPTH
POND	MAX WSE	VOLUME (AC-FT)	(FT)
1 (Future)	*	12.04	*
2A	5300.0	3.98	5.5
2B	5300.0	7.82	11.0
3	5300.0	8.54	11.0
4	5297.0*	19.04	14*
* Denotes	pond to be designed i	n future	

POND SUMMARY - REQUIRED VOLUMES FOR UNITS 3 AND 4 REQ'D STORAGE POND MAX WSE VOLUME (AC-FT) MAX DEPTH (FT) VOLUME (AC-FT) 1 (Future) NOT NEEDED 5300.0

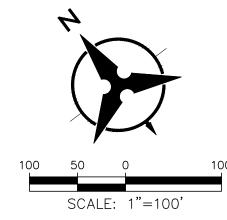
1. EXISTING POND 2A HAS ALREADY BEEN CONSTRUCTED AND CERTIFIED TO

2. EXISTING POND 4 HAS BEEN CONSTRUCTED, AND CERTIFIED TO THE ABOVE VOLUME.

3. PONDS 2B AND 3 WILL BE UPSIZED BY THIS PROJECT TO ACCOMMODATE FLOWS FROM UNITS 3 AND 4 AS WELL AS EXISTING UNITS 1 AND 2.

EXHIBIT 7 INLET AND STORM DRAIN ANALYSIS

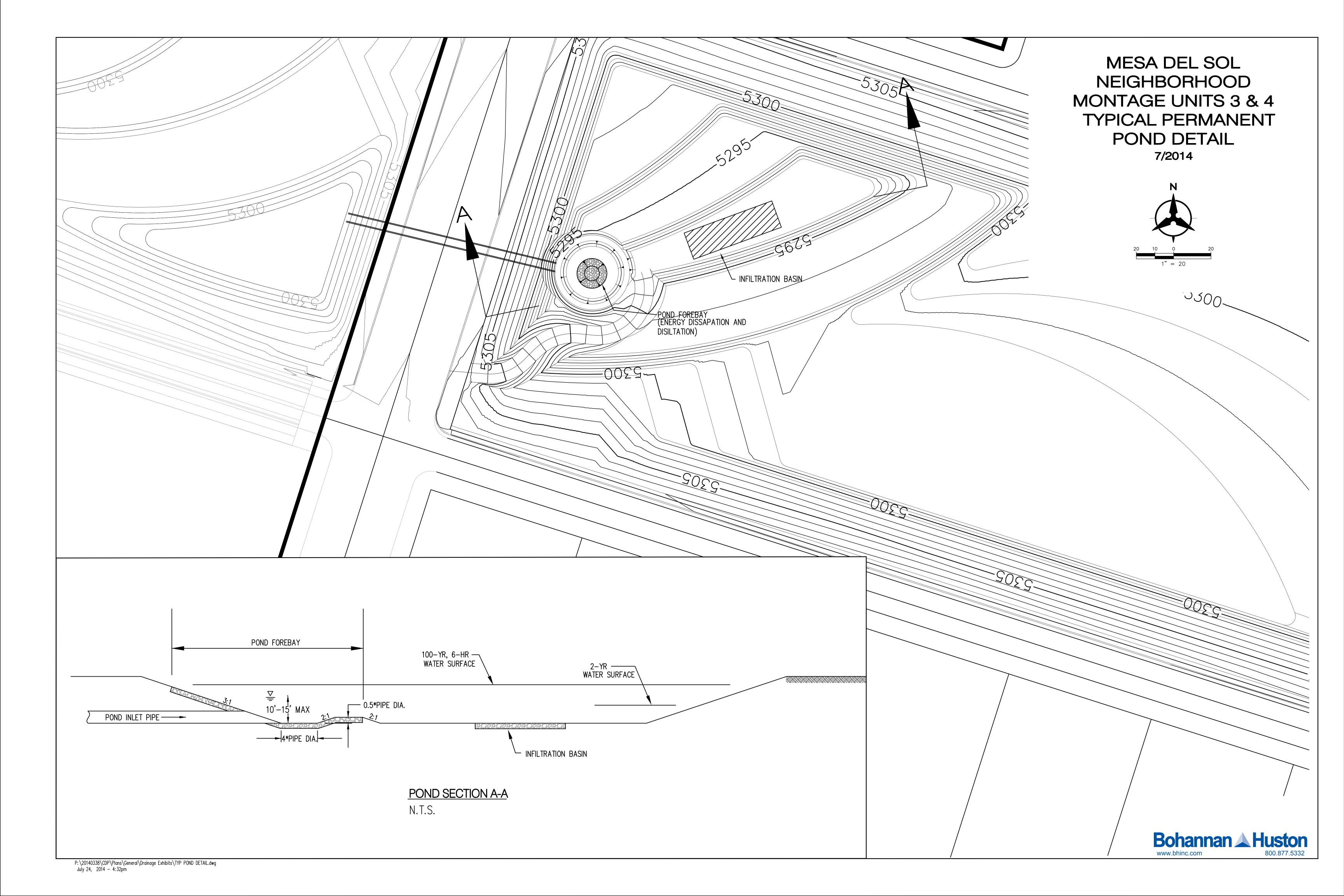
MESA DEL SOL MONTAGE UNITS 3 AND 4

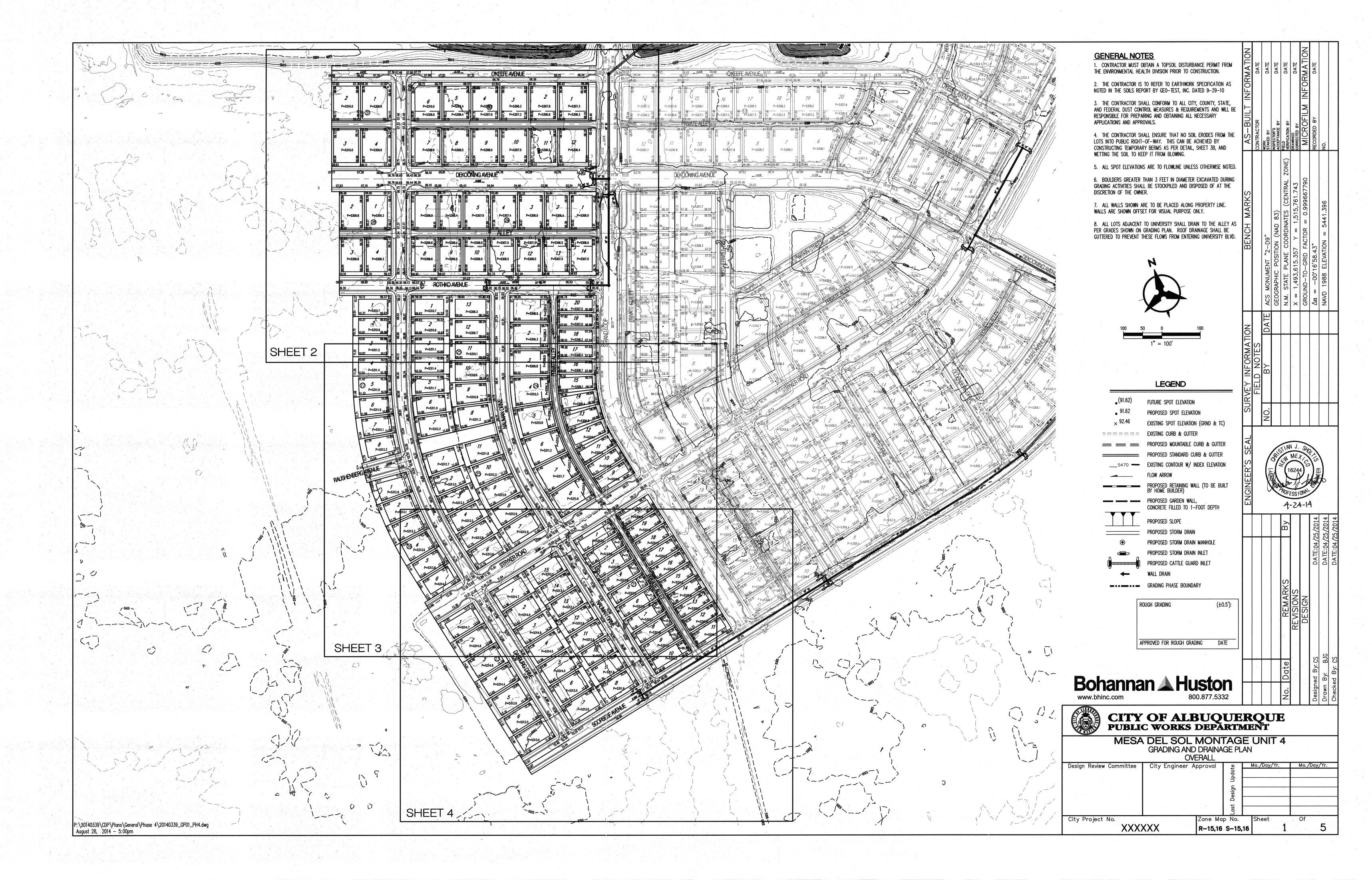

INLET AND STORM DRAIN ANALYSIS 9/2014 - Revised 01/2019 SUMMARY OF INLET FLOWS

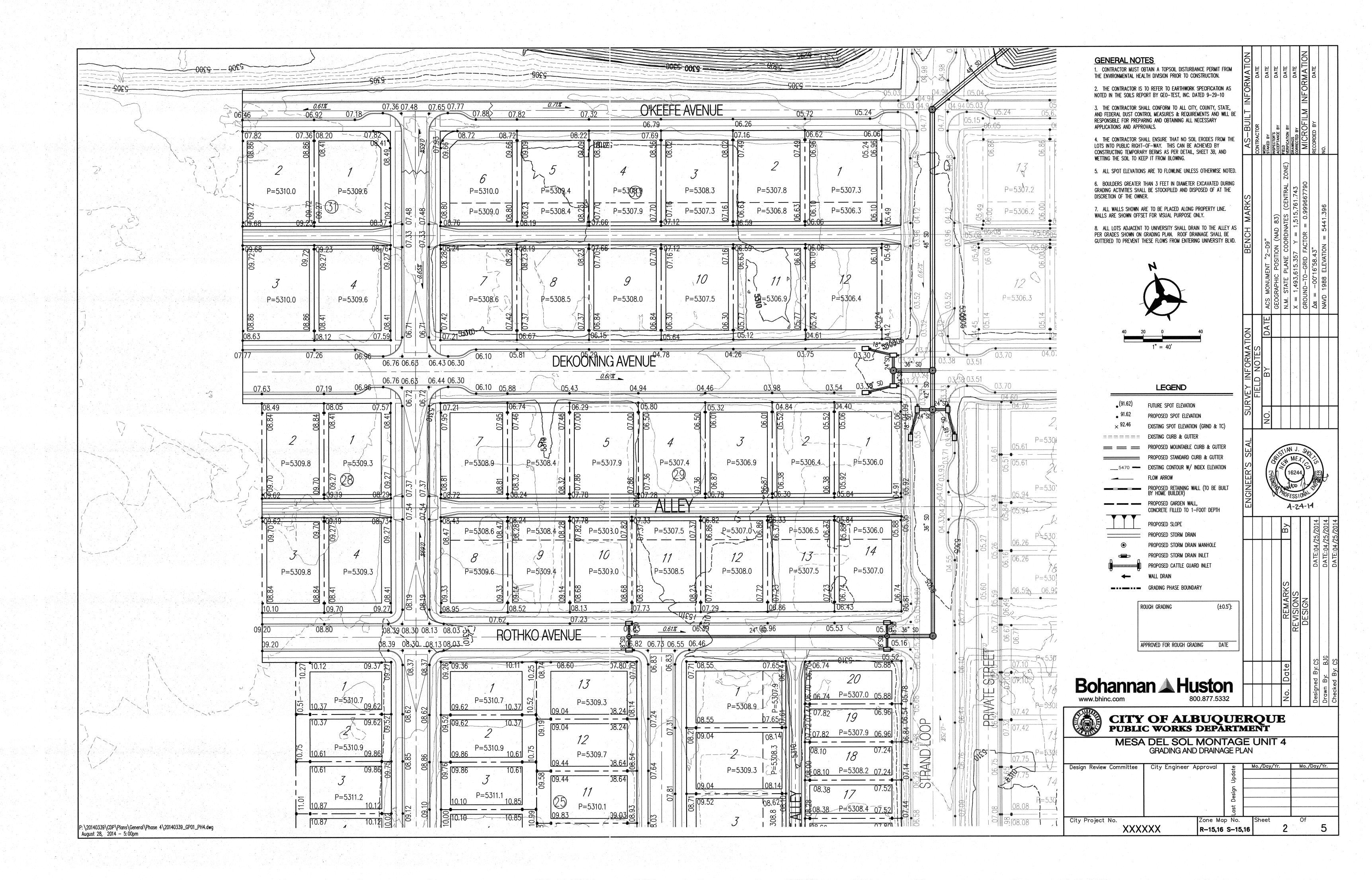
		61.055	015	0/5
ID	SIZE	SLOPE (%)	Q (cfs) ALLOWABLE	Q (cfs) ACTUAL
SDP1	48"	1.00%	143.8	122.8
SDP2	48"	1.00%	143.8	122.8
SDP3	42"	1.00%	100.6	69.8
SDP4	36"	1.00%	66.7	37.4
SDP5	36"	1.00%	66.7	37.4
SDP6	24"	1.80%	30.7	19.0
SDP7	36"	1.00%	66.7	53.0
SDP8	18"	1.40%	12.5	13.3
SDP9	24"	39.30%	141.7	26.5
SDP10	18"	1.40%	12.5	13.3
SDP11	24"	40.50%	143.9	26.5
SDP12	18"	1.20%	11.7	9.2
SDP13	24"	46.30%	153.9	16.2
SDP14	18"	1.20%	11.7	9.2
SDP15	24"	47.70%	156.3	16.2
SDP16	18"	43.70%	69.5	9.2
SDP17	18"	42.30%	68.3	9.2
SDP18	18"	10.40%	33.9	9.5
SDP19	18"	10.40%	33.9	9.5
SDP20	60"	0.85%	239.9	191.0
SDP21	60"	0.85%	239.9	191.0
SDP22	48"	0.85%	132.4	110.8
SDP23	42"	0.85%	92.8	73.2
SDP24	42"	0.85%	92.8	42.4
SDP25	36"	1.10%	70.8	23.8
SDP26	18"	7.80%	29.4	11.9
SDP27	18"	4.20%	21.6	11.9
SDP28	24"	18.40%	96.9	18.6
SDP29	18"	9.30%	32.0	9.3
SDP30	18"	8.80%	31.1	9.3
SDP31A	18"	0.75%	9.1	7.6
SDP31	24	56.40%	170.0	16.4
SDP32A	18"	0.75%	9.1	7.6
SDP32	24	2.15%	33.2	16.4
SDP33	24"		LETED	25.4
SDP34 SDP35	18"	50.00%	159.9 33.2	25.4 12.7
SDP35 SDP36	24"	2.00%	32.0	17.7
SDP37	48"	1.00%	143.6	80.2
	48"			
SDP38 SDP39	36"	1.00%	143.6 66.7	80.2 62.4
SDP39 SDP40	36"	1.00%	66.7	62.4
SDP40 SDP41	36"	1.00%	66.7	32.6
SDP41 SDP42	36"	1.10%	69.2	32.6
SDP42	24"	9.40%	69.4	16.3
SDP43 SDP44	18"	1.50%	12.8	10.3
SDP44 SDP45	18"	1.50%	12.8	10
SDP45	24"	9.10%	68.2	16.3
SDP47	18"	1.10%	11	8.9
SDP48	24"	47.50%	155.9	14.9
SDP49	18"	1.10%	111	8.9
SDP50	24"	45.90%	153	14.9
SDP51	18"	82.80%	95.6	8.9
SDP52	18"	79.60%	93.7	8.9

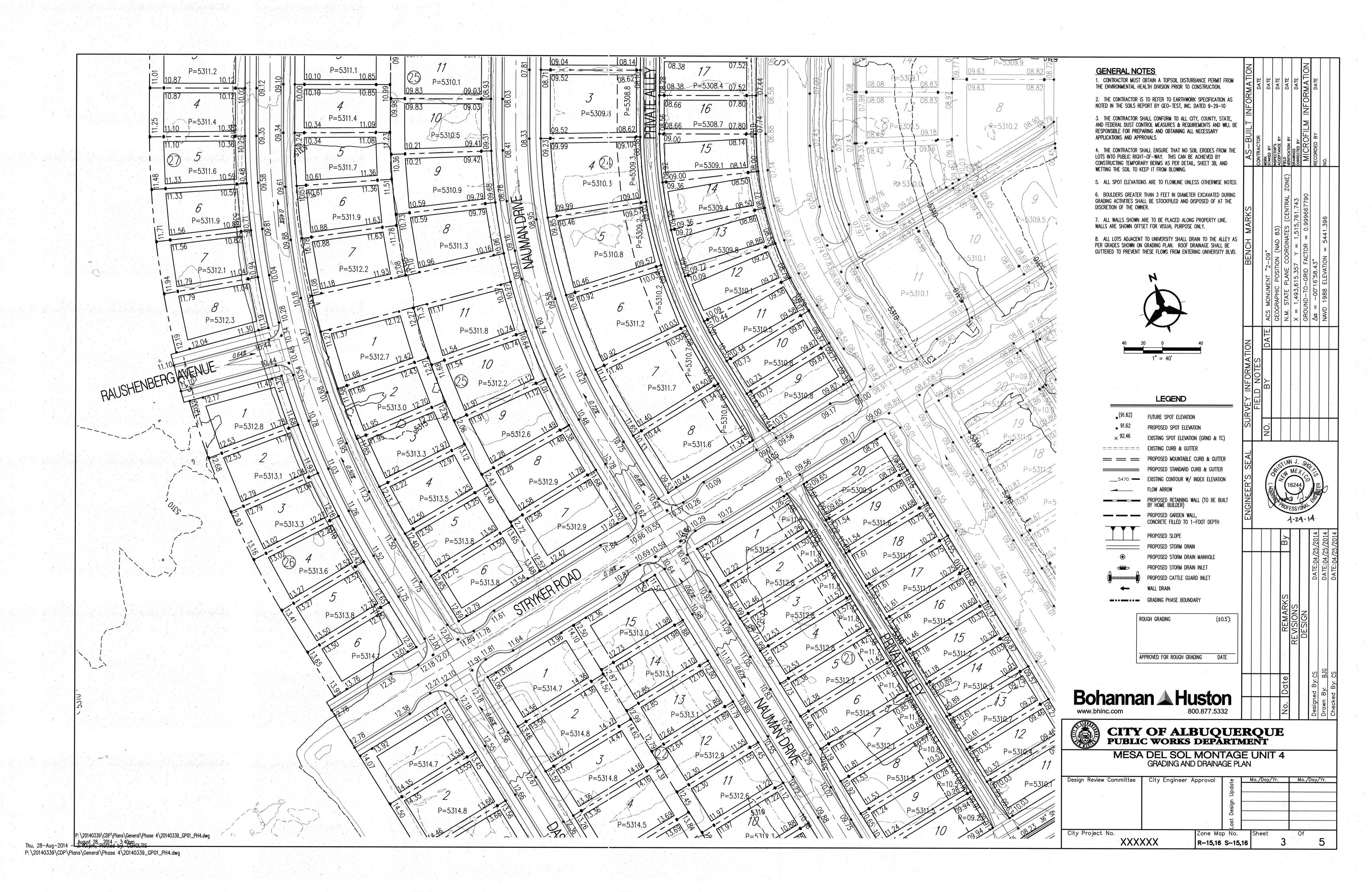
		301411	VIAINT OF TIVELT FLOV	V 3	
ID	STREET SLOPE	STREET FLOW DEPTH (ft)	STREET FLOW UPSTREAM OF INLET (cfs)	FLOW CAPTURED BY INLET (cfs)	STREET FLOW BYPASSING INLET (cfs)
IN1	0.60%	0.65	22.7	9.5	13.2
IN2	0.60%	0.65	22.7	9.5	13.2
IN3	0.60%	0.64	21.7	9.2	12.50
IN4	0.60%	0.64	21.7	9.2	12.50
IN5	SUMP	0.60	13.3	13.3	N/A
IN6	SUMP	0.60	13.3	13.3	N/A
IN7	0.75%	0.60	22.0	9.2	12.8
IN8	0.75%	0.60	22.0	9.2	12.8
IN9	0.75%	0.51	12.8	7.0	5.8
IN10	0.75%	0.51	12.8	7.0	5.8
IN11	SUMP	0.60	13.3	13.3	N/A
IN12	SUMP	0.60	13.3	13.3	N/A
IN13	0.60%	0.63	22.1	9.3	12.80
IN14	0.60%	0.63	22.1	9.3	12.80
IN15	0.50%	0.67	22.1	10.0	12.1
IN16	0.50%	0.67	22.1	10.0	12.10
IN17	0.50%	0.53	12.1	6.3	5.8
IN18	0.50%	0.53	12.1	6.3	5.80
IN19	0.50%	0.64	19.9	8.9	11.0
IN20	0.50%	0.64	19.9	8.9	11.0
IN21	0.50%	0.52	11.0	6.0	5.00
IN22	0.50%	0.52	11.0	6.0	5.00
IN23	0.50%	0.63	19.1	8.9	10.20
JN24	0.50%	0.63	19.1	8.9	10.20
IN25A	0.75%	0.59	18.9	7.6	11.30
IN25	0.75%	0.59	11.3	8.8	2.50
IN26A	0.75%	0.59	18.9	7.6	11.30
IN26	0.75%	0.59	11.3	8.8	2.50
IN27	DELETED				
IN28	SUMP	0.40	8.9	8.9	N/A
IN29	SUMP	0.51	17.7	17.7	N/A
N30	SUMP	0.40	8.9	8.9	N/A
IN31	SUMP	0.55	11.9	11.9	N/A
IN32	SUMP	0.55	11.9	11.9	N/A
					,

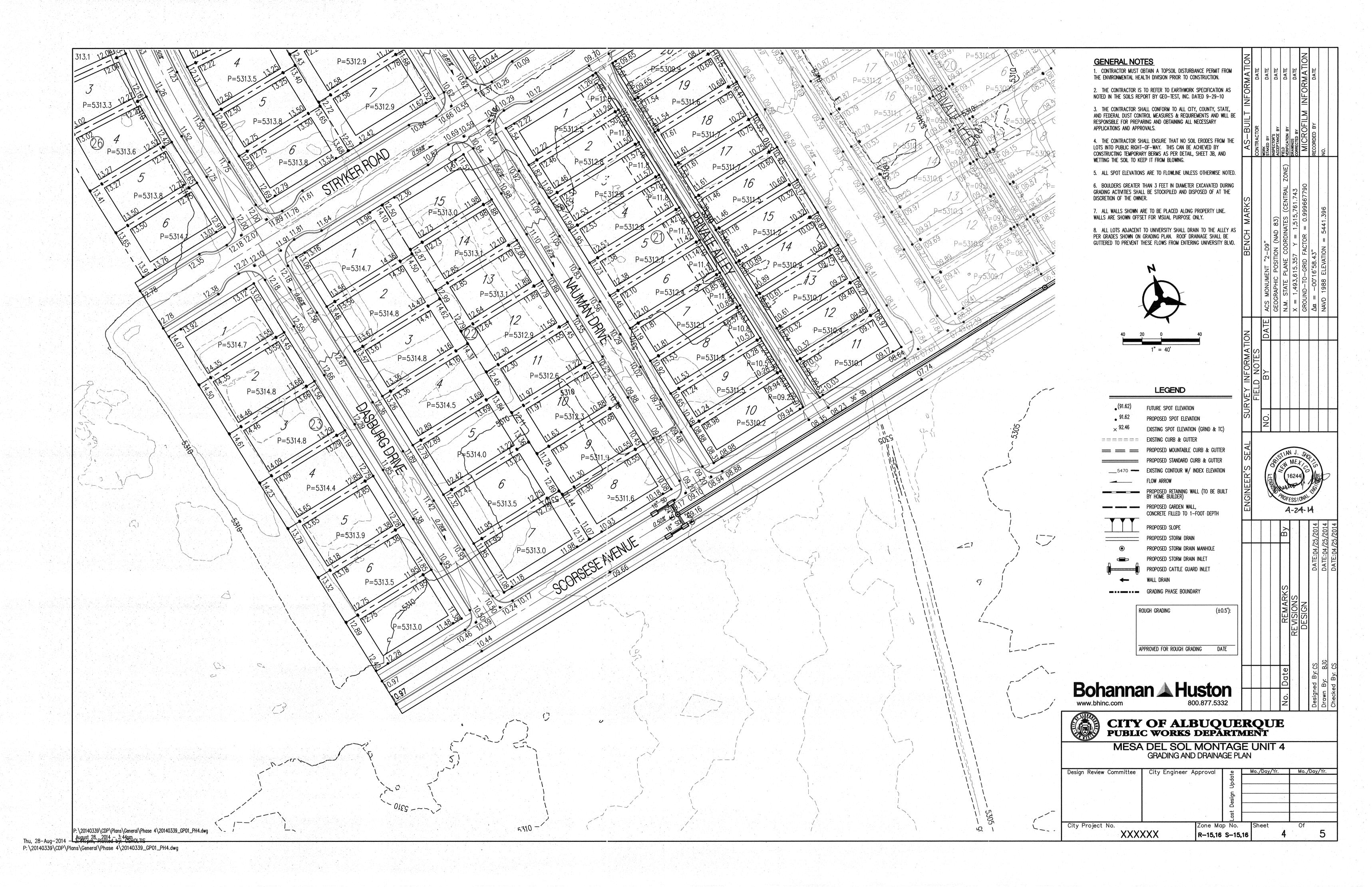
SUMMARY OF MANHOLES FLOWS

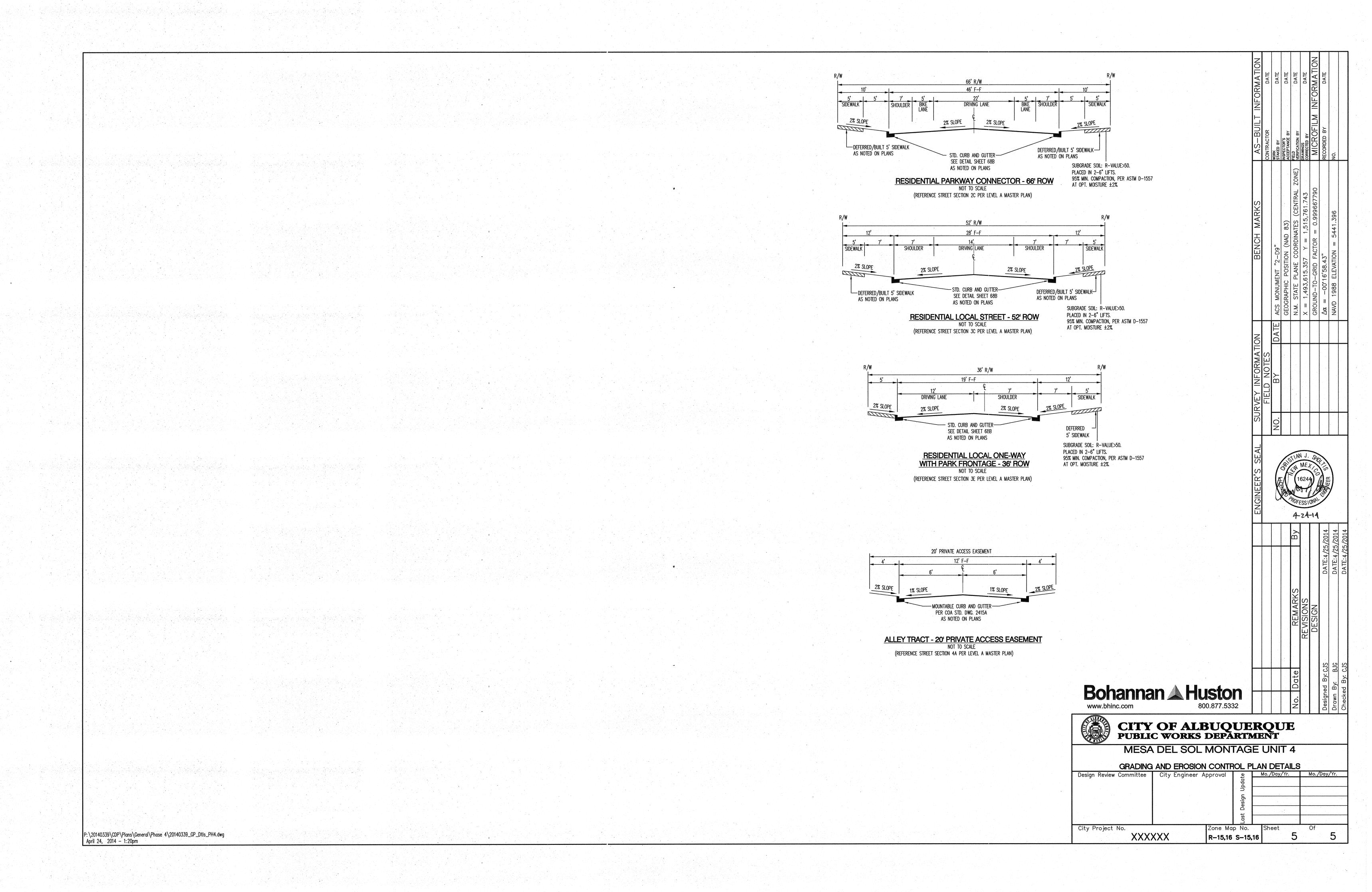

ID	STORM DRAIN FLOWRATE (cfs)
MH1	19.0
MH2	37.4
MH3	37.4
MH4	69.8
MH5	53.0
MH6	122.8
MH7	122.8
MH8	32.6
MH9	32.6
MH10	62.4
MH11	62.4
MH12	80.2
MH13	80.2
MH14	191.0
MH15	110.8
MH16	75.2
MH17	18.6
MH18	42.0
MH19	23.8
MH20	191.0




LEGEND PROPOSED STORM DRAIN PIPE PROPOSED STORM DRAIN MANHOLE ◎ PROPOSED STORM DRAIN INLET


EXHIBIT 8 TYPICAL PERMANENT STORM POND DETAIL




EXHIBIT 9 GRADING PLAN

