CITY OF ALBUQUERQUE

Planning Department Alan Varela, Director

Mayor Timothy M. Keller

November 5, 2024

Rick Beltramo NV5 Engineering 6501 Americas Parkway NE, Suite 400 Albuquerque, NM 87110

RE: Mesa Del Sol Self Storage 5500 Turing Dr. SE Grading and Drainage Plan Engineer's Stamp Date: 10/30/2024 Hydrology File: R16DA1004

Dear Mr. Beltramo:

PO Box 1293	Based upon the information provided in your submittal received 11/01/2024, the Grading & Drainage Plan is approved for a Grading Permit . The following conditions need to be addressed prior to approval of a Building Permit.
Albuquerque	 Provide reference to Civil Detail Sheet C-2.0 for Keynote No. 8, Pond N5 Cross Section, Sheet C-501. Include erosion protection along pond alignment to maintain capacity. Provide reference to Civil Detail Sheet C-2.0 for Keynote No. 7, Pond S8 Cross Section, Sheet C-501. Include erosion protection along pond wall alignments to maintain capacity.
NM 87103	 Provide sections through all external boundaries showing proposed retaining walls, garden walls, property/ROW lines, existing and proposed grades. In accordance with DPM Ch.22, section 5, part B. Grading and wall construction near the property line may not endanger or encroach upon adjacent property or constrain its use.
www.cabq.gov	 Provide cross-sections for the proposed retaining walls at the southeastern area of project and the proposed garden wall at western area of project adjacent to the proposed sidewalk.
	5. Please add a note in the cross sections, "Floodproof the retaining wall below the 100-year 10- day volume water surface elevation per the City's specifications."
	6. Provide erosion protection at all locations of proposed improvements and particularly at outfalls into existing ponds.
	7. Confirm that the pipe invert elevation discharging into the northern pond will function with the record contours shown. Over time, rainfall events and sediment may have reduced the capacity of the existing ponds.
	8. Provide current elevations at top and bottom of earthen ponds to demonstrate or confirm stormwater capacity of existing ponds to accommodate runoff into ponds per the stormwater Master Plan.
	9. The existing ponds should be completely developed for the 100-year 10-day storm and associated capacity, together with slope erosion protection and access barricades where needed.

CITY OF ALBUQUERQUE

Planning Department Alan Varela, Director

Mayor Timothy M. Keller

- 10. Per DMP, Part 6-11(D) Fencing Around Ponds: Fencing or similar barricade will prevent entry is required for private and public ponds where the water depth is 18 inches or greater unless side slopes are 3:1 (H:V) or flatter and the pond drains in 96 hours or less. Fence or barricade minimum height is to be 42 inches.
- 11. Please provide the Drainage Covenant with Exhibit A per Article 6-15(C) of the DPM. Please submit the original one-sided copies along with the \$25.00 recording fee check made payable to "Bernalillo County" to the Hydrology Section of Development Review Services on the Ground floor of Plaza de Sol.

As a reminder, if the project total area of disturbance (including the staging area and any work within the adjacent Right-of-Way) is 1 acre or more, then an Erosion and Sediment Control (ESC) Plan and Owner's certified Notice of Intent (NOI) is required to be submitted to the Stormwater Quality Engineer (Doug Hughes, PE, jhughes@cabq.gov, 505-924-3420) 14 days prior to any earth disturbance.

If you have any questions, please contact me at 505-924-3362 or richardmartinez@cabq.gov.

PO Box 1293

Sincerely,

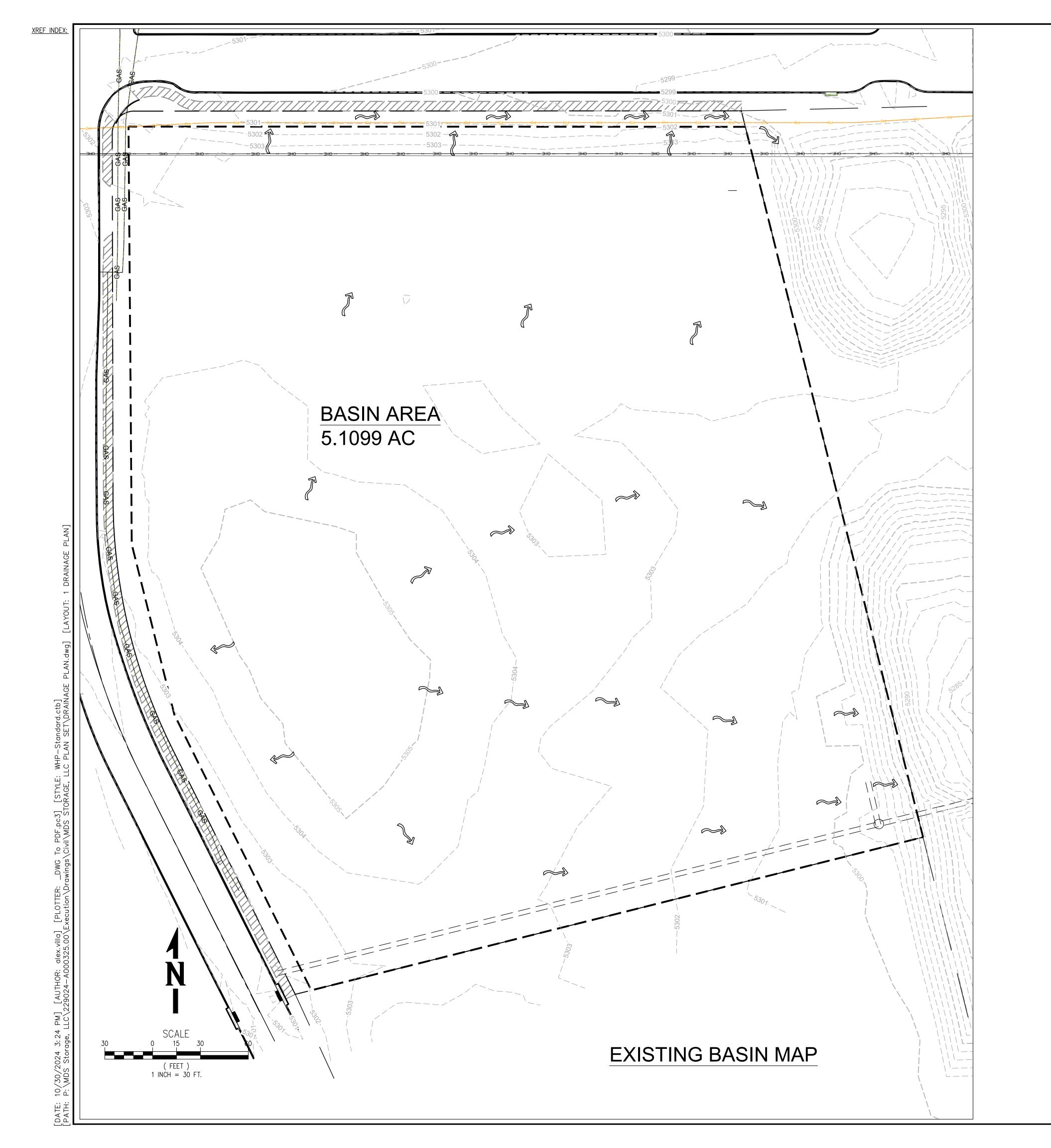
Albuquerque

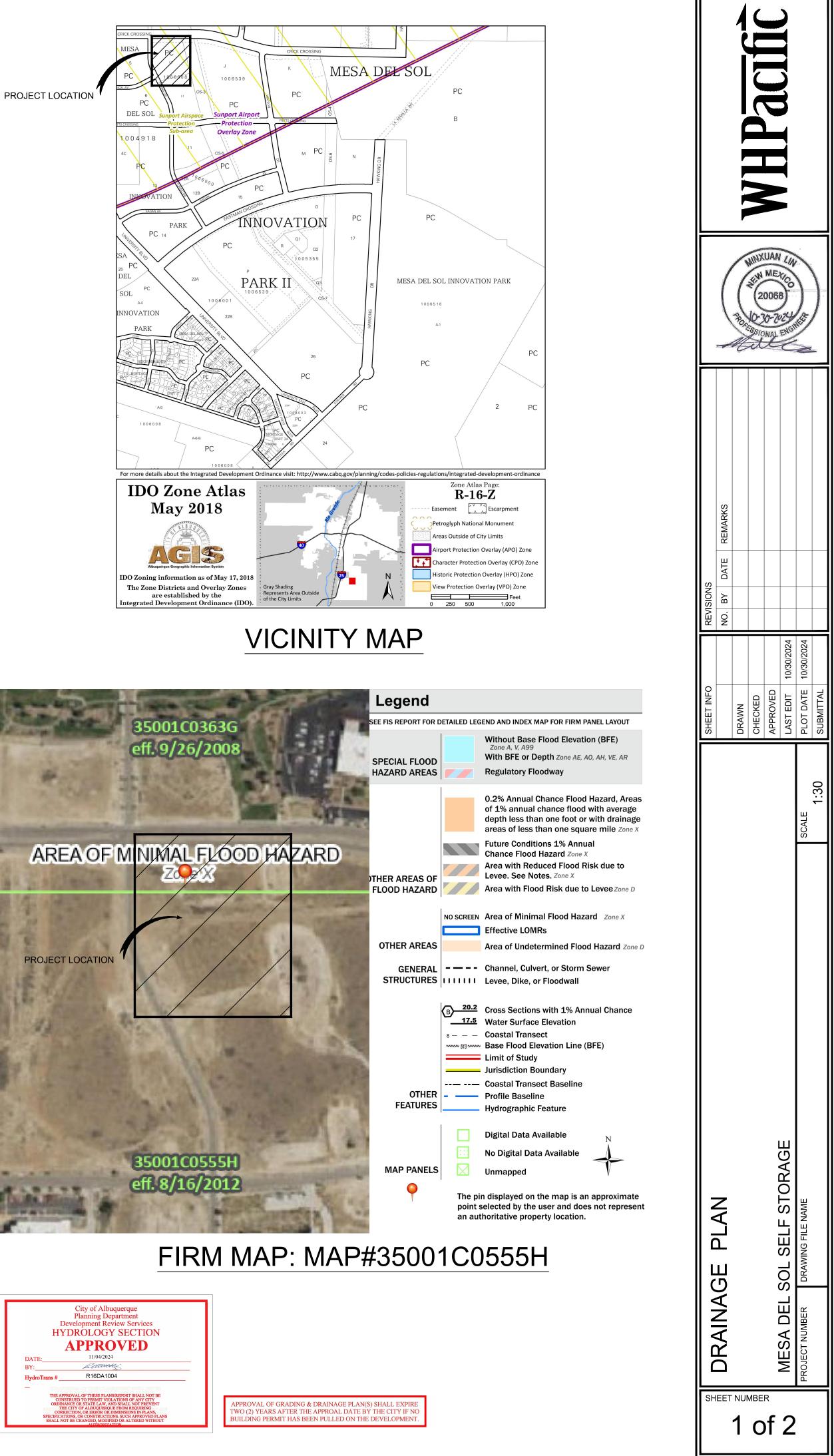
NM 87103

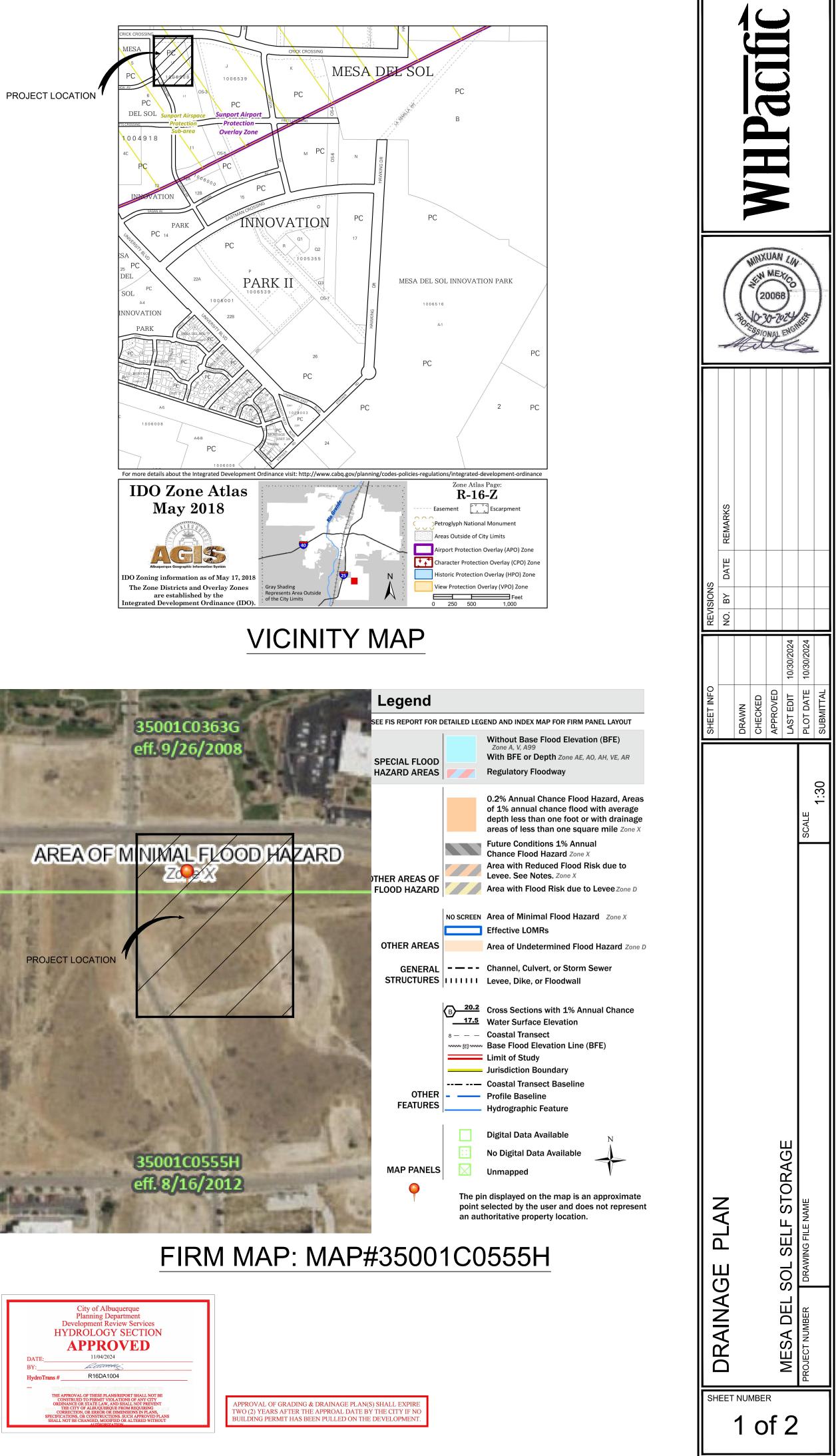
lilledt

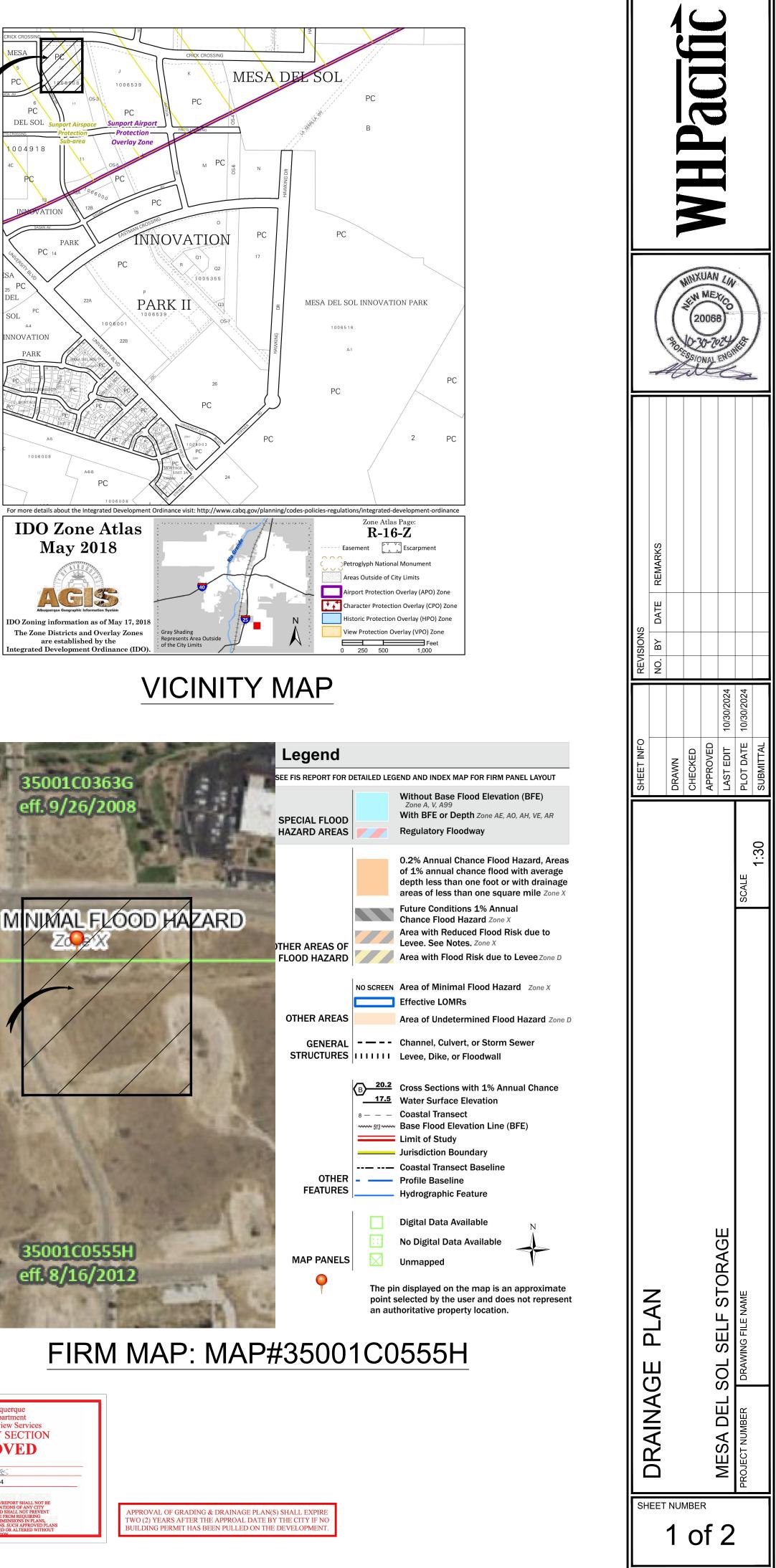
Richard Martinez, P.E. Senior Engineer, Hydrology Planning Department, Development Review Services

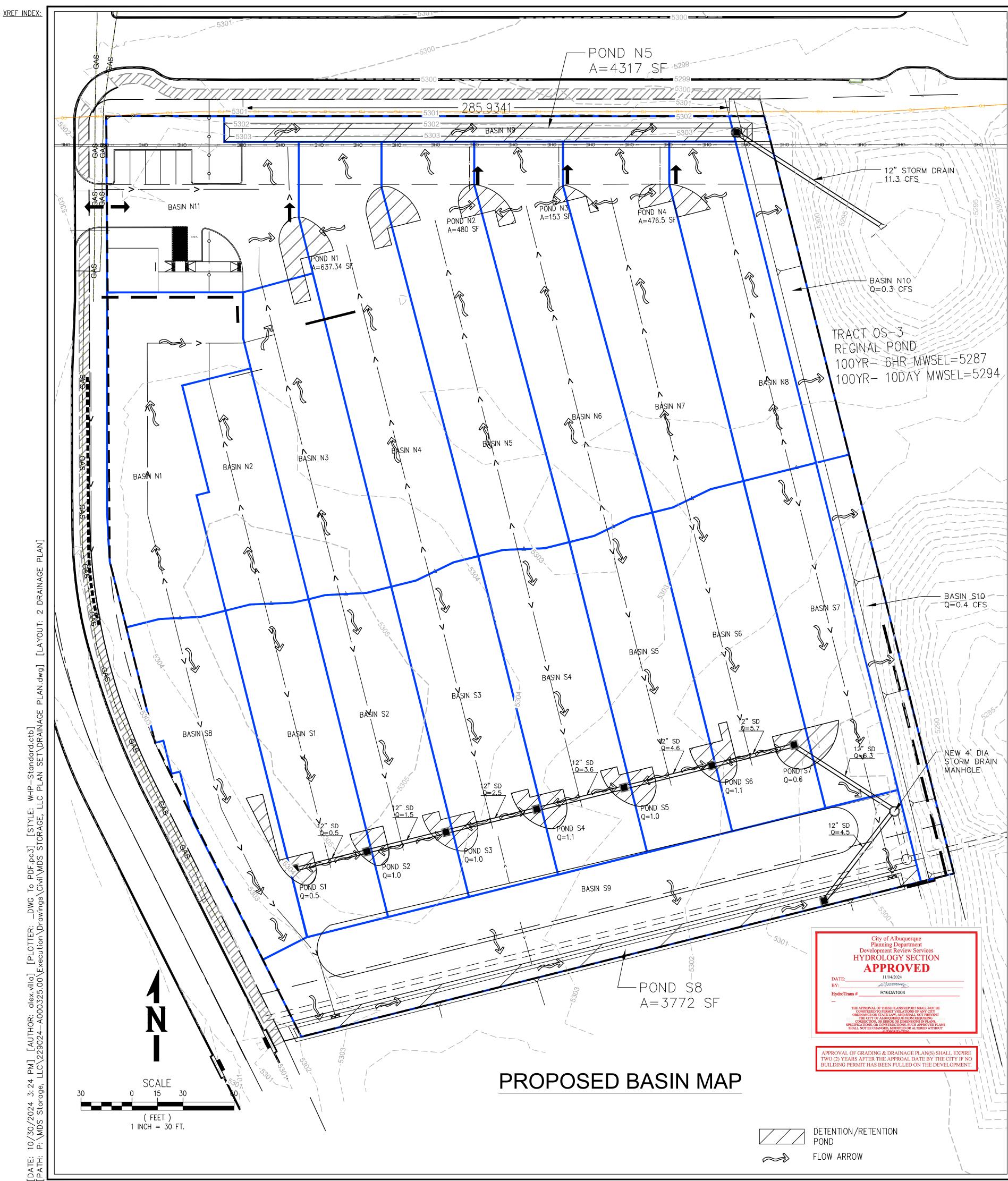
www.cabq.gov




City of Albuquerque


Planning Department Development & Building Services Division DRAINAGE AND TRANSPORTATION INFORMATION SHEET (REV 09/2015)


Project Title:	Building Permit #:	City Drainage #:
DRB#: EPC#:		Work Order#:
Legal Description:		
City Address:		
Engineering Firm:		Contact:
Address:		
Phone#: Fax#:		E-mail:
Owner:		Contact:
Address:		
Phone#: Fax#:		E-mail:
Architect:		Contact:
Address:		
Phone#: Fax#:		E-mail:
Other Contact:		Contact:
Address:		
Phone#: Fax#:		E-mail:
MS4/ EROSION & SEDIMENT CONTROL TYPE OF SUBMITTAL:ENGINEER/ ARCHITECT CERTIFICATIONCONCEPTUAL G & D PLANGRADING PLANGRADING PLANDRAINAGE MASTER PLANDRAINAGE REPORT PlanCLOMR/LOMRTRAFFIC CIRCULATION LAYOUT (TCL)TRAFFIC CIRCULATION LAYOUT (TCL)TRAFFIC DWDACT STUDY. (TIS)	PRELIMINAH SITE PLAN H XX SITE PLAN F FINAL PLAT SIA/ RELEAS FOUNDATIO GRADING PH SO-19 APPR QRADING PEH GRADING/ P	SE OF FINANCIAL GUARANTEE ON PERMIT APPROVAL ERMIT APPROVAL OVAL RMIT APPROVAL AD CERTIFICATION
TRAFFIC IMPACT STUDY (TIS) EROSION & SEDIMENT CONTROL PLAN (ESC)	WORK ORDE	
	CLOMR/LON	1K
OTHER (SPECIFY) IS THIS A RESUBMITTAL?: Yes No	PRE-DESIGN	MEETING CCIFY)
DATE SUBMITTED:		


COA STAFF: ELECTRONIC SUBMITTAL RECEIVED: ____

DRAINAGE MANAGEMENT PLAN TRACT I-2

OVERVIEW Tract I-2 is planned to be a storage facility including office building, utilizing a wide range of types and sizes of metal storage buildings, located on the 5.1-acre site. Tract I-2 is located at the intersection of Crick Avenue and Turing Drive. More specifically the site is adjacent to and south of Crick Avenue, and adjacent to and east of Turing Drive. The site has one main vehicular access point from Turing Drive, just south of the Crick Avenue intersection and an emergency only access point from Turing Drive at the far south end of the site. The project is within the Mesa Del Sol (MDS) Drainage Master Plan (DMP) hydrologic basin "DA1", consisting of 49.5 acres, generating 220.8 cfs (4.46 cfs/ac) and 356,897 cf (7,195 cf/ac) of runoff during the 10-year 6-hour storm event, and accommodates the 100-year 10-day storm volume. All runoff from Tract I-2 drains into a Regional Pond adjacent to and east of the site, Tract OS-3. In addition to the 100-year criteria the Regional Pond also accommodates the 100-year 10-day storm volume. Portions of the pond is constructed and operational. A public storm drain has been constructed as a part of the back—bone infrastructure improvement for the area. An existing 36" storm drain crosses Tract I—2 along the south boundary and is within a 30' wide public easement. The storm drain serves Tract I-2 and the Turing Drive and outfalls into the Regional Pond. A portion of the Regional Pond has been constructed along with the storm drain. The existing pond is temporary and will need to be expanded and graded to the ultimate Design.

ONSITE DRAINAGE PLAN Tract I-2 is 5.1 acres, generating a total of 22.8 cfs (Q100-year/6-hr storm event), which is the design storm for the onsite drainage. Below is a table providing the hydrologic design information. Hydrologically the site is divided in 2 parts, the north half and the south half. The north half of the project will drain to various several small median retention/detention ponds, designed to retain on-site for water harvesting. Storm water flows from the alley gutters into the ponds. Once the ponds a minimum elevation, water begins to overflow from the ponds, and drain by surface flow north to Pond N5. Pond N5 also provides retention and detention ponding. Ultimately all the minimum ponding requirements are provided. A storm drain system collects and discharges the runoff, sized for the 100-year design storm of 11.3 cfs. Pond N5 is a landscaped area and also median takes benefit of Water Harvesting. A small portion of the site drains directly to the east, Tract OS-3. This area is a slope area. The north basin discharges 11.6 cfs.

The south half of the project will drain to various several small retention/detention ponds (Pond S1 thru pond S7), designed to retain on-site for "Water Harvesting" purposes. Storm water flows from the alley gutters into the ponds. Once the ponds fill up and reach a minimum elevation, water begins to flow into storm drain inlets, ponding beyond that elevation is Detention ponding. The downstream storm drain system is design to collect and convey the entire 100-year design storm. The ponding system the south storm drain connects to the existing 24 storm drain and discharges to the Regional Pond. A small portion of the site drains directly to the east, Tract 0S-3. Tract S10 is a slope area.

Areas south of Ponds S1 thru S7 drain by surface flow to Pond S8, located adjacent to the south boundary. Pond S8 also retains and detains storm water for the minimum retention volumes required and provide Water Harvesting opportunities. Detention ponding then discharges to a storm drain outlet that also connects to the existing 24" storm drain, ultimately discharging to the Regional Pond. The south basins combined discharge 11.3 cfs (100-year storm event).

REGIONAL POND (Tract OS-3) Tract I-2 does not propose constructing improvements or expanding the Regional Pond as a part of this project directly. Tract Os-3, the Regional Pond is a shared responsibility among 50 acres of land and multiple landowners. Due to ownership issues and final design criteria, the Regional Pond is not ready for final design. Therefore, Tract I-2 proposes to go forward with the project while the required planning, coordination and final design of the Regional Pond can be properly provided. In the interim Tract I-2 proposes to provide a Financial Guarantee for Tract I-2s shared responsibility of Tract I-2 for the Regional Pond

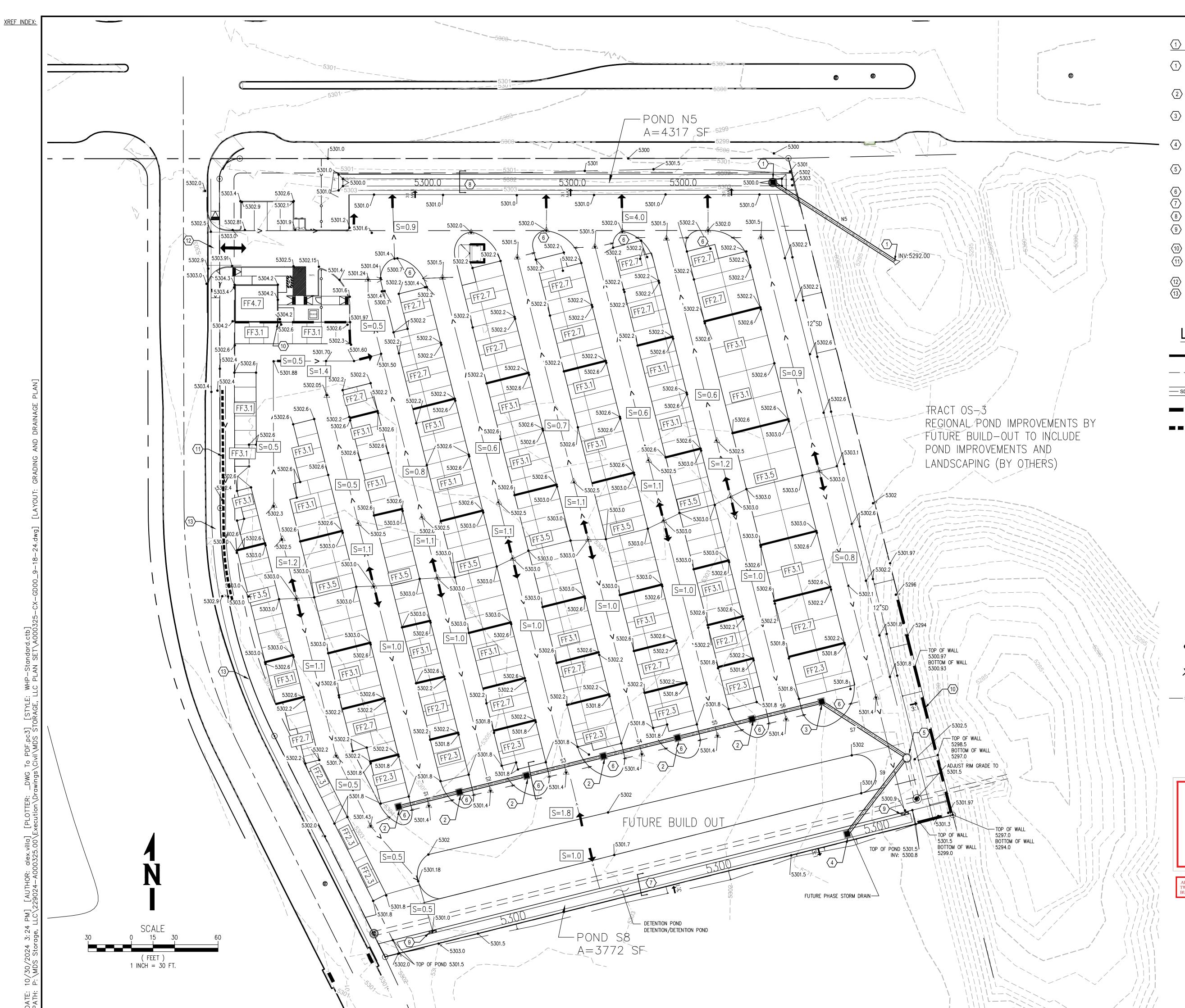
DR/	NAGEAREA Ar	rea	Area	La	nd Treatment			Q(100)/AC	Q(100)	V(100)6hour	V(100)10day	Total Volume	
	ID (S	iQ. FT.)	(AC.)	Α	B C		D	(cfs/ac)	(cfs)	(CF)	(CF)	Provided (CF)	
	DA1	2,156,475	49.5059	0.0%	10.0%	0.0%	90.0%	4.4	5 220.8	356,897		615.674	765,696
	Tract I-2	222,587	5.1099	0.0%	10.0%	0.0%				,		63,549	79,034
ct I-2 North	PONDHYDRAU				36								
act 1-2 NOITH	BOTTOM		TOP	TOP	AVERAGE		DEPTH	VOLUME			YDROLOGY	BASIN VOLUME(cf	1
	Area (sf)		Area (sf)	Elev. (ft)	AREA(ft)		DEFIN D(ft)	(cf)	BAS		NAREA(sf)	0.5" REQUIRE	
Median Pond N1	834	• •	834	5302.5	834		0.70	• •	BASIN N1		12222	509	9
Median Pond N2	476		476	5302.5	476		0.70		BASIN N2		6526	272	
Median Pond N3	124	5301.5	124	5302.5	124		0.70	87	BASIN N3		9467	394	1
Median Pond N4	468	5301.5	468	5302.5	468		0.70	328	BASIN N4		14160	590)
			\	/OLUMEPRO	MDED(cf)			1,331		-	42,375	1,766	Subtotal
									BASIN N5		13826	576	3
									BASIN N6		12793	533	3
									BASIN N7		12835	535	
									BASIN N8		10566	440	
									BASIN N9		4569	190	
									BASIN N10		2758	115	
									BASIN N11		12634	526	
											69,981		Subtotal
Pond N5	2781	5300.5	4725	5301.5	3753.0		1.0	-,			112,356	4,682	Total
						VOLUM	EPROVIDED (cf)	5,084	<u>[OK]</u>		2.5793		
							REQUIRED(cf)	4,682					
						CHE	СК [ОҚ]		CHECK		222,587 SF		
									TOTALS		5.1099 ACR	ES	
act I-2 South	PONDHYDRA	ULICS 0.5" F	ETAINEDV	OLUMEANA	LYSIS								
	вотто	M BOTTO	и то	P TC	OP AVERAGI		D	EPTH VOL	UME BASIN		HYDROLOO	GY BASIN VO	LUME(cf)
	Area (s	f) Rev (fi) Area (st	f) 🛛 🗄 ev. (*	ft) AREA(ft			D(ft)	(cf)		BASIN AREA (EQUIRED COMMENT

	BOTTOM	BOTTOM	TOP	TOP	AVERAGE		BEAL	VOLUME	BASIN	HYDROLOGY	BASIN VOLUME(cf)	
	Area (sf)				AREA(ft)		D(ft)	(cf)		BASIN AREA(sf)		
Median Pond S1	121	5300.8	296		209		0.70		BASIN S1	10221	426	
Median Pond S2	163	5300.8	352	5301.8	258		0.70	180	BASIN S2	9892	412	
Median Pond S3	283	5300.8	522	5301.8	403		0.70	282	BASIN S3	10165	424	
Median Pond S4	283	5300.8	517	5301.8	400		0.70	280	BASIN S4	11036	460	
Median Pond S5	283	5300.8	522	5301.8	403		0.70	282	BASIN S5	10166	424	
Median Pond S6	283	5300.8	533	5301.8	408		0.70	286	BASIN S6	11291	470	
Median Pond S7	419	5300.8	702	5301.8	561		0.70	392				
SUM						VOLUME PROVIDED (cf)		1,848		62,771	2,615	
									BASIN S7	10686	445	
									BASIN S8	10298	429	
									BASIN S9	22796		Pond and Future Development
									BASIN S10	3680	0	Drains Directly to Regional Pon
										47,460	1,824	
POND S8	1476	5299.90	3750	5300.9	2613		1.0	2,613				
	Detentio	n Surface =	5301.5	Retention	5300.9	VOLUME PROVIDED (cf)		4,461	[OK]	110,231	SF	Maximum depth of pond 1.5'
				Surface		REQUIRE	D(cf)	4,440		2.5306	ACRES	

	AREA	AREA	q	
BASINID	(sf)	(acre)	(cfs/ac)	
BASIN S1	10221	0.2346	4.46	
BASIN S2	9892	0.2271	4.46	
BASIN S3	10165	0.2334	4.46	
BASIN S4	11036	0.2534	4.46	
BASIN S5	10166	0.2334	4.46	
BASIN S6	11291	0.2592	4.46	
BASIN S7	10686	0.2453	4.46	
BASIN S8	10298	0.2364	4.46	
BASIN S9	22796	0.5233	4.46	
BASIN S10	3680	0.0845	4.46	
SUBTOTALSOUTH	110231	2.5306		
TOTAL NORTH AND SOUTH	222,587	5.1099		
	VEDTS			1 ei

SOUTH BASINS

BASIN HYDROLOGY 100 YEAR EVENT

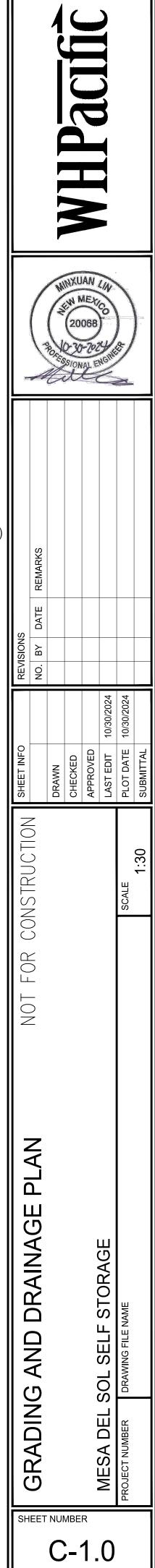

	DESIGN	COMBINED	INVERTS		DELTA	LENGTH	SLOPE	PIPESIZE	AREA	VELOCITY	Dn	COMPUTED	
				DOWNSTREAM		(FT.)			1		Normal Depth*		COMMENTS
PIPE S1	0.5		5298.7	5298.5		· /	• •	12	1.570				12" HDPE Pipe Between Pond S1 and S2
PIPES2	1.0		5298.5					12					12" HDPE Pipe Between Pond S1 and S2
PIPE S3	1.0	2.5	5298.2	5297.7	0.55	55.C	0.010	12	1.570	0.64	0.625	2.8	12" HDPE Pipe Between Pond S3 and S4
PIPES4	1.1	3.6	5297.7	5296.6	1.08	54.C	0.020	12	1.570	0.70	0.625	4.0	12" HDPE Pipe Between Pond S4 and S5
PIPE S5	1.0	4.6	5296.6			54.0	0.035	12	1.570	0.64	0.750	5.8	12" HDPE Pipe Between Pond S5 and S6
PIPE S6	1.1		5294.7	5293.1		47.0	0.041	12		0.70	0.750	5.7	HDPE Pipe Between Pond S6 and S7
PIPE S7	0.6		5293.1	5286.35		73.0							12" HDPE Pipe Between Pond S7 and Proposed SD MH, Invert= 86.35
PIPE S8	4.5	4.5	5298.0	5288.35	9.65	64.0	0.151	12	1.570	2.87	0.750		12" HDPE Pipe Between Pond S8 and Proposed SD MH, Invert=88.35).
PIPEN5	11.2	. 11.2	5298.0	5292.00	6.00	105.0	0.057	15	1.963	5.71	0.940		Between Pond S8 and connection with ex. SD MH, soffet equals soffet of existing 24" SD with invert of 85.35
PIPE C			GRATE DESIG		COMPUTED H (ft)		OUTLET PIPE DI ORIFICE EQUAT		AREA (SQ. FT.)	VELOCITY (FTPERSEC)	D COMPUTED	DREQ'D (ft))	COMMENTS
PIPESI	0.5	• • •	Q=2.8	xL(ft)xH(ft)**1.5	.,	0.5		12	. ,	0.32	. ,		12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet
PIPES2	1.0	4.0	Q=2.8	xL(ft) xH(ft)**1.5	0.2	0.5		12	1.570	0.64	0.500	1.99	12" Nyloplast Inlet with 12"x12" grate and 12" HDPEPipe outlet
PIPES3	1.0	4.0	Q=2.8	xL(ft)xH(ft)**1.5	0.2	0.5		12	1.570	0.64	0.625	2.81	12" Nyloplast Inlet with 12"x12" grate and 12" HDPEPipe outlet
PIPES4	1.1	4.0	Q=2.8;	xL(ft)xH(ft)**1.5	0.2	0.5		12	1.570	0.70	0.625	3.98	12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet
PIPE S5		10	0-2 0	1 (0) 11(0)++4 5									
PIPE 30	1.0	4.0	Q-2.0)	xL(ft)xH(ft)**1.5	0.2	0.5		12	1.570	0.64	0.750	4.63	12" Nyloplast Inlet with 12"x12" grate and 12" HDPEPipe outlet
PIPE S6	1.0 1.1	4.0		xL(ft)xH(ft)**1.5 xL(ft)xH(ft)**1.5				12 12		0.64			12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet
	1.0 1.1 0.6	4.0	Q=2.8	() ()	0.2				1.570		0.750	5.70	

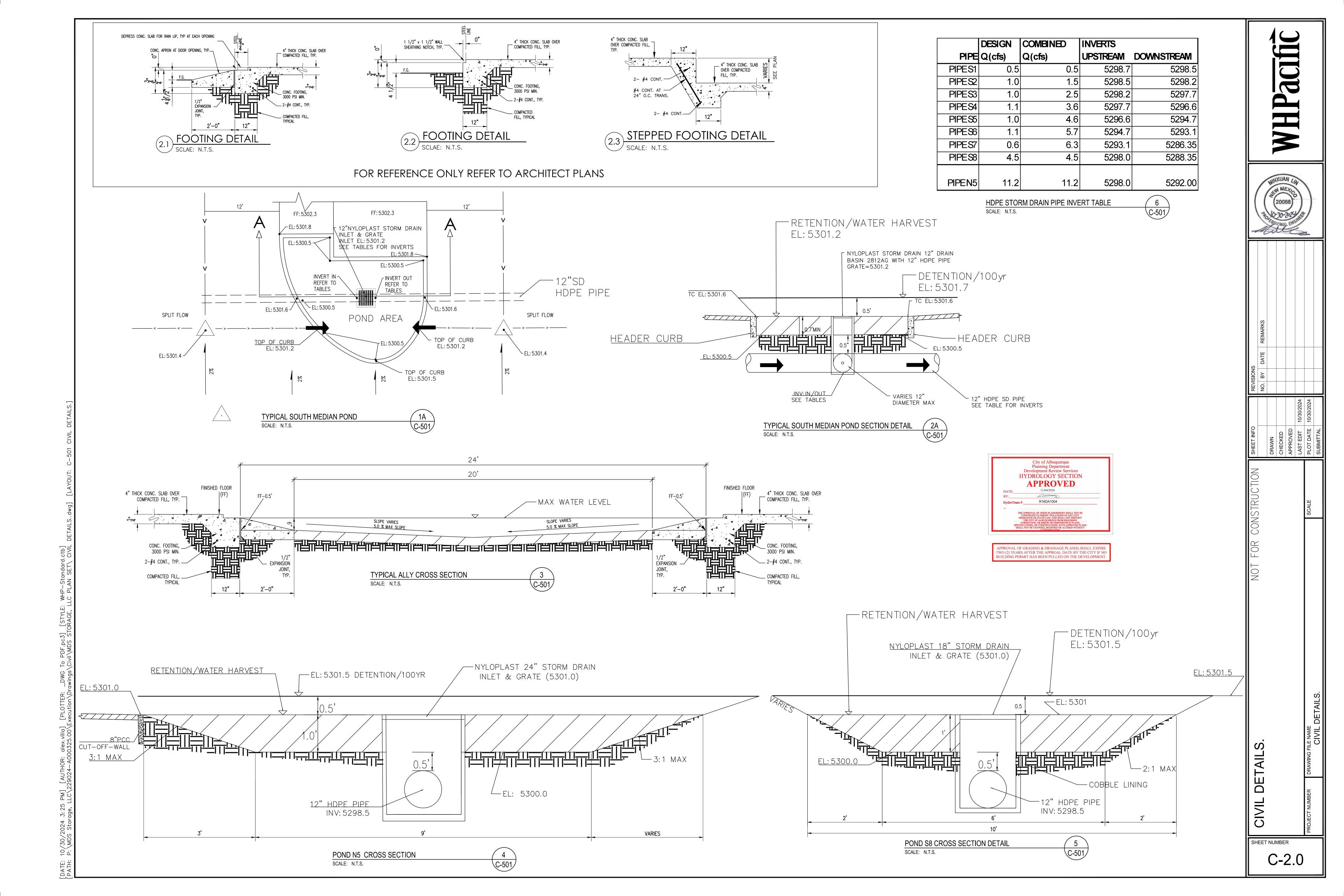
	DESIGN	COMBINED	INVERTS		DELTA	LENGTH	SLOPE	PIPESIZE	AREA	VELOCITY	Dn	COMPUTED	
PIPE		Q(cfs)		DOWNSTREAM		(FT.)				(FTPERSEC)	Normal Depth*		COMMENTS
PIPES1	0.5			5298.5		45.0	0.005	12	. ,	0.32	0.500	2.0	12" HDPE Pipe Between Pond S1 and S2
PIPES2	1.0	1.5	5298.5	5298.2	0.24	49.0	0.005	12	1.570	0.64	0.500	2.0	12" HDPE Pipe Between Pond S1 and S2
PIPES3	1.0	2.5	5298.2	5297.7	0.55	55.0	0.010	12	1.570	0.64	0.625	2.8	3 12" HDPE Pipe Between Pond S3 and S4
PIPES4	1.1		5297.7	5296.6		54.0		12		0.70		4.C	0 12" HDPE Pipe Between Pond S4 and S5
PIPE S5	1.0		5296.6		1.89	54.0	0.035	12		0.64		5.8	3 12" HDPE Pipe Between Pond S5 and S6
PIPE S6	1.1		5294.7	5293.1	1.65	47.0		12		0.70			7 HDPE Pipe Between Pond S6 and S7
PIPE S7	0.6		5293.1	5286.35		73.0	0.092	12		0.38	0.750		5 12" HDPE Pipe Between Pond S7 and Proposed SD MH, Invert= 86.35
PIPE S8	4.5	4.5	5298.0	5288.35	9.65	64.0	0.151	12	1.570	2.87	0.750	10.9	9 12" HDPE Pipe Between Pond S8 and Proposed SD MH, Invert=88.35).
													Between Pond S8 and connection with ex. SD MH, soffet equals soffet of existing 24" SD
PIPEN5	11.2	11.2	5298.0	5292.00	6.00	105.0	0.057	15	1.963	5.71	0.940	13.3	3 with invert of 85.35
	DESIGN	PERIMETER	GRATE DESIG	N	COMPUTED H	USEH	OUTLET PIPE DE	ESIGN	AREA	VELOCITY	DCOMPUTED	DREQ'D	
DIDE													
rirq	Q(cfs)	L=4xl (ft)	ORIFICEEQU	ATION	(ft)	(ft)	ORIFICEEQUAT	ION	(SQ. FT.)			(ft))	COMMENTS
	Q(cfs) 0.5	L=4xl (ft) 4.0		ATION ∢L(ft) x H(ft)**1.5	• /	(ft) 0.5		TON 12	· ,		(ft)	. ,,	COMMENTS 9 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet
PIPESI	· /	()	Q=2.8>		0.1	()			1.570	(FTPERSEC)	(ft) 0.500	1.99	
PIPES1 PIPES2	0.5	4.0	Q=2.8) Q=2.8)	<l(ft) h(ft)**1.5<="" td="" x=""><td>0.1 0.2</td><td>0.5</td><td></td><td>12</td><td>1.570 1.570</td><td>(FT PER SEC) 0.32</td><td>(ft) 0.500 0.500</td><td>1.99 1.99</td><td>12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet</td></l(ft)>	0.1 0.2	0.5		12	1.570 1.570	(FT PER SEC) 0.32	(ft) 0.500 0.500	1.99 1.99	12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet
PIPESI PIPES2 PIPES3	0.5 1.0	4.0 4.0	Q=2.8) Q=2.8) Q=2.8)	xL(ft) x H(ft)**1.5 xL(ft) x H(ft)**1.5	0.1 0.2	0.5		12 12	1.570 1.570 1.570	(FTPERSEC) 0.32 0.64	(ft) 0.500 0.500 0.625	1.99 1.99 2.81	12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 9 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet
PIPES1 PIPES2 PIPES3 PIPES4	0.5 1.0 1.0	4.0 4.0 4.0	Q=2.8) Q=2.8) Q=2.8) Q=2.8)	xL(ft) x H(ft)**1.5 xL(ft) x H(ft)**1.5 xL(ft) x H(ft)**1.5	0.1 0.2 0.2 0.2	0.5 0.5 0.5		12 12 12	1.570 1.570 1.570 1.570 1.570	(FTPERSEC) 0.32 0.64 0.64	(ft) 0.500 0.500 0.625 0.625	1.99 1.99 2.81 3.98	12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet
PIPESS PIPESS PIPESS PIPESS PIPESS	0.5 1.0 1.0 1.1	4.0 4.0 4.0 4.0 4.0	Q=2.8) Q=2.8) Q=2.8) Q=2.8) Q=2.8) Q=2.8)	<l(ft) h(ft)**1.5<br="" ×=""><l(ft) h(ft)**1.5<br="" ×=""><l(ft) h(ft)**1.5<br="" ×=""><l(ft) h(ft)**1.5<="" td="" ×=""><td>0.1 0.2 0.2 0.2 0.2 0.2</td><td>0.5 0.5 0.5 0.5</td><td></td><td>12 12 12 12 12</td><td>1.570 1.570 1.570 1.570 1.570 1.570</td><td>(FT PERSEC) 0.32 0.64 0.64 0.70</td><td>(ft) 0.500 0.500 0.625 0.625 0.625 0.750</td><td>1.99 1.99 2.81 3.98 4.63</td><td>12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 8 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet</td></l(ft)></l(ft)></l(ft)></l(ft)>	0.1 0.2 0.2 0.2 0.2 0.2	0.5 0.5 0.5 0.5		12 12 12 12 12	1.570 1.570 1.570 1.570 1.570 1.570	(FT PERSEC) 0.32 0.64 0.64 0.70	(ft) 0.500 0.500 0.625 0.625 0.625 0.750	1.99 1.99 2.81 3.98 4.63	12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 8 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet
PIPES2 PIPES3 PIPES4 PIPES5	0.5 1.0 1.0 1.1 1.1	4.0 4.0 4.0 4.0 4.0 4.0	Q=2.8) Q=2.8) Q=2.8) Q=2.8) Q=2.8) Q=2.8)	<l(ft) h(ft)**1.5<br="" ×=""><l(ft) h(ft)**1.5<br="" ×=""><l(ft) h(ft)**1.5<br="" ×=""><l(ft) h(ft)**1.5<br="" ×=""><l(ft) h(ft)**1.5<="" td="" ×=""><td>0.1 0.2 0.2 0.2 0.2 0.2</td><td>0.5 0.5 0.5 0.5 0.5</td><td></td><td>12 12 12 12 12 12</td><td>1.570 1.570 1.570 1.570 1.570 1.570</td><td>(FT PER SEC) 0.32 0.64 0.64 0.70 0.64</td><td>(ft) 0.500 0.500 0.625 0.625 0.625 0.750</td><td>1.99 1.99 2.81 3.98 4.63</td><td>12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet</td></l(ft)></l(ft)></l(ft)></l(ft)></l(ft)>	0.1 0.2 0.2 0.2 0.2 0.2	0.5 0.5 0.5 0.5 0.5		12 12 12 12 12 12	1.570 1.570 1.570 1.570 1.570 1.570	(FT PER SEC) 0.32 0.64 0.64 0.70 0.64	(ft) 0.500 0.500 0.625 0.625 0.625 0.750	1.99 1.99 2.81 3.98 4.63	12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet
PIPESI PIPESI PIPESI PIPESI PIPESI PIPESI	0.5 1.0 1.0 1.1 1.1 1.0 1.1	4.0 4.0 4.0 4.0 4.0 4.0 4.0	Q=2.8) Q=2.8) Q=2.8) Q=2.8) Q=2.8) Q=2.8)	<l(ft) h(ft)**1.5<br="" ×=""><l(ft) h(ft)**1.5<br="" ×=""><l(ft) h(ft)**1.5<br="" ×=""><l(ft) h(ft)**1.5<br="" ×=""><l(ft) h(ft)**1.5<br="" ×=""><l(ft) h(ft)**1.5<="" td="" ×=""><td>0.1 0.2 0.2 0.2 0.2 0.2</td><td>0.5 0.5 0.5 0.5 0.5 0.5 0.5</td><td></td><td>12 12 12 12 12 12 12 12</td><td>1.570 1.570 1.570 1.570 1.570 1.570 1.570</td><td>(FTPERSEC) 0.32 0.64 0.64 0.70 0.64 0.70</td><td>(ft) 0.500 0.625 0.625 0.750 0.750</td><td>1.99 1.99 2.81 3.96 4.63 5.70</td><td>12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 312" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 312" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 312" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 312" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 312" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet Between Pond S7 and connection with ex. SD MH, soffet equals soffet of existing 24" SD</td></l(ft)></l(ft)></l(ft)></l(ft)></l(ft)></l(ft)>	0.1 0.2 0.2 0.2 0.2 0.2	0.5 0.5 0.5 0.5 0.5 0.5 0.5		12 12 12 12 12 12 12 12	1.570 1.570 1.570 1.570 1.570 1.570 1.570	(FTPERSEC) 0.32 0.64 0.64 0.70 0.64 0.70	(ft) 0.500 0.625 0.625 0.750 0.750	1.99 1.99 2.81 3.96 4.63 5.70	12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 312" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 312" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 312" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 312" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 312" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet Between Pond S7 and connection with ex. SD MH, soffet equals soffet of existing 24" SD
PIPES2 PIPES3 PIPES4 PIPES5	0.5 1.0 1.0 1.1 1.1	4.0 4.0 4.0 4.0 4.0 4.0 4.0	Q=2.8) Q=2.8) Q=2.8) Q=2.8) Q=2.8) Q=2.8)	<l(ft) h(ft)**1.5<br="" ×=""><l(ft) h(ft)**1.5<br="" ×=""><l(ft) h(ft)**1.5<br="" ×=""><l(ft) h(ft)**1.5<br="" ×=""><l(ft) h(ft)**1.5<="" td="" ×=""><td>0.1 0.2 0.2 0.2 0.2 0.2</td><td>0.5 0.5 0.5 0.5 0.5</td><td></td><td>12 12 12 12 12 12</td><td>1.570 1.570 1.570 1.570 1.570 1.570 1.570</td><td>(FT PER SEC) 0.32 0.64 0.64 0.70 0.64</td><td>(ft) 0.500 0.625 0.625 0.750 0.750</td><td>1.99 1.99 2.81 3.96 4.63 5.70</td><td>12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet</td></l(ft)></l(ft)></l(ft)></l(ft)></l(ft)>	0.1 0.2 0.2 0.2 0.2 0.2	0.5 0.5 0.5 0.5 0.5		12 12 12 12 12 12	1.570 1.570 1.570 1.570 1.570 1.570 1.570	(FT PER SEC) 0.32 0.64 0.64 0.70 0.64	(ft) 0.500 0.625 0.625 0.750 0.750	1.99 1.99 2.81 3.96 4.63 5.70	12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet
PIPES2 PIPES3 PIPES3 PIPES6 PIPES6	0.5 1.0 1.0 1.1 1.1 1.0 1.1	4.0 4.0 4.0 4.0 4.0 4.0 4.0	Q=2.8; Q=2.8; Q=2.8; Q=2.8; Q=2.8; Q=2.8; Q=2.8;	<l(ft) h(ft)**1.5<br="" ×=""><l(ft) h(ft)**1.5<br="" ×=""><l(ft) h(ft)**1.5<br="" ×=""><l(ft) h(ft)**1.5<br="" ×=""><l(ft) h(ft)**1.5<br="" ×=""><l(ft) h(ft)**1.5<="" td="" ×=""><td>0.1 0.2 0.2 0.2 0.2 0.2</td><td>0.5 0.5 0.5 0.5 0.5 0.5 0.5</td><td></td><td>12 12 12 12 12 12 12 12</td><td>1.570 1.570 1.570 1.570 1.570 1.570 1.570</td><td>(FTPERSEC) 0.32 0.64 0.64 0.70 0.64 0.70</td><td>(ft) 0.500 0.625 0.625 0.750 0.750 0.750</td><td>1.99 1.99 2.81 3.96 4.62 5.70 5.27</td><td>12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 312" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 312" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 312" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 312" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 312" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet Between Pond S7 and connection with ex. SD MH, soffet equals soffet of existing 24" SD</td></l(ft)></l(ft)></l(ft)></l(ft)></l(ft)></l(ft)>	0.1 0.2 0.2 0.2 0.2 0.2	0.5 0.5 0.5 0.5 0.5 0.5 0.5		12 12 12 12 12 12 12 12	1.570 1.570 1.570 1.570 1.570 1.570 1.570	(FTPERSEC) 0.32 0.64 0.64 0.70 0.64 0.70	(ft) 0.500 0.625 0.625 0.750 0.750 0.750	1.99 1.99 2.81 3.96 4.62 5.70 5.27	12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 312" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 312" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 312" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 312" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 312" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet Between Pond S7 and connection with ex. SD MH, soffet equals soffet of existing 24" SD
PIPESI PIPES2 PIPES3 PIPES5 PIPES5 PIPES5	0.5 1.0 1.0 1.1 1.1 1.0 1.1 0.6	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	Q=2.8; Q=2.8; Q=2.8; Q=2.8; Q=2.8; Q=2.8; Q=2.8;	<l(ft) h(ft)**1.5<br="" ×=""><l(ft) h(ft)**1.5<br="" ×=""><l(ft) h(ft)**1.5<br="" ×=""><l(ft) h(ft)**1.5<br="" ×=""><l(ft) h(ft)**1.5<br="" ×=""><l(ft) h(ft)**1.5<br="" ×=""><l(ft) h(ft)**1.5<="" td="" ×=""><td>0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2</td><td>0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5</td><td></td><td>12 12 12 12 12 12 12 12</td><td>1.570 1.570 1.570 1.570 1.570 1.570 1.570</td><td>(FTPERSEC) 0.32 0.64 0.64 0.70 0.64 0.70 0.64 0.70</td><td>(ft) 0.500 0.625 0.625 0.750 0.750 0.750</td><td>1.99 1.99 2.81 3.96 4.62 5.70 5.27</td><td>12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet</td></l(ft)></l(ft)></l(ft)></l(ft)></l(ft)></l(ft)></l(ft)>	0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5		12 12 12 12 12 12 12 12	1.570 1.570 1.570 1.570 1.570 1.570 1.570	(FTPERSEC) 0.32 0.64 0.64 0.70 0.64 0.70 0.64 0.70	(ft) 0.500 0.625 0.625 0.750 0.750 0.750	1.99 1.99 2.81 3.96 4.62 5.70 5.27	12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet 12" Nyloplast Inlet with 12"x12" grate and 12" HDPE Pipe outlet

WATER HARVESTING All runoff from improved and developed areas of the development discharge into one of the retention/detention ponds. Every storm, no matter what size, will capture storm water thru retention ponding in landscape areas, maximizing the opportunity for Water Harvesting and reducing the need for irrigation.

				BASIN HYDROLOGY 100 YEAR EVENT	NOR	TH BASINS				
a	Q-100yr	V100-6hr	V100-10day		AREA	AREA	q	Q-100yr	V100-6hr	V100-10da
3	(cfs)	(cuft)	(cuft)	BASINID	(sf)	(acre)	(cfs/ac)	(cfs)	(cuft)	(cuft
2	1.0	1692	2,918	BASIN N1	12222	0.2806	4.46	1.3	2023	3,489
2			,	BASIN N2	6526	0.1498	4.46	0.7	1080	1,863
2 J	1.0	1637	2,824	BASIN N3	9467	0.2173	4.46	1.0	1567	2,703
5	1.0	1682	2,902	BASIN N4	14160	0.3251	4.46	1.4	2343	4,043
6	1.1	1826	3,151	BASIN N5	13826	0.3174	4.46	1.4	2288	3,947
6	1.0	1682	2,902	BASIN N6	12793	0.2937	4.46	1.3	2117	3,652
3	1.2	1869	3,223	BASIN N7	12835	0.2947	4.46	1.3	2124	3,664
3	1.1	1768	3,051	BASIN N8	10566	0.2426	4.46	1.1	1749	3,017
3	1.1	1704	2,940	BASIN N9	4569	0.1049	4.46	0.5	756	1,304
2	2.3	3773	6,508	BASIN N10	2758	0.0633	4.46	0.3	456	787
				BASIN N11	12634	0.2900	4.46	1.3	2091	3,607
၁	0.4	609	1,051	SUBTOTALNORTH	112,356	2.5793		11.5	18,594	32,077
	11.3	18,243	31,470		,,				,	,
_	22.8	36,837	63,547							

				AN			
J			20	068	, ···		
REVISIONS	NO. BY DATE REMARKS						
SHEET INFO		DRAWN	CHECKED	APPROVED	LAST EDIT 10/30/2024	PLOT DATE 10/30/2024	SUBMITTAL
						SCALE	1:30
					MESA DEL SOL SELF SI ORAGE	PROJECT NUMBER DRAWING FILE NAME	
SH		2 2	О	r f	2		




KEYNOTES:

- (1) INSTALL 24" NYLOPLAST DRAIN BASIN WITH 12" HDPE PIPE & END SECTION INV: 5292.00. SEE TABLES ON SHEET C-501 FOR DRAIN BASIN GRATE & INVERTS.
- 2 INSTALL 12" NYLOPLAST DRAIN BASIN WITH 12" HDPE STORM DRAIN LINE. SEE TABLES ON SHEET C-501 FOR GRATE ELEVATIONS & INVERTS.
- INSTALL 12" NYLOPLAST DRAIN BASIN WITH 12" HDPE STORM DRAIN LINE CONNECTING TO NEW STORM DRAIN MANHOLE. SEE TABLES ON SHEET C-501 FOR GRATE ELEVATIONS AND INVERTS.
- INSTALL 18" NYLOPLAST DRAIN BASIN WITH 12" HDPE PIPE CONNECTING TO NEW STORMDRAIN MANHOLE. INV : IN=5288.35. SEE TABLE FOR GRATE ELEVATIONS & INVERTS.
- 5 CONSTURCT 4' DIAMETER MANHOLE AT TERMINUS OF EXISTING 24" RCP STORM DRAIN. INVERT: IN =5285.93 OUT = 5285.83 RIM= 5302.5
- 6 TYPICAL MEDIAN POND CROSS SECTIONS PER SHEET C-501.
- TYPICAL POND S8 CROSS SECTION ON SHEET C-501.
 TYPICAL POND N5 CROSS SECTION ON SHEET C-501.
- (9) CONSTRUCT 5' WIDE STORM DRAIN RUNDOWN, 6" THICK RIP RAP INLET STRUCTURE.
- (10) BUILD RETAINING WALL. SEE STRUCTURAL PLAN FOR DETAILS.
- BUILD GARDEN WALL, UP TO 24" VERTICAL SPLIT. SEE LANDSCAPING PLAN FOR DETAIL.
- (12) VALLEY GUTTER, SEE PAVING PLAN FOR DETAIL.
- $\overline{(13)}$ SIDEWALK PLAN, SEE PAVING PLAN FOR DETAIL.

LEGEND:

 STEPPED FOOTING (PER DETAIL 2.3 SHEET C-2.0) 	
EXISTING CONTOURS	
PROPOSED STORM DRAIN PIPE	
PROPOSED RETAINING WALL	
PROPOSED GARDEN WALL	
PROPOSED INLETS	
FLOW DIRECTION	
FLOW DIRECTION TO PONDS	
STORM DRAIN RUNDOWN	CULET NEO
FINISHED FLOOR ELEVATION 5303.1	
3:1 MAX SLOPE	
GRADE CONTROL POINT	
PROPOSED ELEVATION	
EXISTING ELEVATION	
- SWALE	
SLOPE %	
CROSS SECTION	
Albuquerque g Department it Review Services DGY SECTION ROVED 4/2024 MALL NOT BE FLANS/REPORT SHALL NOT BE GTV VIOLATIONS OF ANY CITY LAW, AND SHALL NOT REVENT UDEQUE FRANK REQUERING TO	
	 EXISTING CONTOURS PROPOSED STORM DRAIN PIPE PROPOSED RETAINING WALL PROPOSED GARDEN WALL PROPOSED INLETS FLOW DIRECTION FLOW DIRECTION TO PONDS STORM DRAIN RUNDOWN FINISHED FLOOR ELEVATION 5303.1 3:1 MAX SLOPE GRADE CONTROL POINT PROPOSED ELEVATION EXISTING ELEVATION SWALE SLOPE % CROSS SECTION

